On Differential Forms

Abstract. This article will give a very simple definition of k-forms or differential forms. It just requires basic knowledge about matrices and determinants. Furthermore a very simple proof will be given for the proposition that the double outer differentiation of k-forms vanishes.

MSC 2010: 58A10

1. Basic definitions.

We denote the submatrix of $A=\left(a_{i j}\right) \in R^{m \times n}$ consisting of the rows i_{1}, \ldots, i_{k} and the columns j_{1}, \ldots, j_{k} with

$$
[A]_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}:=\left(\begin{array}{ccc}
a_{i_{1} j_{1}} & \ldots & a_{i_{1} j_{k}} \\
\vdots & \ddots & \vdots \\
a_{i_{k} j_{1}} & \ldots & a_{i_{k} j_{k}}
\end{array}\right)
$$

and its determinant with

$$
A_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}:=\operatorname{det}[A]_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}} .
$$

For example

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right), \quad A_{1,2}^{1,3}=a_{11} a_{23}-a_{21} a_{13} .
$$

Suppose

$$
H \in R^{n \times(n+1)}
$$

and let

$$
f, g: U \subseteq R^{n} \rightarrow R, \quad U \text { open }
$$

be two functions which are two-times continuously differentiable. Then we call for a fixed k the expression

$$
f H_{\alpha}^{1 \ldots k}, \quad \alpha=\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}^{k},
$$

a basic k-form or basic differential form of order k. It's a real function of $n+k^{2}$ variables. For $k>n$ the expression is defined to be zero. If f also depends on α then

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \ldots i_{k}} H_{i_{1} \ldots i_{k}}^{1 \ldots k}
$$

is called a k-form. It's a real function of $n+k n$ variables which is k-linear in the k column-vectors of H.
For example for $f: R \rightarrow R$ and $H \in R^{1 \times 1}$ we have $f(x) H$. This is a linear function in H and a possibly non-linear function in x

2. Differentiation of k-forms.

For the differential form

$$
\omega=f H_{\alpha}^{1 \ldots k}, \quad \alpha=\left(i_{1}, \ldots, i_{k}\right)
$$

we define

$$
d \omega:=\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} H_{\nu, \alpha}^{1 \ldots k+1}
$$

as the outer differentiation of ω. This is a ($k+1$)-form. It's a function of $n+(k+1) n$ variables.
The 0-form

$$
\omega=f, \quad|\alpha|=k=0
$$

yields

$$
\begin{equation*}
d w=\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} H_{\nu}^{1} \tag{1}
\end{equation*}
$$

which corresponds to $\nabla f=\operatorname{grad} f$.
In the special case $k=|\alpha|=1$ we get for

$$
\omega=\sum_{i=1}^{n} f_{i} H_{i}^{1}
$$

the result

$$
\begin{equation*}
d \omega=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} H_{j, i}^{1,2}=\sum_{i<j}\left(\frac{\partial f_{i}}{\partial x_{j}}-\frac{\partial f_{j}}{\partial x_{i}}\right) H_{j, i}^{1,2} . \tag{2}
\end{equation*}
$$

This corresponds to $\operatorname{rot} f$.
Let hat (") mean exclusion from the index list. The case $k=n-1$ for

$$
\omega=\sum_{i=1}^{n}(-1)^{i-1} f_{i} H_{1 \ldots \hat{\imath} \ldots n}^{1 \ldots n-1}
$$

delivers

$$
d w=\sum_{i=1}^{n} \sum_{\nu=1}^{n}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{\nu}} H_{\nu, 1 \ldots \hat{\imath} \ldots n}^{1 \ldots n}=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{\nu}} H_{1 \ldots n}^{1 \ldots n}=\left(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}\right) \operatorname{det} H .
$$

This corresponds to $\operatorname{div} f$.
Theorem. For $\omega=f H_{\alpha}^{1 \ldots k}$ we have

$$
d d \omega=0
$$

Proof: With

$$
d \omega=\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} H_{\nu, \alpha}^{1 \ldots k+1}
$$

we get

$$
d d \omega=\sum_{\nu=1}^{n} \sum_{\mu=1}^{n} \frac{\partial^{2} f}{\partial x_{\nu} \partial x_{\mu}} H_{\mu, \nu, \alpha}^{1 \ldots k+2}
$$

and this is zero, because

$$
H_{\mu, \mu, \alpha}^{1 \ldots k+2}=0, \quad H_{\mu, \nu, \alpha}^{1 \ldots k+2}=-H_{\nu, \mu, \alpha}^{1 \ldots k+2}
$$

and

$$
\frac{\partial^{2} f}{\partial x_{\nu} \partial x_{\mu}}=\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}} .
$$

Application of this theorem to an 0-form with an $f: U \subseteq R^{n} \rightarrow R$ and a 1-form with an $a: U \rightarrow R^{n}$ reading (1) and then (2) yields

$$
\operatorname{rot} \operatorname{grad} f=0, \quad \operatorname{div} \operatorname{rot} a=0
$$

The second equation is only true for $n=3$ because

$$
\binom{n}{2}=n \quad(n \in N) \quad \Leftrightarrow \quad n=3
$$

Definition. Suppose

$$
\phi: D \rightarrow E \subset R^{n}, \quad D \subset \subset R^{k},
$$

is differentiable, its derivative denoted by ϕ^{\prime}, and

$$
f: E \rightarrow R
$$

For the differential form $\omega=f H_{\alpha}^{1 \ldots k}$ we define the back-transportation as

$$
\phi^{*} \omega:=(f \circ \phi)\left(\phi^{\prime}\right)_{\alpha}^{1 \ldots k}
$$

and the integral over k-forms as

$$
\int_{\phi} \omega:=\int_{D} \phi^{*} \omega .
$$

For example the case $k=1$,

$$
\omega=\sum_{i=1}^{n} f_{i} H_{i}^{1}
$$

gives

$$
\phi^{*} \omega=\sum_{i=1}^{n}\left(f_{i} \circ \phi\right)\left(\phi^{\prime}\right)_{i}^{1}
$$

3. The outer product of differential forms.

Suppose

$$
H \in R^{n \times(n+1)}, \quad k+m \leq n .
$$

For the two differential forms

$$
\omega=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \ldots i_{k}} H_{i_{1} \ldots i_{k}}^{1 \ldots k}
$$

and

$$
\lambda=\sum_{1 \leq j_{1}<\cdots<j_{m} \leq n} g_{j_{1} \ldots j_{m}} H_{j_{1} \ldots j_{m}}^{k+1 \ldots k+m}
$$

the outer product is defined as

$$
w \wedge \lambda:=\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ 1 \leq j_{1}<\cdots<j_{m} \leq n}} f_{i_{1} \ldots i_{k}} g_{j_{1} \ldots j_{m}} H_{i_{1} \ldots i_{k}}^{1 \ldots k+1 \ldots k+m} .
$$

This is a differential form of order $k+m$. It's a function in $n+(k+m) n$ variables.
Theorem.

$$
d(\omega \wedge \lambda)=d \omega \wedge \lambda+(-1)^{k} \omega \wedge d \lambda
$$

Proof: With

$$
\omega=\sum_{\alpha} f_{\alpha} H_{\alpha}^{1 \ldots k}, \quad \lambda=\sum_{\beta} g_{\beta} H_{\beta}^{1 \ldots m}
$$

then

$$
\begin{aligned}
d(\omega \wedge \lambda) & =\sum_{\alpha, \beta} \sum_{\nu=1}^{n}\left(\frac{\partial f_{\alpha}}{\partial x_{\nu}} g_{\beta}+f_{\beta} \frac{\partial g_{\beta}}{\partial x_{\nu}}\right) H_{\nu, \alpha, \beta}^{1 \ldots k+m+1} \\
& =\sum_{\alpha, \beta} \sum_{\nu=1}^{n} \frac{\partial f_{\alpha}}{\partial x_{\nu}} g_{\beta} H_{\nu, \alpha, \beta}^{1 \ldots k+m+1}+\sum_{\alpha, \beta} \sum_{\nu=1}^{n} f_{\alpha} \frac{\partial g_{\beta}}{\partial x_{\nu}} H_{\nu, \alpha, \beta}^{1 \ldots k+m+1} \\
& =d \omega \wedge \lambda+(-1)^{k} \omega \wedge d \lambda
\end{aligned}
$$

due to

$$
H_{\nu, \alpha, \beta}^{1 \ldots k+m+1}=(-1)^{k} H_{\nu, \beta, \alpha}^{1 \ldots k+m+1}
$$

and

$$
d \lambda=\sum_{\beta} \sum_{\nu=1}^{n} \frac{\partial g_{\beta}}{\partial x_{\nu}} H_{\nu, \beta}^{1 \ldots m+1}
$$

An alternative definition for the differentiation of k-forms could be given.
Theorem. Suppose

$$
\omega=f H_{\alpha}^{1 \ldots k}, \quad 0 \leq|\alpha| \leq k
$$

and

$$
H=\left(h_{1}, \ldots, h_{n}, h_{n+1}\right) \in R^{n \times(n+1)}
$$

with $\alpha=\left(i_{1}, \ldots, i_{k}\right)$ we have

$$
d \omega=\operatorname{det}\left(\operatorname{col}\left(\nabla f,\left[\operatorname{Id}_{n}\right]_{\alpha}^{1 \ldots n}\right)[H]_{1 \ldots n}^{1 \ldots k+1}\right)=\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} H_{\nu, \alpha}^{1 \ldots k+1}
$$

where col just stacks matrices one above another and Id_{n} is the identity matrix in R^{n}.
Proof:

$$
\begin{aligned}
d \omega & =\left|\begin{array}{ccccc}
\left\langle\nabla f, h_{1}\right\rangle & \ldots & \left\langle\nabla f, h_{k}\right\rangle & \left\langle\nabla f, h_{k+1}\right\rangle \\
\left\langle e_{i_{1}}, h_{1}\right\rangle & \ldots & \left\langle e_{i_{1}}, h_{k}\right\rangle & \left\langle e_{i_{1}}, h_{k+1}\right\rangle \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
\left\langle e_{i_{k}}, h_{1}\right\rangle & \ldots & \left\langle e_{i_{k}}, h_{k}\right\rangle & \left\langle e_{i_{k}}, h_{k+1}\right\rangle
\end{array}\right| \\
& =\sum_{\nu=1}^{n} \frac{\partial f}{\partial h_{\nu}} \left\lvert\, \begin{array}{cccc}
h_{1, \nu} & h_{1, i_{1}} & \ldots & h_{1, i_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
h_{k, \nu} & h_{k, i_{1}} & \ldots & h_{k, i_{k}} \\
h_{k+1, \nu} & h_{k+1, i_{1}} & \ldots & h_{k+1, i_{k}}
\end{array}\right.
\end{aligned}
$$

since

$$
\begin{array}{rlc}
\left\langle\nabla f, h_{1}\right\rangle & =\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} h_{1, \nu}, \\
\vdots & \vdots \\
\left\langle\nabla f, h_{k+1}\right\rangle & =\sum_{\nu=1}^{n} \frac{\partial f}{\partial x_{\nu}} h_{k+1, \nu} .
\end{array}
$$

REFERENCES.

1. Walter Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill, New York, 1964
2. Otto Forster, Analysis 3: Integralrechnung im R^{n} mit Anwendungen, Third Edition, Friedrich Vieweg \& Sohn, Braunschweig/Wiesbaden, 1984

Author's address:
Elmar Klausmeier
Goethestrasse 4
D-63128 Dietzenbach
Germany
http://eklausmeier.wordpress.com

