
The Complete Pivoting Conjecture for GaussianElimination is FalseAlan Edelman�Lawrence Berkeley Laboratory& Department of MathematicsUniversity of CaliforniaBerkeley, California 94720edelman@math.berkeley.eduMarch 27, 1992AbstractA famous conjecture concerning Gaussian Elimination was recently\settled" as false, by a counterexample found on a Cray supercom-puter. Mathematica did not yield the same conclusion when givenidentical data, reminding us of the care needed when proving mathe-matical statements using rounded arithmetic. Indeed, the conjecture isfalse, but a proper counterexample requires modi�cations of the data.In this note, we provide proper counterexamples by modifying numberscomputed in rounded arithmetic by Nick Gould on a Cray.1 IntroductionGaussian elimination is the most basic numerical method for solving a denselinear system of equations Ax = b. There are many variations on how toorganize the computations, but taken as a whole Gaussian elimination isprobably one of the most widely known numerical algorithms. For decades,scientists have solved problems of ever increasing size using Gaussian elimi-nation. By last year, the largest matrix solved was of size 55,000, and surely�Supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy under Contract DE-AC03-76SF00098.1



a matrix of size 100,000 will undergo Gaussian elimination very soon, if ithas not already.The algorithm may be old, but new and unanswered questions continue.Some relate to the practical details of implementing the algorithm on newand ever changing architectures. Others concern whether a di�erent algo-rithm might be more suitable. This article focuses on a theoretical mysteryassociated with Gaussian elimination: the complete pivoting conjecture forthe growth factor.Associated with any matrix A is a growth factor g(A) which describesthe growth of matrix elements when A undergoes Gaussian elimination withcomplete pivoting. The conjecture states that g(A) � n for an n � n ma-trix A. In the next two sections we explain this conjecture and present aMathematica program to calculate the growth factor.This article also focuses on the di�erence between exact and 
oatingpoint arithmetic calculations. This distinction is not made often and clearlyenough. Putting aside philosophical issues of whether or not one should trusta computer for mathematical proofs, one can not too hastily make inferencesabout exact arithmetic from rounded computations. Another step is needed:the justi�cation of the approximation or a check in exact arithmetic.Recently, Nick Gould reported on a counterexample to the completepivoting conjecture [Gould 1991a]. He presented a 13�13 matrix \for whichthe growth is 13.0205", and said that \growth larger than n has also beenobserved for matrices of orders 14, 15, and 16". Gould found his matrixusing 
oating point arithmetic on a Cray supercomputer.To verify the results reported by Gould, I worked with two students,Miles Ohlrich and Su-Lin Wu, duplicating Gould's calculations in exactarithmetic with programs written in Mathematica and Maple.Imagine our surprise when we observed a growth factor of under 7.34 forthe matrix that was supposed to give growth of 13.0205! Initial attemptsby one of the students failed to �nd a perturbation of Gould's matrix thatwould give large growth, and hence we began to wonder if the conjecturewas indeed false. After all, the growth factor is only a piecewise continuousfunction of the matrix, and hence a small rounding could greatly changethe result. Here we report that the conjecture is indeed false, and Gould'sexample can be modi�ed in a small way so as to give a true counterexample.2 Gaussian EliminationIn its simplest form, Gaussian elimination factors a matrix A into L � Uwhere L is a lower triangular matrix with unit diagonal and U is uppertriangular. Here is a 3� 3 example.0B@ 2 1 36 7 10�4 6 4 1CA = 0B@ 1 0 03 1 0�2 2 1 1CA0B@ 2 1 30 4 10 0 8 1CA2



Once A is in the form L � U it requires much less computational e�ort tosolve �rst Ly = b and then Ux = y to get the solution x to Ax = b.The matrix L is not needed for our purposes. U can be found by repeatedrow operations, adding multiples of one row to another to eliminate thenonzero entries below the diagonal. Algorithms for Gaussian eliminationappear in many standard references, such as [Golub and van Loan 1989;Press et. al. 1986].1 The \no-frills" method of computing U can be expressedin Mathematica asNoFrills[ A_?MatrixQ ] :=Module[{a=A, U={}},Do[ U = Append[U, a[[1]] ];r = Range[2,k];a = a[[r,r]] - Outer[Times, a[[r,1]] ,a[[1,r]] ]/a[[1,1]],{k, Length[A], 2, -1}] ;U = Append[U, a[[1]] ]]This implementation erases a row and column of A after each passthrough the loop and only stores the upper triangular part of U . The lower(k � 1)� (k � 1) part of the matrix is updated by the addition of a scaledouter product that is formed from the �rst column, the �rst row, and theupper left element as the scaling factor.If the upper left entry is ever zero, the no-frills approach breaks in exactarithmetic. In �nite precision arithmetic, the no-frills approach is numeri-cally unstable, that is, roundo� errors tend to make the result unreliable.There are two �xes to this problem, partial pivoting and complete pivoting.In partial pivoting, a row interchange occurs to ensure that the upper leftentry, the pivot, is the largest element (in magnitude) in the column. Incomplete pivoting, a row and column interchange occurs making the pivotthe largest element in the submatrix. Partial pivoting is most common inapplications. Complete pivoting is rarely used, because the improvementin numerical stability over partial pivoting does not justify the time spentsearching for the largest element in the submatrix. Only in certain specialcases can pivoting be avoided altogether.Using Mathematica, pivoting can be implemented by de�ning functionsto interchange (switch) rows or columns.Attributes[RowSwitch]=HoldAllAttributes[ColSwitch]=HoldAllRowSwitch[m_,n_,a_] :={a[[m]],a[[n]]}={a[[n]],a[[m]]}ColSwitch[m_,n_,a_] :=(a=Transpose[a]; {a[[m]],a[[n]]}={a[[n]],a[[m]]}; a=Transpose[a])1However, [Press et. al 1986] devotes undo attention to the Gauss-Jordan algorithmwhich is of little importance as a numerical recipe.3



The row interchange of partial pivoting is then obtained by inserting thefollowing steps into the loop:m = First[Position[Abs[a], Max[Abs[#[[1]]]& /@ a]]];RowSwitch[1,m[[1]],a]Complete pivoting is given by a row interchange followed by a columninterchange:m = First[Position[Abs[a], Max[Abs[a]]]];RowSwitch[1,m[[1]],a]ColSwitch[1,m[[2]],a]With either form of pivoting, the pivots will be the diagonal elements ofthe resulting upper triangular matrix U .3 Growth FactorsThe quantity that we wish to study is the growth factor of an n� n matrixA under complete pivoting, de�ned asgn(A) = maxi;j;k ja(k)ij jmaxi;j jaijj ;where a(k)ij is a matrix element at the k-th step of the elimination process.From the de�nition of complete pivoting it follows that the largest elementat each step will be one of the pivots, so the growth factor can also be de�nedas gn(A) = maxi juiijmaxi;j jaijj :In the standard error analysis of Gaussian elimination, it is shown thatthe backward error (a measure of stability) in the numerical solution toAx = b is bounded by 8n3gn(A)u;where u denotes the \unit-roundo�" and the n3 term is considered pes-simistic in practice. Analysis of forward error (another measure of stability)also involves the growth factor. (See any textbook on numerical linear alge-bra for an explanation of the growth factor and error analysis of Gaussianelimination.)It is natural to ask how large the growth factor can be for n�n matrices.Nobody has been able to answer this question. The only known bound isdue to Wilkinson [Wilkinson 1961], who showed thatgn(A) � n1=2(2 � 31=2 � � �n1=(n�1))1=2:For n = 100, this bound is roughly 3500; however, nobody has ever observedgrowth bigger than 100 for a 100� 100 matrix. Wilkinson observed that it4



was di�cult to construct a matrix for which gn(A) > n. Cryer publishedthe statement which has become known as Wilkinson's conjecture2 [Cryer1968]:Conjecture: If Gaussian elimination with complete pivoting is per-formed on a matrix A, then gn(A) � n.The recent claim by Gould that he found a 13� 13 matrix with growth13.0205 is the �rst published \counterexample" to the conjecture [Gould1991a]. We will show that Gould's 
oating point calculation is not quitecorrect, in that it does not give the same result in exact arithmetic. Wewill demonstrate rigorously that the conjecture is indeed false by modifyingGould's counterexample ever so slightly. To do this we need a Mathematicaprogram to calculate the absolute pivots juiij. Here is such a program:Options[Pivots] = {Pivoting -> True}Pivots[A_, opt___Rule] :=Module[{a=A, m, p={}, piv},piv = Pivoting /. {opt} /. Options[Pivots];Do[ m = First[Position[Abs[a],Max[Abs[a]]]];If[ piv,RowSwitch[1,m[[1]],a];ColSwitch[1,m[[2]],a]];p = Append[p, {m+Length[A]-k,N[Abs[a[[1,1]]],40]}];r = Range[2,k];a = a[[r,r]] - Outer[Times, a[[r,1]] ,a[[1,r]] ]/a[[1,1]],{k, Length[A], 1, -1}] ;p ]The program returns a list of pivots and the locations of the largest ele-ment in magnitude at each step of the Gaussian elimination. The eliminationis performed either with no pivoting or with complete pivoting, dependingon how the option is set. In Section 5, we describe brie
y our modi�cationsto some of Gould's examples. The location of the maximums were essentialfor �nding these modi�cations.4 Gould's Floating Point CounterexampleGould's purported counterexample to the growth conjecture is a 13 � 13matrix which we represent in Mathematica as follows:a= {l, -l, -l, 660848918578853640, 350768677240296530, 139130936348087710,l, -l, 945463095088536990, -64358761317393848, -47259056539260776,2though Wilkinson never published this explicitly as a conjecture5



981447528786957180, l, l, l, -l, -l, -882625441488454570,-793497892195840220, -l, -700496337540687080, l, l, -l, l,-651498589419302720, l, 493218479970826740, l, 523219868894640230, l,931478025815019150, -l, -l, -l, 906340171404097510, l, 196359942450215320,520200438016106050, -852377236166545040, l, -799595937286409320, l,-613950298735988050, -l, -l, l, l, l, l, -l, l, -641979766159483270, l,-823477739209516720, -l, l, -l, -l, l, -l, -l, -980475145622109130,l, l, -757461144210523130, 876253886818607830, -l, -l,-814104693902053870, l, l, -l, -l, l,-l, -l, l, l, l, l, 588225298469760790, l, -l, 117806934515049340,-l, l, -l, -l, -l, l, l, l, -123654398954411060, -l, -l, l, l, l, l, -l, l,l, l, -l, 167280198905618540, -l, -l, l, 670377079454039460, -l,-l, l, -l, l, -l, -l, -l, l, 734512344136362240,774209922789794840, l, l, l, l, l, l, -l, l,-l, -l, -322948030097235110, l, -l, 59471427088948606, -l, l,-773051215153670920, l, l, l, l, l, -l, -170078579523277070, l, l,-l, l, -l, -l, 918980310122519350, -l, -l, 250493402326499640, l,961431109359263460, -l, 724092990184259320, -l, l, l, -l, l, l,l, -l, -l, l};gould = Partition[a/l /. l -> 10^18, 13]We computed Pivots[gould] and Pivots[gould, Pivoting->False]and found the pivots listed in Table 1. With complete pivoting the matrixyields a growth factor of around 7:355 in exact arithmetic, considerablysmaller than the 13+ needed to be a counterexample. It does, however,yield 13:0205 in double precision 
oating point arithmetic. When we ranthe elimination without pivoting, we found that there was a near tie in thesixth pivot. The proper winner of this near tie would not be resolvable bythe �nite precision arithmetic in the hardware of most computers.To speed up the computation, we can replace the matrix A with N[A,100]in the call to Pivots. Of course, there is no guarantee that this will givethe correct answer in general, but it does for this example.5 Finite Precision, Exact Arithmetic, and TrueCounterexamplesWe found that a true counterexample could be obtained from Gould's matrixsimply by changing the (11; 10) entry from 1 to 1� 10�7.The �x: gould[[11,10]] = 1 - 10^(-7);This small perturbation of the matrix jumps over a discontinuity in thegrowth factor function, yielding the growth of 13.02, even in exact arith-metic. The fact that we were able to �nd a counterexample by a smallperturbation leads us to consider thePerturbation Question for the Growth Factor: If ĝn(A) denotesthe growth factor of a matrix computed in �nite precision, must there exista small perturbation E such that gn(A+ E) = ĝn(A) in exact arithmetic?6



Gould has very recently informed me of matrices with observed growthfactors below [Gould 1991b]: n ĝn18 20.4520 24.2525 32.99Of course, I quickly tried the Mathematica program on the biggest ma-trix, and found a growth factor of 9.4. Again, it turned out to be possible,though laborious, to �nd a perturbation of this 25 � 25 matrix that givesgrowth of nearly 32.99 in exact arithmetic. We list in the table below the�x to the 25� 25 matrix to give the reader an idea of what changes need tobe made. The matrix appears in the electronic supplement.Entry Gould's matrix our �x10,10 .99998703567977021 .99998703567977118,18 .99997583082741470 .99997583082742020,20 .99996637588164239 .99996637588165021,21 .99997417725485349 .99997417725486023,23 .99995075834718583 .999950758347190With these �xes Gould's matrix gives a 25�25 matrix with growth factor32:986341.We do not elaborate on how we found the �xes, but we invite the readerto �nd it for himself. Very roughly, the idea is that if two elements are nearlytied, but the \wrong" element is ever so slightly larger in magnitude, exactarithmetic picks a di�erent pivot than does 
oating point arithmetic. Thus,by knowing the location of the false maximum, which is returned by thefunction Pivots, we can reduce the corresponding element in the originalmatrix in the hope of forcing the near tie to have the desired outcome. Wemust, however, be careful not to change the element too much or we run therisk of destroying the delicate structure that gives large growth.6 Computers and Mathematical ProofsEver since the proof of the four color-color conjecture there has been a livelydebate over the applicability of computer-aided proofs. Such questions haveeven appeared in the lay press (see [Kolata 1991] for one recent article). Wetake the pragmatic view that people will (and even should) use whatevertools are available, provided that such tools can be veri�ed for correctness.In our case, we were not satis�ed with Mathematica's veri�cation of thecounterexample so we wrote a program for another symbolic system, Maple.We found that Maple's results for the 13� 13 matrix agreed perfectly withthose from Mathematica. One might still legitimately philosophize aboutwhether this con�rmation constitutes a proof. However, from our pragmaticpoint of view, for two completely di�erent software systems to give preciselythe same answer to the same question is an overwhelming veri�cation of7



its correctness. While one software system could have a bug, it is almostcertainly impossible for two di�erent widely used systems to lead to thesame erroneous conclusion on correct programs. At least, I would argue, itis more likely that humans would err.7 Appendix: Maple programHere is a Maple program to verify results found with Mathematica:with(linalg): Digits := 100:# Begin by defining the Gould matrixl := 10^18:A := matrix(13, 13,[l, -l, -l, 660848918578853640, 350768677240296530, 139130936348087710,l, -l, 945463095088536990, -64358761317393848, -47259056539260776,981447528786957180, l, l, l, -l, -l, -882625441488454570,-793497892195840220, -l, -700496337540687080, l, l, -l, l,-651498589419302720, l, 493218479970826740, l, 523219868894640230, l,931478025815019150, -l, -l, -l, 906340171404097510, l, 196359942450215320,520200438016106050, -852377236166545040, l, -799595937286409320, l,-613950298735988050, -l, -l, l, l, l, l, -l, l, -641979766159483270, l,-823477739209516720, -l, l, -l, -l, l, -l, -l, -980475145622109130,l, l, -757461144210523130, 876253886818607830, -l, -l,-814104693902053870, l, l, -l, -l, l,-l, -l, l, l, l, l, 588225298469760790, l, -l, 117806934515049340,-l, l, -l, -l, -l, l, l, l, -123654398954411060, -l, -l, l, l, l, l, -l, l,l, l, -l, 167280198905618540, -l, -l, l, 670377079454039460, -l,-l, l, -l, l, -l, -l, -l, l, 734512344136362240,774209922789794840, l, l, l, l, l, l, -l, l,-l, -l, -322948030097235110, l, -l, 59471427088948606, -l, l,-773051215153670920, l, l, l, l, l, -l, -170078579523277070, l, l,-l, l, -l, -l, 918980310122519350, -l, -l, 250493402326499640, l,961431109359263460, -l, 724092990184259320, -l, l, l, -l, l, l,l, -l, -l, l]):A := evalm(A/l):# Choice 1 -- The line below if uncommented will give a matrix with large# growth in exact arithmetic.A[11,10]:=1-10^(-7):# Define a maxindex functionmaxindex := proc(A, i0, j0)local m;m := abs(A[1,1]);i0:=1;j0:=1;for i to n do for j to n doif abs(A[i,j]) > m then m := abs(A[i,j]); i0:=i; j0:=j; fi;od;od;end:# The basic elimination stepelim := proc(A)local i,j;# Choice 2--Perform Pivoting (comment out the next three lines for no pivoting)maxindex(A, i, j); 8



A := swaprow(A, 1, i);A := swapcol(A, 1, j);D := submatrix(A, 2..n, 1..1) &* submatrix(A, 1..1, 2..n);print(convert(A[1,1],float));A := evalm(submatrix(A, 2..n, 2..n) - D/A[1,1]);end:# Main programfor n from rowdim(A) by -1 to 2 doelim(A);od:convert(A[1,1],float);References[1] A.M.Cohen, A note on pivot size in Gaussian elimination, Lin. Alg.Appl. 8 (1974), 361{368.[2] C.W.Cryer, Pivot size in Gaussian elimination, Num. Math. 12 (1968),335{345.[3] J.Day and B.Peterson, Growth in Gaussian elimination, Amer. Math.Monthly (June 1988), 489{513.[4] A.Edelman, Note to the editor, SIAM J. Matrix Anal. Appl., 12 (1991).[5] G.H. Golub and C.F. van Loan,Matrix Computations, Second Edition,Johns Hopkins University Press, Baltimore, 1989.[6] N.Gould, On growth in Gaussian elimination with complete pivoting,SIAM J. Matrix Anal. Appl., 12 (1991), 354{361.[7] N.Gould, private communication, 1991.[8] M.Hall, Combinatorial Theory, 2nd ed., John Wiley, New York, 1986.[9] N.J.Higham and D.J.Higham, Large growth factors in Gaussian elimi-nation with pivoting, SIAM J. Matrix Anal. Appl., 10 (1989), 155{164.[10] N.Higham and N.Trefethen, Complete pivoting conjecture is disproved,SIAM News 24 (January 1991), 9.[11] G.Kolata, Computers still can't do beautiful mathematics, New YorkTimes, (July 14, 1991), Section 4, p. 4.[12] W.H.Press, B.P.Flannery, S.A.Teukolsky, and W.T.Vetterling, Numer-ical Recipes, Cambridge University Press, 1986.[13] L.Tornheim, Pivot size in Gauss reduction, Tech Paper, Chevron Re-search Co., Richmond CA., 1964.[14] L.Tornheim, Maximum pivot size in Gaussian elimination with com-plete pivoting, Tech Report, Chevron Research Co., Richmond CA.,1970.[15] J.H.Wilkinson, Error analysis of direct methods of matrix inversion, J.Assoc. Comp. Machinery 8 (1961), 281{330.9



[16] J.H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford Univ. Press,London, 1965.
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Pivot Complete Pivoting No Pivoting1 1 =2 2 =3 2 =4 2.5964300000000003429555442 =5 2.3776999999999999370719964 =6 2.3038700000000000410065317 2.30386999999999993979296787 4.4163321272515367596933451 2.95874000000000004829264028 3.8552767929754123988079185 3.58903999999999999395712349 4.0185942254812673817312640 4.116380000000000115314698010 5.0293415272986442173884056 3.355040000000000030758027011 5.7152002451610692471571681 6.510269999999999636503702812 5.5949255626529073239265750 6.510269999999999894161415413 7.3552186391545473364176438 13.0205000013724194933200652Table 1: Gaussian elimination in exact arithmetic on Gould's 13 by 13example
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