
MB3 D6.4 – Report on application tuning and optimization on ARM
platform

Version 1.0

Document Information

Contract Number 671697

Project Website www.montblanc-project.eu

Contractual Deadline PM24

Dissemination Level Public

Nature Report

Authors Fabio Banchelli, Marta Garćıa, Marc Josep, Victor Lopez, Filippo
Mantovani, Xavier Martorell, Daniel Ruiz, Xavier Teruel (BSC)
Patrick Schiffmann (AVL), Alban Lumi (UGRAZ)

Contributors

Reviewers Roxana Rusitoru (ARM)

Keywords Applications, performance analysis, co-design insight, OmpSs pro-
gramming model, mini-apps, power consumption of HPC codes

Notices: This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 671697.

c©Mont-Blanc 3 Consortium Partners. All rights reserved.

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Contents

Executive Summary 4

1 Lulesh 5

1.1 Description . 5

1.2 OmpSs Port . 5

1.3 DLB . 7

2 HPCG 9

2.1 Description . 9

2.2 Analysis . 10

2.3 Optimizations . 12

3 QuantumESPRESSO 13

3.1 Description . 13

3.2 Results . 13

3.3 Conclusions . 13

4 Compiler evaluation 15

4.1 Methodology . 15

4.2 Results . 16

4.2.1 Lulesh . 16

4.2.2 CoMD . 19

4.2.3 Polybench . 21

4.2.4 QuantumESPRESSO . 22

4.3 Conclusions . 24

5 Eikonal Solver - UGRAZ 24

5.1 Description . 24

5.2 Analysis . 25

5.3 Energy Measurements . 29

5.4 Conclusions . 30

6 CARP - UGRAZ 31

6.1 Description . 31

6.2 Analysis . 31

6.3 Energy Measurements . 32

6.4 Conclusions . 34

7 Non-Newtonian Fluid solver - UGRAZ 34

7.1 Descriptions . 34

7.2 Viscoplastic Non-Newtonian Fluids . 35

7.3 Numerical solution of the coupled problem . 36

7.4 Scaling and Efficiency results . 37

7.5 Future work . 38

2

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

8 Mesh Interpolation Mini-App 38
8.1 Description . 39
8.2 Original Implementation and Performance Analysis 39
8.3 Theoretical Performance Analysis . 40
8.4 Optimization . 41

8.4.1 Auto Tuning the Brute-Force vs. FMM Threshold 41
8.4.2 Hybrid Parallelism on the Outer Loop . 41

8.5 Results . 41

3

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Executive Summary

The current report refers to the work performed under T6.4 during the period from M12 to
M24 of the Mont-Blanc 3 project.

This deliverable describes the results generated in porting and tuning the applications con-
sidered as part of the co-design process in Mont-Blanc 3 for ARM. We present our optimization
experiences for 9 applications. For most of them we performed evaluations on Mont-Blanc 3
platforms and analyses on both ARM and Intel-based platforms. Building on Deliverable 6.1 [1]
which tried to identify root causes of scaling issues, we continued with analysis and implemented
optimizations to overcome these performance problems.

Overall load imbalance was identified as a very important issue. Most applications needed
to address this either via improving algorithms and domain decompositions, distributing their
ressources to fewer MPI ranks and more threads, or via dynamic load balancing (DLB).

For the HPCG benchmark, a performance analysis and an initial algorithmic optimization
is presented. The work presented is not ARM-specific, but it has been tested on an ARM-based
cluster by a team of students. Following the directive in [1], Lulesh has been ported to OmpSs
and tested on the Mont-Blanc 3 mini-clusters.

In the ARM ecosystem the ARM Performance Libaries have been evaluated on a widely
used scientific suite QuantumESPRESSO. The results indicate speedups when using ARMPL
for linear algebra workloads, and highlight opportunities to improve the FFT functions.

In addition, the recently released ARM compiler was compared to GCC. Performance and
usability were comparable, further investigation which compiler is preferable for which type of
workload is suggested.

For the applications in cardiac modelling and mesh deformation we generally find optimiza-
tions stemming from analysis on Intel systems advantageous for ARM systems and vice versa,
e.g. work to scale to the high core density ThunderX system proved valuable for performance
many core x86 systems. For some of them, power measurements are presented: this numbers will
be used as baseline when comparing powerfomance and power figures in the final Mont-Blanc 3
demonstrator under deployment in WP3.

4

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

1 Lulesh

1.1 Description

Lulesh is a hydrodynamics simulation application. An analysis on ThunderX [2] and MareNos-
trum when using MPI and OpenMP can be found on [1], together with a first approach using
OmpSs.

1.2 OmpSs Port

Lulesh has been ported to OmpSs, as described on Deliverable D6.5 ([3]) and run on the Mont-
Blanc mini-clusters Thunder-X and Jetson-TX. When running on Jetson-TX, using OmpSs
provides an increase in performance in comparison when running with OpenMP, up to a 30%
(Figure 1).

Figure 1: Performance when running Lulesh on Jetson-TX, using both OmpSs and OpenMP. The
higher the better.

On Thunder-X, the performance is slightly lower when using OmpSs in comparison with
OpenMP. The difference between them gets broader when increasing the number of threads per
process (Figure 2).

Figure 3 shows the task execution of two iterations when using only OmpSs with 8 threads.
Despite small granularity, there is not a huge overhead, and there is close to no imbalance
between threads.

When increasing the number of threads, the performance significantly decreases, mainly due
to insuficient amount of work for all cores, as can be seen on figure 4. When we increase the
problem size, the principal cause of performance loss is task granularity; the tasks executing
function ”EvalEOSForElems” take significantly much more time than the set of other tasks,
and thus creating high imbalance on synchronization points (figure 5).

5

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 2: Performance when running Lulesh on Thunder-X, using both OmpSs and OpenMP. The
higher the better.

Figure 3: Tasks executed during two Lulesh iterations when running with 1 MPI process and 8 OmpSs
threads.

Figure 4: Tasks executed during three Lulesh iterations when running with 1 MPI process and 48
OmpSs threads.

6

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 5: Tasks executed during three Lulesh iterations when running with 1 MPI process and 48
OmpSs threads and a higher problem size than 4. Purple bars depict function ”EvalEOSForElems”.

1.3 DLB

Lulesh is able to adjust the load balance of the execution using the -b command line option.
This option will change the relative weight of regions within a domain. A large value will cause
a great disparity between the region with the most elements and the region with the fewest,
provoking more imbalance between domains. This is very interesting for doing performance
tests with OmpSs + DLB, as the level of the load imbalance can be dynamically adjusted per
experiment.

DLB [4, 5] can fix the load balance of the MPI processes in the same shared memory node by
temporally distributing the CPUs when one process is idle and other processes can potentially
increase its parallel execution. This load balance tests with Lulesh have been performed on
the Mont-Blanc prototype, which only has two CPUs. With this restriction, there is only one
scenario where we can exploit the DLB capabilities. Lulesh needs to be executed with two MPI
ranks per node and only one thread per process, at least at the beginning of the execution, and
only when one of the processes gets blocked due to an MPI blocking call, the other process in
the node can increase its number of threads by one.

There is also another issue regarding the number of CPUs per node in this experiment. DLB
is only able to fix the load imbalance inside the node, if only two MPI ranks are distributed per
node, there is a very high chance that either two low load processes or two high load processes
get placed in the same node, and this kind of imbalance cannot be fixed by DLB. This is not
critical on regular HPC systems as they usually provide a high number of CPUs per node, but
it is on the Mont-Blanc systems. To solve this issue, a previous run has been analyzed to detect
the load imbalance of each rank so the highest load process is placed in the same node as the
lowest load process, the second highest with the second lowest, and so on.

Figures 6 and 7 show the comparison of execution times of Lulesh with and without DLB
in different configurations (B=1: low load imbalance, B=8: high load imbalance), and different
problem sizes. Execution times with DLB are up to 5% faster in both configurations, except in
weak scaling running with 256 MPI ranks, where rank distribution cannot be done efficiently
due to the high number of ranks.

The improvement using DLB with Lulesh is shown in Figure 8. The first trace shows a
single threaded execution with 8 MPI ranks. The blue rectangle highlights a chunk of code
with high load imbalance, the red events correspond to tasks, and the green events correspond
to MPI blocking calls. This chunk is only 30% of the iteration. The second trace shows a
similar execution, using same resources and same input, but applying DLB in the unbalanced,
also highlighted, chunk. By applying DLB, the less loaded ranks (5-8) can lend their CPUs to

7

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 6: Lulesh execution time running on Mont-Blanc prototype, weak scaling.

Figure 7: Lulesh execution time running on Mont-Blanc prototype, strong scaling.

8

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

the most loaded (1-4). This is done each iteration, completely transparent to the application
and achieving a 1.52 of speedup over the same highlighted chunk in the upper trace. Based on
Amdahl’s law S(p, s) = 1

(1−p)+ p
s
, this local speedup will limit the maximum achievable speedup

for the application: S(p = 0.3, s = 1.52) = 1.11, close enough to the 10% speedup shown in the
previous charts.

Figure 8: Lulesh trace comparison with and without DLB.

2 HPCG

2.1 Description

High Performance Conjugate Gradient (HPCG) [6] is a synthetic benchmark with the intent
to complement the High Performance LINPACK (HPL) benchmark currently used to rank the
TOP500 computing systems.

HPCG is a complete and standalone code that measures the performance of several linear
algebra kernels with different memory access patterns. Within the benchmark the following
basic operations are performed:

• Sparse matrix-vector multiplication

• Vector updates

• Global dot products

• Local symmetric Gauss-Seidel smoother

• Sparse triangular solve (as part of the Gauss-Seidel smoother)

The reference implementation is written in C++ with MPI and OpenMP support.

This application was selected to be executed for the Student Cluster Competition held dur-
ing the International Supercomputing Conference [7]. During the competition, a team from the
Universitat Politècnica de Catalunya had to optimize the application. The team was supported

9

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

by the Mont-Blanc project and advised by project members at BSC. As the benchmark repre-
sents a large class of applications, we include here the effort invested on it and a preliminary
optimization.

2.2 Analysis

HPCG execution can be divided into 5 discrete steps which include problem generation, testing
and execution.

• Problem setup phase

• Reference timing phase

– Sparse matrix-vector multiplication and Multi-Grid (MG)

– Conjugate Gradient (CG) algorithm

• Optimized problem setup

– Data structures optimizations by user

– Validation of the modifications

– CG setup

• Benchmarking of optimized CG

– Sparse matrix-vector multiplication

– Symmetric Gauss-Seidel

• Results report

An initial profiling of the different benchmarked phases is presented in Table 1. The most
expensive part of the benchmark is the MG kernel, on which sparse matrix-vector multiplication
and symmetric Gauss-Seidel are performed. The execution was performed by using 1 MPI rank
and 8 OpenMP threads on an AMD Seattle SoC and running the benchmark for 10 minutes.

OpenMP only MPI only

Kernel GFlops Time (s) GFlops Time (s)

DDOT 1.62 2.17 0.73 17.51

WAXPBY 1.58 2.23 0.98 12.93

SpMV 1.50 20.68 1.62 70.46

MG 0.26 657.37 1.22 519.76

Total 0.30 682.47 1.24 620.73

Table 1: Performance and execution times for the different kernels executed on HPCG. Execution was
performed with the reference version on a AMD Seattle with 1 MPI rank and 8 OpenMP threads.

We also executed and traced with Extrae the reference code on the nodes of the ThunderX
cluster (4 Cavium ThunderX SoC’s for a total of 192 cores). The execution used 4 MPI ranks
and 48 OpenMP threads per rank.

Figure 9 show the trace obtained. There we can see two complete iterations of the Conjugate
Gradient algorithm. On the top, blue means that the specified core was doing useful work (i.e.
executing code), while no color means the specific core was executing nothing. On the middle

10

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 9: Paraver trace of two full iterations in the optimized Conjugate Gradient

11

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

OpenMP only MPI only

Kernel GFlops Improvement GFlops Improvement

DDOT 1.67 1.03 0.89 1.22

WAXPBY 1.61 1.02 0.98 0.99

SpMV 1.57 1.05 1.70 1.05

MG 0.47 1.81 1.61 1.32

Total 0.53 1.76 1.57 1.27

Table 2: Performance and speed up, against reference execution with same configuration, of the opti-
mized HPCG version

we can see on different colors the different OpenMP sections, which mostly map to the blue
sections on the top (except for the master thread). On the bottom, it is shown how many cores
were used per node (i.e. on the two MPI ranks of each node) during the execution, again, it can
be seen that green areas (low count of cores executing useful code) is too low most of the time.
This behavior leads to a bad usage of the hardware resources when using OpenMP, which at the
end translates into having to use MPI only, which increases the total amount of communication
that has to be done.

2.3 Optimizations

We based our optimizations on the ones presented by the RIKEN during SC14 [8]. These
optimizations can be basically split in:

• Improve memory allocations by allocating contiguous memory

– Should improve all kernels in general

• Block multicoloring of the indirected graph to parallelize the symmetric Gauss-Seidel

– This way we could decrease the amount of communications performed by decreasing
the number of MPI ranks and increasing the amount of OpenMP threads used by
each rank

• Loop optimizations

– Except the symmetric Gauss-Seidel, the rest of the kernels can benefit from this

In our case, we modified the code to allocate the data structures in a contiguous way in
terms of memory. Also, we performed loop unrolling on the SpMV, the DDOT and WAXPBY
kernels. Table 2 shows the improvement achieved against the reference version.

The multicoloring of the graph to parallelize the symmetric Gauss-Seidel, it is still on going.
This technique is meant to reorder the sparse matrix in a way that nodes of the graph that
do not depend on each other are known (i.e. we assign them the same color) so they can be
processed in parallel. Considering that the graph generated on the HPCG benchmark is a
27-stencil, then 8 colors can be used [9].

12

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

3 QuantumESPRESSO

3.1 Description

QuantumESPRESSO is an integrated suite of codes for electronic-structure calculations and
materials modeling at the nanoscale. It is based on density-functional theory, plane waves and
pseudopotentials. It is mostly written in Fortran and uses MPI and (optionally) OpenMP to
exploit parallelism.

QuantumEspresso uses BLAS, LAPACK and FFT functions for its most heavy computa-
tional parts. Therefore, it is a good candidate to analyze the performance of the ARM Perfor-
mance Libraries (ARM PL) against the optimized libraries already included on the Mont-Blanc
software stack.

Table 3 shows the different library configurations used. All the executions were performed
on the AMD Seattle platform deployed at BSC facilities.

Execution name BLAS library LAPACK library FFT library

ARMPL ARM PL v2.2.0 ARM PL v2.2.0 ARM PL v2.2.0

ATLAS ATLAS v3.11.39 ATLAS v3.11.39 FFTW v3.3.6

OpenBLAS OpenBLAS v0.2.20 OpenBLAS v0.2.20 FFTW v3.3.6

ARMPL + FFTW ARM PL v2.2.0 ARM PL v2.2.0 FFTW v3.3.6

Table 3: Library configurations used for QuantumESPRESSO executions on a AMD Seattle with 8
MPI ranks

3.2 Results

For the analysis of QuantumESPRESSO we executed the pwscf-small benchmark input set
provided by its developers 1. This set consists of 4 different inputs. The first one is the smallest
of all while the third and fourth are the biggest. The third input is more BLAS focused while
the fourth is more FFT focused.

Figure 10 shows the normalized performance for the different inputs as well as the execution
time of the more important routines within the execution. For each input, different executions
are reported. It can be seen that while using the ARM PL alone does not provide a better
performance. This changes when using the ARM PL for BLAS and LAPACK routines while
using FFTW library for the FFT routines. Then, the performance is always similar or better
at the one obtained with other optimized libraries.

Figure 11 shows, for each input, the normalized execution time against the ARMPL execu-
tion for each of the most relevant routines reported by QuantumESPRESSO. Table 4 we can
see what executes each of the routines. As we already mentioned, the ARM PL seems to lack
performance for the FFT functions. As for the BLAS-centered routines, the performance is
similar or better with compared to other BLAS implementations, as can be seen at Figure 11.

3.3 Conclusions

QuantumESPRESSO can benefit from properly optimized BLAS, LAPACK and FFT libraries.
Of course, this is not only true for this application. Therefore, the results observed for Quantu-

1http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_
id=36

13

http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=36
http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=36

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Input 1 Input 2 Input 3 Input 4
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Total Execution Time

ARMPL

ATLAS

OpenBLAS

ARMPL + FFTW

Input set

S
pe

ed
 U

p
ag

ai
ns

t A
R

M
P

L

Figure 10: Normalized performance against the ARMPL execution for the different inputs from the
pwscf-small input set

Routine name BLAS + LAPACK FFT MPI IO

calbec ×
fft ×
ffts ×
fftw ×
interpolate ×
davcio ×
fft scatter ×

Table 4: Operations performed at each of the QuantumESPRESSO reported routines

Input 1 (top) and Input 2 (bottom)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ca
lbe

c fft fft
s

fft
w

int
er

po
lat

e

da
vc

io

fft
_s

ca
tte

r

To
ta

l T
im

e
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Routine name

E
xe

cu
tio

n
 T

im
e

no
rm

al
iz

ed
 to

 A
R

M
 P

L

ca
lbe

c fft fft
s

fft
w

int
er

po
lat

e

da
vc

io

fft
_s

ca
tte

r

To
ta

l T
im

e
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Routine name

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Input 3 (top) and Input 4 (bottom)

ARMPL

ATLAS

OpenBLAS

ARMPL+FFTW

Figure 11: Normalized execution time against the ARMPL execution for the most relevant routines
executed within the inputs from the pwscf-small input set

14

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

mESPRESSO can and should be used in other applications with similar compute characteristics.

A lack of performance on the FFT routines implemented at the ARM PL can impact the final
performance. This effect can be mitigated by preloading a more performant FFT library such
as FFTW. In any case, the BLAS and LAPACK routines implemented at the ARM PL perform
similar or better to other optimized libraries. This makes the ARM PL a good candidate for
applications that can benefit from an optimized BLAS implementation.

The ARM PL are currently in its second major version. And for the results obtained, looks
like more effort was put in the BLAS and LAPACK implementations rather than in the FFT
one. So room for improvement is available at the FFT routines. Future ARM PL releases could
boost the performance of the FFT routines. This means that the work being done here will be
expanded as new ARM PL versions are released.

4 Compiler evaluation

Within the Mont-Blanc project, we adopted since 2011 the GNU Compiler Collection (GCC)
suite as the main compiler since it was the one providing the widest support for ARM archi-
tecture. This hypothesis needs to be validated again with the release of the new ARM HPC
Compiler. The ARM HPC Compiler is developed by ARM and it is based on LLVM [10]. It
provides C, C++ and Fortran compilers at the current version, which makes a necessity to
consider it as an alternative, or even the new main compiler, on our software stack. We report
here a preliminary comparison between the ARM HPC Compiler (v. 1.3) and GCC (v. 7.1.0).

4.1 Methodology

For this study we choose four different applications. Two of them are mini-apps already used
within the Mont-Blanc project as Lulesh and CoMD. The third one is Polybench. This bench-
mark suite contains kernels from various application domains such as linear algebra, physics
simulation, dynamic programming, etc. Therefore, it was a good candidate to test how well
each compiler performs when generating a wide amount of different types of codes. The fourth
and last application is QuantumESPRESSO, already analyzed on Section 3. The idea with
QuantumESPRESSO is to see the feasibility of using the ARM HPC Compiler with real-world
applications and to see how good the generated code is.

For each of these applications, we used only OpenMP implementations (if available), pulling
out of the equation MPI implementations since we want to see only the performance obtained
by the serial code as well as the performance obtained by the specific OpenMP runtime of each
compiler. In this sense, GCC uses GOMP as an OpenMP runtime whereas the ARM HPC
Compiler uses KMP runtime. For QuantumESPRESSO though, we used the MPI-only version
in order to see also how good the MPI implementation is when compiled as well with the ARM
HPC Compiler.

The ARM platforms used for running our experiments are a dual socket node with a 48-
core Cavium ThunderX SoC Pass2 on each socket [11] and a single socket node with a 8-core
AMD Seattle SoC [12]. QuantumESPRESSO has been executed only on the AMD Seattle SoC.
The reason for this choice was to try a complete custom ARMv8 implementation as well as a
SoC featuring ARM Cortex-based architecture. In all cases, the compilers optimization flags
used have been -O3 -mcpu={cortex-a57,thunderx} depending on the platform used for
the evaluation. The data gathered in this study will be used as reference while studying the
performance of the Mont-Blanc demonstrator platform based on ThunderX-2 deployed by WP3.

15

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

4.2 Results

4.2.1 Lulesh

Lulesh is a shock hydrodynamics code developed at Lawrence Livermore National Laboratory. It
is written in C++ and has an OpenMP implementation which was used during our experiments.
We perform a strong scaling study using the following application parameters: -s 80 -i 100,
i.e., performing 100 iterations on a data size of 80 elements.

Figure 12 shows performance, scalability and parallel efficiency of Lulesh when compiled
with GCC version 7.1.0 and when compiled with the ARM HPC Compiler version 1.3. It can
be seen that, even though scalability is poor, when the number of OpenMP threads is higher
or equal than 48, the ARM HPC Compiler scales better than GCC, leading to the idea that
the OpenMP runtime featured at the ARM HPC Compiler scales better than the one at GCC.
Nevertheless, comparing both versions when the number of threads is still low shows that the
performance achieved with GCC is slightly better.

Figure 12: Performance, scalability and parallel efficiency of Lulesh executed in ThunderX and compiled
with GCC v7.1.0 and ARM HPC Compiler 1.3

We collected execution traces with Extrae and visualized them with Paraver in order to
discover what was producing these differences in performance and scalability. In the case of
Lulesh with 16 OpenMP threads, two executions have been performed, one with the binary of
Lulesh generated by GCC and the other with the binary generated by the ARM HPC Compiler.

We note that the ARM HPC Compiler generates ∼45% more instructions than GCC. Look-
ing at the execution time, it takes 6% more total execution time, but 26% more time per iter-
ation. The detailed measurements are shown in Table 5 for ARM HPC Compiler and Table 6
for GCC.

These observations led us to look at the distribution of the Instructions Per Cycle (IPC)
depicted in Figure 13 and Figure 15. Both figures are histograms of the IPC value: on the x
axis we show bins of IPC growing in steps of 0.01, from 0.06 up to 0.93, while on the y axis we
show the threads. The value of each cell/pixel is color coded from green (lower occurrence) to
blue (higher occurrence). Figure 13 clearly shows that the code generated by the ARM HPC

16

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Compiler tends to run at higher IPC than GCC. This mitigates the difference between the
overall execution time and the total number of instructions executed.

Another factor that can contribute to compensate the aforementioned difference between
HPC ARM Compiler and GCC is the load imbalance within iterations. In Figures 14 and 16
we show one iteration of Lulesh in a timeline: on th x axis we represent the time in µs, on the
y axis we plot each of the 16 threads while in color code, from green (low value) to blue (high
value) the number of instructions execution in a given portion of code. Within an iteration there
are small differences of execution time between threads although they execute a similar number
of instructions. In these pictures it is also visible the aforementioned difference of number of
instructions comparing the upper bound of the color scale: in the case of GCC blue represents
∼ 33× 106 instructions while for the ARM HPC Compiler blue is ∼ 52× 106 instructions.

Overall figures Value

Total Instructions 4.36× 109

Average Per Thread 0.27× 109

Avg/Max 0.93
Total Execution Time 51.35 s
Time Per Iteration 495.29 ms

Table 5: Number of instructions and ex-
ecution time for Lulesh compiled with the
ARM HPC Compiler.

Figure 13: Histogram representing the IPC distribution
over the threads while running Lulesh compiled with the
ARM HPC Compiler.

Figure 14: Timeline representation of one iteration of Lulesh compiled with the ARM HPC Compiler.

Overall figures Value

Total Instructions 2.99× 109

Average Per Thread 0.19× 109

Avg/Max 0.93
Total Execution Time 48.27 s
Time Per Iteration 393.04 ms

Table 6: Number of instructions and
execution time for Lulesh compiled with
GCC.

Figure 15: Histogram representing the IPC distribution
over the threads while running Lulesh when compiled with
GCC.

It is interesting to analyze in a similar way the Extrae trace with 64 OpenMPI threads, as
from 12 it seems that the performance of the ARM HPC Compiler takes over GCC. Indeed,
even if the number of total instructions of one execution of Lulesh compiled with the ARM
HPC Compiler is higher than the number of total instructions generated by GCC, the IPC
histogram show a slight improvement for the ARM HPC Compiler. In Figure 17 we show the
histogram of IPC where on the x axes we place bins from 0.01 (left) to 0.9 (right) with bin size

17

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 16: Timeline representation of one iteration of Lulesh compiled with GCC.

of 0.01. One can see that for the GCC compiler (bottom part of Figure 17) not only the blue
pixels concentrate at lower IPC, but also their distribution looks more sparse, resulting in a less
efficient code compared to the ARM HPC Compiler.

Figure 17: Histogram representing the IPC distribution over the threads while running Lulesh compiled
with ARM HPC Compiler (top) and with GCC (bottom).

Figure 18 shows different histograms for the cases with 16 and 64 OpenMP threads and
with the binary generated by GCC and the ARM HPC Compiler. Now, the first row of each
histogram represent the different parallel regions at the code. The second row represents with
a gradient color code how well-balanced that parallel region was (i.e., how properly distributed
was the computation within the specific parallel region across the OpenMP threads): the more
blue the more balanced the parallel region was while the more green the less balanced. It can
be seen that, for the executions with 16 OpenMP threads (i.e., where GCC outperforms the
ARM HPC Compiler) the load balance is better with the GCC binary. At the other side, for
the execution with 64 OpenMP threads, the binary generated with the ARM HPC Compiler
presents better load balance, which leads to the better scalability showed before.

18

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 18: Histogram showing the load balance on the different parallel regions found within the
computation parts of the Lulesh execution

4.2.2 CoMD

CoMD is a reference implementation of a typical classical molecular dynamics algorithms and
workloads. It is written in C and features an OpenMP implementation which was used during
our experiments. We perform a strong scaling study using the following application parameters:
-N 10 -n 5 -e -i 1 -j 1 -z 1 -x 60 -y 60 -z 60, i.e., performing 10 time steps,
including the computation of eam potential, over a cube of 60 × 60 × 60 unit cells, using one
rank for each direction and dumping output every 10 time steps, so only at the end.

Figure 19 shows performance, scalability and parallel efficiency of CoMD when compiled with
GCC version 7.1.0 and when compiled with the ARM HPC Compiler version 1.3. It can be seen
that performance is always better with GCC as well as scalability. This behaviour is different
if compared with Lulesh, where the scalability was better with the ARM HPC Compiler. For
both applications we considered the Figure of Merit (FOM) provided by each in order to make
the studies. As for the scalability, we compare against the single thread execution.

Figure 19: Performance, scalability and parallel efficiency of CoMD executed in ThunderX and compiled
with GCC v7.1.0 and ARM HPC Compiler 1.3

The analysis of several CoMD Extrae trace shows once more the trend revealed while study-
ing Lulesh: the ARM HPC Compiler generates∼ 23% more instructions than GCC for executing

19

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

the same code. However, when we analyze the histograms of IPC in two executions of CoMD
using 16 and 64 OpenMP threads we notice a more disperse distribution of the IPC when
executing with the ARM HPC Compiler. It seems reasonable to assume that the less noisy
distribution of the IPC for GCC codes explains its slightly higher performance. The graphical
analysis of the IPC is reported in the histograms of Figure 20 for the configuration using 16
OpenMP threads and Figure 21 for 48 OpenMP threads.

Figure 20: Histogram representing the IPC distribution over 16 OpenMP threads while running CoMD
compiled with ARM HPC Compiler (top) and with GCC (bottom).

Figure 21: Histogram representing the IPC distribution over 64 OpenMP threads while running CoMD
compiled with ARM HPC Compiler (top) and with GCC (bottom).

Figure 22 shows the load balance (second row, green is lower load balance while blue means
higher load balance) of each parallel region (different color on first row) for each execution
(i.e., 16 OpenMP threads with GCC and ARM HPC Compiler and the same with 64 OpenMP
threads). We can see that in both OpenMP configuration, GCC generates a code that ends up
with a higher load balance.

Figure 22: Histogram showing the load balance on the different parallel regions found within the
computation parts of the CoMD execution. On the left we can see the load balance for an execution of
CoMD using 16 OpenMP threads, compiled with GCC (top) and compiled with the Arm HPC Compiler
(bottom). On the right the load balance for an execution with 64 OpenMP threads with GCC (top) and
the Arm HPC Compiler (bottom)

20

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

4.2.3 Polybench

Polybench contains a total of 30 different kernels split in three categories. Each category differs
from the other in the kind of computation it performs. Table 7 shows a summary of the kernels
as well as what they compute, please note that Linear Algebra category has been split in three
since it is actually split in three subcategories.

Category Kernel Summary

Datamining
correlation Correlation computation
covariance Covariance computation

Linear Algebra - BLAS

gemm Matrix-multiply C=alpha*A*B+beta*C
gemver Vector multiplication and matrix addition

gesummv Scalar, vector and matrix multiplication
symm Symmetric matrix-multiply
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations

trmm Triangular matrix-multiply

Linear Algebra - Kernels

2mm 2 Matrix multiplications (alpha * A * B + beta * D)
3mm 3 Matrix multiplications ((A*B)*(C*D))
atax Matrix transpose and vector multiplication
bicg BiCG Sub Kernel of BiCGStab Linear solver

doitgen Multiresolution analysis kernel
mvt Matrix vector product and transpose

Linear Algebra - Solvers

cholesky Cholesky decomposition
durbin Teoplitz system solver

gramschmidt Gramschmidt
lu LU Decomposition

ludcmp LU Decomposition
trisolv Triangular solver

Medley
deriche Edge detection filter

floyd-warshall Find shortest path in a weighted graph
nussinov Dynamic programming algorithm for sequence alignment

Stencils

adi Alternating direction implicit solver
fdtd-2d 2-D Finite different time domain kernel
heat-3d Heat equation over 3D data domain

jacobi-1d 1-D Jacobi stencil computation
jacobi-2d 2-D Jacobi stencil computation
seidel-2d 2-D Seidel stencil computation

Table 7: Polybench kernels summary

For each kernel, we generated two binaries, one with GCC version 7.1 and another with the
ARM HPC Compiler version 1.3. Then, for each binary, we executed it 10 times in order to
compute the average execution time of each kernel. This average time was used to compute
the normalized execution time against GCC binary’s execution. This procedure was done for
each ThunderX-based node as well as for the Seattle-based node. The reason is that since they
feature different ARMv8 cores, specific optimization flags can be passed to the compiler to allow
more architecture-aware optimizations of the binary.

Figure 23 show the results obtained. Please note that, for each category of kernels, we show
only two metrics. One is the normalized execution time of the ARM HPC Compiler’s binary
on the ThunderX against the execution time of the GCC’s binary on the ThunderX. The other
metric is the same but executed on the Seattle SoC.

By looking at the normalized execution time, we can see that even within the same category,
there is not a clear trend: some of the kernels the binary generated by GCC performs better
while for some others it is the other way around. Nevertheless, there are a few cases where the
ARM HPC compiler binary performs very well compared to the GCC counterpart as for the
gemm kernel executed on ThunderX or the gesummv and bicg kernels on the AMD Seattle. As
for the rest, there are some other cases where GCC’s binary greatly outperforms the ARM HPC
Compiler one as in the durbin, gessumv, trisolv, atax and jacobi-1d kernels on the ThunderX
and the mvt kernel on the Seattle.

21

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 23: Normalized execution time against GCC binaries of Polybench kernels against ARM HPC
Compiler binaries for Cavium ThunderX and AMD Seattle SoC’s

4.2.4 QuantumESPRESSO

As already explained in Section 3, QuantumESPRESSO is an integrated suite of codes for
electronic-structure calculations and materials modeling at the nanoscale. It is writen mostly
in Fortan and uses MPI for exploiting parallelism.

For our experiments, we choose 4 different configurations:

• GCC v7.1.0 + MPICH v3.2 + ARM Performance Libraries v2.2.0 + FFTW v3.3.6

• GCC v7.1.0 + OpenMPI v2.1.1 + ARM Performance Libraries v2.2.0 + FFTW v3.3.6

• ARM HPC Compiler v1.3.0 + MPICH v3.2 + ARM Performance Libraries v2.2.0 +
FFTW v3.3.6

• ARM HPC Compiler v1.3.0 + OpenMPI v2.1.1 + ARM Performance Libraries v2.2.0 +
FFTW v3.3.6

We are only using the combination of the ARM Performance Libraries with the FFTW
library since it was the one presenting the better performance in the study presented in Section 3.

In Figure 24 we can see the normalized performance against the GCC + MPICH config-
uration. We chose this version as baseline since it is a typical compiler configuration used in
the clusters deployed at BSC. The variation in the overall performance is not significant (below
10%).

If we look at each of the most significant routines we can see some differences though. In
Figure 25 we can see the normalized execution time against the GCC + MPICH configuration
for each of those routines. As before, no significant differences can be appreciated except for
the MPI focused routines (i.e., fft scatter), where the OpenMPI version, no matter if along with
GCC or the ARM HPC Compiler, performs worse than MPICH. This is only for two inputs, so
we think that this behavior is due to some issue with the specific message size in communications
or a lack in intra-node communications performance for specific messages sizes.

22

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Input set

Total Execution Time

Input 1 Input 2 Input 3 Input 4
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80
S

pe
ed

 u
p

ag
ai

ns
t G

C
C

 +
 M

P
IC

H

GCC + MPICH

GCC + OpenMPI

ARM HPC Compiler + MPICH

ARM HPC Compiler + OpenMPI

Figure 24: Normalized performance against the GCC + MPICH execution for the different inputs from
the pwscf-small input set

GCC + MPICH

GCC + OpenMPI

ARM HPC Compiler + MPICH

ARM HPC Compiler + OpenMPI

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Input 3 (top) and Input 4 (bottom)

ca
lbe

c fft fft
s

fft
w

int
er

po
lat

e

da
vc

io

fft
_s

ca
tte

r

To
ta

l T
im

e
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Routine name

E
xe

cu
tio

n
 ti

m
e

no
rm

al
iz

ed
 to

 G
C

C
 +

 M
P

IC
H

Input 1 (top) and Input 2 (bottom)

ca
lbe

c fft fft
s

fft
w

int
er

po
lat

e

da
vc

io

fft
_s

ca
tte

r

To
ta

l T
im

e
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Routine name

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Figure 25: Normalized execution time of most relevant QuantumESPRESSO routines against the GCC
+ MPICH execution for the different inputs from the pwscf-small input set

23

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

4.3 Conclusions

With the results obtained on the three benchmarks, we cannot say whether GCC or the ARM
HPC Compiler generate better binaries. In any case, we noticed that when using OpenMP, the
runtime featured by each compiler suite could have a noticeable impact on the final performance
as seen in Lulesh. As a summary, we observed the following:

• GCC generated better performing serial code than ARM HPC Compiler:

– At least for real world alike workloads as the one found in Lulesh and CoMD.

– Compiler optimizations should be further studied since both GCC and the ARM
HPC Compiler do not enable the same optimizations by default.

• ARM HPC Compiler’s OpenMP runtime seems to perform better when the parallel re-
gions are small: this is the case of Lulesh and indeed it is not the case of CoMD, where
granularity of threads is bigger.

• ARM HPC Compiler works for real-world applications such as QuantumESPRESSO, per-
forming the same as GCC. Next iterations of the compiler might change this

As expected in such a complex system, there is no “clear winner” in this preliminary com-
parison. This work rises indeed several questions that are worth further investigation. It seems
that the performance degradation of ARM HPC Compiler is due to a larger number of instruc-
tion executed: i) Is this always the only cause of performance degradation? ii) Why and where
the ARM HPC Compiler generates makes the CPU executing more instructions? iii) Which
kind of instructions are executed more compared to GCC? iv) Which kind of optimization flags
can be used to better control the compilation process with the ARM HPC Compiler? During
August 2017, at the end of the writing of this document, a new version of the ARM HPC Com-
piler has been released [10]. We will continue investigating these questions in the time frame of
the project in close collaboration with ARM, as partner of the consortium.

5 Eikonal Solver - UGRAZ

5.1 Description

The Eikonal equation and its variations (forms of the static Hamilton-Jacobi and level-set equa-
tions) are used as models in a variety of applications. These applications include virtually any
problem that entails the finding of shortest paths, possibly with inhomogeneous or anisotropic
metrics. The Eikonal equation is a special case of non-linear Hamilton-Jacobi partial differential
equations (PDEs). In this work, we consider the numerical solution of this equation on a 3D
domain with an inhomogeneous, anisotropic speed function:{

H(x,∇ϕ) =
√

(∇ϕ)> ∗M ∗ ∇ϕ = 1, ∀x ∈ Ω ⊂ R3

ϕ(x) = B(x), ∀x ∈ B ⊂ Ω

Where Ω is a 3D domain, ϕ(x) is the travel time at position x from a collection of given
(known) sources within the domain, M(x) is a 3 * 3 symmetric positive-definite matrix encoding
the speed information on Ω, and B is a set of smooth boundary conditions which adhere to
the consistency requirements of the PDE. We approximate the domain Ω by a planar-sided
tetrahedralization denoted by ΩT . Based upon this tetrahedralization, we form a piecewise
linear approximation of the solution by maintaining the values of the approximation on the set
of vertices V and employing linear interpolation within each tetrahedral element in ΩT .

24

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

5.2 Analysis

In order to benchmark the Eikonal solver two different meshes are used the rabbit heart around
three millions tetrahedrons and human heart mesh around twenty-four millions tetrahedrons.
The volumetric mesh specifying the geometry of the heart is mandatory for any simulation.
The mesh definition is split in three different files. The first file contains the nodes of the mesh,
the second contains the volumetric elements and the third the fibre orientation per volumetric
element. The file extension corresponding to these three files are, .pts, .elem and .lon. Scalability
results for Eikonal solver are gathered from executing it on:

Intel platforms:

• Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

• Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz

ARM platforms:

• ThunderX mini-cluster

• JetsonTX-1 cluster

The new OpenMP version of the Eikonal solver is three times faster than the old version on
ARM platforms and two times faster on Intel platforms. This performance improvements came
as a result of some algorithmic changes, such as the replacement of the ”active list” set find
function, logarithmic in size, with a bitset array with constant complexity and critical blocks
removal. The accumulation of ”active list” is now done in parallel and there is no conversion
from active set to vector since the vector is filled in parallel from the set during the accumulation
phase.

The memory footprint reduction of the solver improved the performance furthermore. In
this method the number of memory transfers is reduced by precomputing all the needed inner
products for each tetrahedron in reference orientation, 18 floats in total. A second step re-
places 12 memory accesses per tetrahedron by on-the-fly computations from 6 given data per
tetrahedron which reduces the memory footprint to these 6 numbers in total[13].

A set of different tests where performed on different platforms using TBunnyC and H4C440
meshes, with 3,073,529 and 24,400,999 tetrahedral elements respectively. Table 8 shows the
execution time, the speed-up and the efficiency for the old version of the Eikonal solver, paral-
lelized solely by OpenMP, using TBunnyC mesh on the Mont-Blanc prototype. Table 9 shows

Table 8: Old version of the Eikonal Solver execution on the Mont-Blanc prototype

Time using 1-Thread (sec.) Time using 2-Thread (sec.) Speed-Up Efficiency (%)

106.31 74.03 1.43 71.81

the execution time, the speed-up and the efficiency for the new version of the Eikonal solver,
parallelized solely by OpenMP, using TBunnyC mesh on the Mont-Blanc prototype. As we see
on the execution time respectively the new version is approximately 2 times faster than the old
version and the efficiency is better, this is as result of many improvements of the code during
the last months.

Tables 11 and 12 show the execution time, the speed-up and the efficiency of the Elikonal
application running on the ThunderX mini-cluster and on the Xeon Phi.

25

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Table 9: New version of the Eikonal Solver execution on the Mont-Blanc prototype

Time using 1-Thread (sec.) Time using 2-Thread (sec.) Speed-Up Efficiency (%)

57.2 34.1 1.67 83.84

Table 10: Eikonal Solver execution for the rabbit heart mesh on ThunderX

#Cores #Execution time (sec.) #Speed-Up #Efficiency

1 49.43 1 1

2 27.44 1.78 0.89

4 14.73 3.35 0.84

8 7.54 6.55 0.82

16 3.95 12.51 0.78

32 1.98 24.96 0.78

48 1.43 34.56 0.72

64 1.21 40.85 0.64

Table 11: Eikonal solver execution for the human heart mesh on ThunderX

#Cores #Execution Time (sec.) #Speed-Up #Efficiency

1 381.01 1 1

2 251.58 1.51 0.75

4 138.06 2.75 0.68

8 72.51 5.25 0.65

16 38.10 10.01 0.62

32 19.44 19.59 0.61

48 13.15 28.97 0.60

64 12.70 30.00 0.47

Table 12: Eikonal solver execution for the rabbit heart mesh on Xeon Phi

#Cores #Execution Time (sec.) #Speed-Up #Efficiency

1 64.1 1 1

2 35.7 1.97 0.89

4 20.4 3.14 0.78

8 10.6 5.50 0.75

16 5.5 11.65 0.73

32 2.81 22.81 0.71

48 1.85 34.64 0.72

64 1.42 45.14 0.70

96 1.09 58.8 0.61

128 0.90 71.22 0.55

256 0.68 94.2 0.36

26

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

The old version of Eikonal solver was not so good with respect to scaling where the efficiency
reaches 30% using only 12 cores. With the latest changes it also scales on Xeon Phi processors
as in Figure 26.

Figure 26: Efficiency of the Eikonal solver on the Intel Xeon Phi.

As we see in the Figure 27 it scales on the first socket and when we jump from the first
socket to the second we see that the efficiency starts to drop in the levels around 60%. This
version is three times faster than the old version on the ThunderX platforms.

Figure 27: Eficiency of the Eikonal solver on ThunderX.

27

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Profiling of the Eikonal application is performed using the Extrae tool to generate trace files
and Paraver to visualize and analyse the traces. Traces are generated by Extrae on the Merlin
node, running the Eikonal solver using 8 cores.

Figure 28: Instruction per cycle of Eikonal on Merlin.

We also identify in the traces a region that limits the scalability at very large core counts
as shown in Figure 29. The active list contains relatively small numbers of the nodes on the
domain, and it seems very difficult for improvements at very large core counts because than the
threads do not have enough work.

Figure 29: Instruction per cycle zoom-in and L1D cache misses of Eikonal on Merlin.

On the ThunderX mini-cluster we also see some noise during the execution of the Eikonal
solver, which might be caused by the ThunderX node itself because we do not observe that on
the Intel platforms.

28

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

5.3 Energy Measurements

There are various solutions to measure power and energy consumption in HPC. Approaches
to measure power consumption usually use power meters or microcontroller-based meters mea-
suring the current and voltage. Recent processors have built-in energy consumption measuring
capabilities. Starting with the Sandy Bridge processors, for example, Intel provides the RAPL
(Running Average Power Limit) interface. However, these internal performance meters often
can not match the precision of external power meters. The correlation between the RAPL in-
terface measurement and the reference measurement depends on the workload type. Libraries
such as pmlib and light-weight tools such as Likwid or interfaces such as PAPI are using the
RAPL interface to manage the energy consumption. To calculate the energy and the power
that is consumed on the Intel platforms we use what is available on the device on-chip energy
counters. We have used different tools to calculate the energy that is consumed during the
runtime of our applications on the Intel platforms, such as: PAPI, perf, PMU, power governer,
and all this method reports correct results and are widely used nowadays.

The value used on this deliverable are gathered using PAPI, reading RAPL counters that
are collected locally on the machine under test. These counters have the following restriction,
the energy counters are reported every millisecond that makes this counters to produce errors
for the application runtime around millisecond, and also the reported energy does not start with
the starting of the application, therefore we need to synchronize the start of our application. To
compare the values if they are correct, we gathered values also using the perf tool that comes
with the Linux kernel while uses the perf event interface. At the same time we can gather other
hardware performance counter values including cycles and cache misses. On the Intel Platforms
we count the energy measurements which are reported by the energy counters that are restricted
to the processor, uncore and memory. Power monitor/controlling is available for:

• Package power plane (PKG)

• Cores power plane (PP0)

• uncore devices (PP1)

• DRAM power plane

In the Figure 30, we see the difference of the energy measurements for two of the Eikonal solver
versions, with and without memory footprint and the difference on energy consumption.

Figure 30: Eikonal solver on the Intel Xeon Phi @ 1.3GHz

29

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

The measurements on the ARM platforms are done through the external dedicated power
monitoring tool called Yokogawa WT230 Digital Power Meter. It collects power data (V, W,
A) from the 4 Thunder nodes since they only use one power supply for all of them. To make
a fair comparison between different platforms we calculate the total energy consumed by our
application during the runtime excluding the energy that is consumed by idle status. A detailed
view of these reporting is shown in Figure 31, when we have executed two versions of Eikonal
solver using 20 threads in one node of the ThunderX mini-cluster.

Figure 31: Eikonal solver on the ThunderX @ 1.8GHz

Runtime and energy consumption of the Eikonal solver on different machines are shown on
Figure 32. We can see that ThunderX is 1.5x slower than Xeon E5. With respect to energy
consumption ThunderX is approximately 4.3 times more efficient.

Figure 32: Runtime and energy consumption of the Eikonal solver on Intel

.

5.4 Conclusions

• The new OpenMP version of the Eikonal solver scales better on both Intel and ARM
platforms achieved by:

– Memory footprint reduction[13].

30

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

– Replacement of ”active list” set find function and critical block removal.

– Parallel accumulation of active list.

– Parallel filling of active vector.

• Eikonal solver is three times faster than the old version.

• Energy consumed during the execution of Eikonal solver on ARM platforms is 4 times less
than on Intel platforms.

• Performance is 1.5x lower on ThunderX compared to Intel E5.

• Ongoing domain decomposition approach.

6 CARP - UGRAZ

6.1 Description

The Cardiac Arrhythmia Research Package (CARP) [14], which is built on top of the MPI-
based library PETSc [15], was used as a framework for solving the cardiac bidomain equations
in parallel. PETSc [15] served as the basic infrastructure for handling parallel matrices and
vectors. Hypre [16], advanced algebraic multigrid methods such as BoomerAMG, and ParMetis
[17], graph-based domain decomposition of unstructured grids, were compiled with PETSc as
external packages. An additional package, the publicly available Parallel Toolbox (pt) library
(http://paralleltoolbox.sourceforge.net), [18] which can be compiled for both CPUs and GPUs,
was interfaced with PETSc.

The parallelization strategy was based on recent extensions of the CARP framework [19].
Briefly, achieving good load balancing, where both computational load and communication
costs are distributed as evenly as possible, is of critical importance. While this is achieved
for structured grids with relative ease [20], since the nodal numbering relationship is the same
everywhere, mirroring the spatial relationship, it is far more challenging in the more general
case of unstructured grids, which are preferred for cardiac simulations [21]. For general appli-
cability, unstructured grids are mandatory to accommodate complex geometries with smooth
surfaces, which prevent spurious polarizations when applying extracellular fields. To obtain
a well-balanced grid partitioning, ParMeTis computes a k-way element-based partition of the
mesh’s dual graph, to redistribute finite elements among partitions. Depending on whether
PETSc or pt was employed, two different strategies were devised.

6.2 Analysis

As we have seen on Deliverable D6.1 [1] the program consists of three main components: a
parabolic solver, an ionic current component, and an elliptic solver. The parabolic solver is
responsible for determining the propagation of electrical activity, by determining the change in
transmembrane voltage from the extracellular electric field and current state of the transmem-
brane voltage. The elliptic solver unit determines extracellular potential from transmembrane
voltage at each time instant. The ionic model component is a set of ordinary differential equa-
tions and is computed from a separate library, which must be linked in at compile time.

Since the CARP application is memory bound, the best combination to run it on the Thun-
derX mini-cluster is to use 1 MPI per socket and the number of threads per MPI process up
to 16 threads per MPI. As we see from the Tables 13 and 14, CARP scales very well on the

31

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Table 13: CARP execution on ThunderX for the rabbit heart mesh

#Cores #Total time (sec) #Parabolic #ODE #Efficiency

1 681 642.7 33.7 1

2 327 307.7 16.6 1.04

4 144 134.0 8.42 1.18

8 62 56.5 4.32 1.37

16 33 30.2 2.19 1.28

32 19 16.9 1.13 1.12

64 11 10.6 0.59 0.96

128 8 7.6 0.33 0.66

Table 14: CARP execution including Elliptic solver on ThunderX for the rabbit heart mesh

#Cores #Total time (sec) #Elliptic #Parabolic #ODE

1 6382 5680 642.7 33.7

2 4656 4313 307.7 16.6

4 2675 2519 134.0 8.42

8 1390 1316 56.5 4.32

16 1080 1036 30.2 2.19

32 901 871 16.9 1.13

64 810 787 10.6 0.59

128 777 756 7.6 0.33

ThunderX mini-cluster. We can say that in ThunderX nodes the efficiency is around 96% for
parabolic solver and ODEs solver using 64 cores, then it drops to 70% for parabolic solver and
90% for ODEs solver.

In figure 33 we see strong scaling execution of CARP code that runs on SuperMUC with up
to 8192 cores and approximately 150 Mill. tetrahedral finite elements.

6.3 Energy Measurements

We measure the energy for overall CARP code running on Intel E5 processors and ThunderX
with the same methods as described on subsection 5.3. Below we present a test case running it
with 8 MPI and 2 OpenMP threads each on both platforms.

• Intel E5-2660:

– CORES power:

∗ Average power on idle status: 6.53 (W)

∗ Average power consumed: 52.94 (W)

∗ Average power consumed by the program excluding idle status: 46.41 (W)

– SOCKET power:

∗ Average power on idle status: 15.05 (W)

∗ Average power consumed: 65.04 (W)

∗ Average power consumed by the program excluding idle status: 49.99 (W)

– DRAM power:

∗ Average power on idle status: 12.29 (W)

32

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Figure 33: CARP scaling on SuperMUC.

∗ Average power consumed: 33.64 (W)

∗ Average power consumed by the program excluding idle status: 21.35 (W)

Total energy during the runtime of the program in this case is the power consumed by
memory plus the power consumed by sockets multiplied by the total runtime of application.

– Total energy during the runtime of CARP is:

∗ Total power consumed by CARP: 71.34 (W)

∗ Runtime: 1372 seconds

∗ Total energy consumed by CARP: 97.89 (kJ)

• ThunderX mini-cluster:

– Average power on idle status: 506.06 (W)

– Average power consumed: 512.97 (W)

– Average power consumed by the program excluding idle status: 6.91 (W)

Total energy during the runtime of the program in this case is the power consumed by
memory plus the power consumed by sockets multiplied by the total runtime of application.

– Total energy during the runtime of CARP is:

∗ Total power consumed by CARP: 6.91 (W)

33

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

∗ Runtime: 6141 seconds

∗ Total energy consumed by CARP: 42.46 (kJ)

• Comparison between Intel Xeon E5-2660 and the ThunderX:

– Runtime of the CARP code is 4.4x slower on ThunderX than Intel E5-2660

– Energy during the runtime of the CARP code is 2.3x less energy on ThunderX than
Intel E5-2660

• One core performance between Intel Xeon E5-2660 and ThunderX:

– Runtime of the CARP code on ThunderX: 14838 seconds

– Runtime of the CARP code on Intel E5-2660: 772 seconds

– Performance during the runtime of the CARP code on ThunderX is 19 times slower
than on the Intel E5-2660.

The overall CARP project was executed on the Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
and ThunderX @ 1.80GHz. ThunderX is 4.4x slower than Intel E5-2660. On the other hand it
consumes 2.3x less energy than Intel E5-2660.

6.4 Conclusions

• Scales on SuperMUC up to 16k cores.

• Energy consumed during the execution of CARP on the ARM platforms is 2.3 times less
than on the Intel platforms. However, the performance is 4.4x lower on the ARM platform
versus the Intel one.

• Overall CARP, including the elliptic and parabolic solvers, are limited by memory band-
width.

• Reduced memory transfer in MPI communication by reordering the unknowns.

• Ongoing work on:

– Performance analysis for individual components of CARP.

– Having a look on Hierarchical Hybrid Grids discretization methods.

– Parallelization in time via XBraid.

7 Non-Newtonian Fluid solver - UGRAZ

7.1 Descriptions

PDEs are ubiquitous in many application fields. Traditionally, some of the most efficient and
widely used methods to solve discretized PDEs are those from the class of multigrid methods [22,
23]. However, composing and tuning such a solver is highly non-trivial and usually dependent
on a diverse group of parameters ranging from the actual problem description to the target
hardware platform. To attain high performance, scalability and performance portability, new
code generation techniques can be used in conjunction with DSLs, which provide the means of

34

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

specifying salient features in an abstract fashion. ExaStencils2 aims at realizing this vision for
the domain of geometric multigrid solvers.

Of course, many (real world) applications are conceivable. One that is just as relevant as
it is challenging is given by the application of simulating non-Newtonian fluids. Even without
taking the extended use case of non-Newtonian behavior into account, solving the underlying
coupled fluid and temperature equations is non-trivial. In this work, we present our recent
accomplishments in generating highly optimized geometric multigrid solvers for this application.
For this, we employ a finite volume discretization on a staggered grid with varying grid spacing
which is solved using the SIMPLE algorithm [24, 25]. SIMPLE stands for Semi-Implicit Method
for Pressure Linked Equations. It is a guess-and-correct procedure for the calculation of pressure
on a staggered grid arrangement. The generated implementation is already OpenMP parallel
and includes models for the incorporation of non-Newtonian properties.

7.2 Viscoplastic Non-Newtonian Fluids

Viscoplastic fluids are those non-Newtonian fluids characterized by a yield-stress, defined as a
threshold after which a fluid readily flows [26, 27]. In general, yield-stress fluids are suspensions
of particles or macromolecules, such as pastes, gels, foams, drilling fluids, food products and
nanocomposites. Processes with viscoplastic fluids are of great importance in mining, chemical
and food industry. For instance, several works have shown that rheological properties of fruit
juices [28, 29], mining pulps [30, 31] and nanofluids [32, 33] are well described by viscoplastic
non-Newtonian models such as Herschel-Bulkley, Bingham and Casson. Nanofluids are colloidal
dispersions of nanometric-sized (<100 nm) metallic or non-metallic particles in a base fluid. The
addition of nanoparticles improves the thermal conductivity and increases the viscosity of the
fluid. Nanofluids containing spherical nanoparticles are more likely to exhibit Newtonian be-
havior and those containing nanotubes show non-Newtonian behavior. Furthermore, nanofluids
show non-Newtonian behavior at higher shear rate values [34]. The applications of interest of
our numerical experiments are related to the flow with Bingham plastic fluids due to changes
in buoyancy forces caused by thermal effects and mixed convection effects. It has been found
that under certain conditions water suspensions with nanoparticles such as SiO2/TiO2 [32],
BaTiO3 [35], ITO [36] behave as Bingham fluids. The presentation of the application problem
follows closely the description in [37] and we will focus especially on the natural convection
example therein.

The formal mathematical description of the coupled problem is similar to the Navier-Stokes
equations for incompressible fluids together with an additional equation regarding the (scaled)
temperature θ, an additional term in the Navier-Stokes equations and non-linear material co-
efficients regarding the non-Newtonian fluid behavior. Let us combine the three velocity com-
ponents in one velocity column vector ~v = (U, V,W)T and the gradient operator ∇ is also
considered as column vector.

−∇T
(
H(Γ̇)∇~v

)
+D ·

(
~vT · ∇

)
~v+∇p +D

0
θ
0

 = 0 (1)

∇T~v = 0 (2)

−∇T (∇θ) +G ·
(
~vT · ∇

)
θ = 0 (3)

Broadly speaking, Bingham fluids behave as a Newtonian fluid under the influence of a shear
stress higher than the yield stress (τ > τy). When the yield-stress falls below τy (unyielded

2http://www.exastencils.org

35

http://www.exastencils.org

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

region) a solid structure is formed. In the present work, the numerical implementation of the
Bingham model is based on the bi-viscosity model [38], considering low values of τy according
to experimental observations [32].

7.3 Numerical solution of the coupled problem

The coupled system of PDEs (1)-(3) is non-linear due to the material terms H,D,G that depend
on velocity ~v and on temperature θ. Even in case of constant material terms, the equations (1)
and (2) represent the Navier-Stokes equations (non-linear because of ~vT · ∇) with an additional
term from the temperature. PDE (3) is only non-linear w.r.t. to the coupling via ~vT · ∇, not
regarding the temperature θ.

The discretization uses a staggered grid in order to fulfill the LBB stability condition, see
in Figure 34 and illustrations in [39].

values associated with the
x-staggered grid, e.g. U

values associated with the
y-staggered grid, e.g. V

values associated with the
cell centers, e.g. p and θ

cell-centered
control volumes

x-staggered
control volumes

y-staggered
control volumes

Figure 34: 2D illustration of the lower left part of a non-equidistant, staggered grid. Velocity compo-
nents are associated with the centers of edges (resp. faces in 3D). Staggered control volumes get halved
at the boundary.

The non-linear terms L(x) are quasi-linear, i.e., they can be expressed as L(x) · x. This
allows to rewrite the system of PDEs (1)-(3) as block system with non-linear sub-blocks.A(θ,~v) B C(θ)

BT 0 0
0 0 T (θ,~v)

 ·
~vp
θ

 =

0
0
0

 (4)

Fixing temperature θold we get the stationary Navier-Stokes equations(
A(θold, ~v) B

BT 0

)
·
(
~v
p

)
=

(
−C · θold

0

)
(5)

36

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

and the additional temperature equation

T (θ,~v) · θ = 0 . (6)

Finally we end up with the SIMPLE algorithm [24] for (7) containing the pressure correction
step (9): (

A B
BT 0

)
·
(
~v
p′

)
=

(
g −B · p∗

0

)
(7)

Solve A~v∗ = g −B · p∗ (8)

Solve −∆t∇T∇p′ = −BT · ~v∗ (9)

Solve ~v′ = −D−1B · p′ (10)

Update

(
~v
p

)
=

(
~v∗

p∗

)
+

(
~v′

p′

)
(11)

7.4 Scaling and Efficiency results

Currently, the code generation tool ExaStencils is used to generate automatically an Hybrid
MPI+OpenMP parallelized multigrid solver for the coupled problem above. At first we have
a hierarchical partitioning of the domain where the whole domain is divided into blocks and
each of these blocks usually is assigned to an MPI process. These blocks gets subdivided into
fragments and we could assign these fragments into OpenMP (or CUDA) threads. In between
these fragments data have to be exchanged. Usually it is better to have one big fragment and
multiple OpenMP threads that run across this single fragment as in the following test cases.

Table 15: Non-Newtonian Fluid solver on ThunderX

#MPIxOpenMP #Execution time (sec.) #Speed-Up #Efficiency

1x1 745819 1 1

1x4 148380 5.0 1.25

2x4 92491 8.0 1.00

4x4 69728 10.6 0.66

8x4 54860 13.5 0.42

16x4 55269 13.5 0.21

32x4 57077 13.0 0.10

The Non-Newtonian Fluid solver code that is used for benchmarks on the Tables 15 and 16
is generated without vectorization. We faced an issue with the code generation tool on the part
that generate vectorized code on the ARM platforms and we are working on solving it.

Table 16: Non-Newtonian Fluid solver on Xeon Phi

#MPIxOpenMP #Execution time (sec.) #Speed-Up #Efficiency

1x1 305210 1 1

1x4 80232.1 3.8 0.95

2x4 50591.6 6.0 0.75

4x4 36857.2 8.2 0.51

8x4 34704.1 8.7 0.27

16x4 29586.1 10.3 0.16

32x4 23924.7 12.7 0.10

37

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

Tables 15 and 16 show the execution time, the speed-up and the efficiency of the Non-
Newtonian Fluid solver running on the ThunderX mini-cluster and on Xeon Phi. For this test
case the total problem size is 262,144 cells, and moving from 16 MPI to 32 MPI the 4 OpenMP
threads work on only 4096 cells, this explain also the very poor efficiency when we perform
strong scaling on both Xeon Phi and ThunderX platforms. From the Figure 35 we see that the
Non-Newtonian Fluid solver scales very bad in both platforms, on ThunderX efficiency is a bit
better. Regarding the runtime, ThunderX is 2 times slower than Xeon Phi.

Figure 35: Efficiency of the Non-Newtonian Fluid solver on the ThunderX and Xeon Phi

7.5 Future work

The planned work for Non-Newtonian Fluid solver application will be as follow:

• Using larger problem sizes.

• OpenMP/MPI version will be traced on Mont-Blanc clusters.

• Analysis using BSC tools, extrae, paraver, dimemas and ARM Code Advisor.

• Adaption of code generation tool with respect to the analysis on ThunderX.

• Detailed Energy measurements.

8 Mesh Interpolation Mini-App

This mini-app was extracted from the AVL Fire codebase to allow faster optimization iterations
and cooperation within Mont-Blanc 3 while maintaining a representative code and workload.
This section largely follows [40].

38

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

8.1 Description

Mesh deformation is a performance critical part of many problems in fluid dynamics. Radial
basis function (RBF) interpolation based methods for mesh deformation have addressed the
increasing complexity for larger data sets.

Given a computational mesh, treated as point cloud in R3, a subset of N points X = {xi}Ni=1

and associated function values fi = f(xi) for these points, an interpolating function s such that:
s|X = f |X of the form s(x) =

∑N
i=1 λi φ(‖x− xi‖) + p(x) is sought, where p is a polynomial. In

this implementation a multiquadric biharmonic RBF φ(r) =
√
r2 + c2, with a scaling parameter

c ∈ R \ {0}, is used, which requires p(x) = α ∈ R.

Requiring the interpolation condition in all given points and demanding a side condition on
the coefficients of the polynomial term leads to a symmetric system of linear equations for the
determination of the coefficients ~λ and α:

N∑
i=1

λiφ(‖xi − xk‖) + α = f(xk), 1 ≤ k ≤ N,

N∑
i=1

λi = 0. (12)

8.2 Original Implementation and Performance Analysis

The original implementation of our multilevel distributed RBF code described in [41] is consid-
ered as baseline and described here. Since the introduction of the multilevel method was mainly
concerned with the efficient distribution of work across distributed memory machines, the local
solver algorithms for CPU and GPU are largely based on [42].

Algorithm 1: Solver Algorithm Overview

while not converged do
for level in MultiLevel-DD do

for box in DD[level] do Outer Loop
if num points in box < threshold then

solveDirectly(box)
else

solveFMM(box)
end

end
communicateResults()
calcLevelResidual()

end
calcGlobalResidual()

end

In this project, we only discuss work on the iterative solver, which is the dominant part.
The outer loop highlighted in algorithm 1 is the first parallel section of the solver. There is an
implicit barrier after each iteration of this loop. Parallelism is exploited at two stages. First,
the domain of points is decomposed in cubic boxes using an octree structure. The boxes are
statically assigned to MPI ranks, thus there should be at least as many non-empty boxes as
MPI ranks. The dominant operations within each box are dense matrix vector products, which

39

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

are either performed using brute-force or are approximated by a fast multipole method (FMM).
The inner products are the second stage of parallelism, both are implemented in OpenMP and
CUDA. The second parallel section of the solver is the update of the current residual where a
dense matrix vector product over all points of the current level has to be computed. Again, the
data is distributed using an octree structure and assigned to MPI ranks. The calculations per
rank exploit shared memory parallelism yet again.

8.3 Theoretical Performance Analysis

The main work of this algorithm is the solution of subproblems in the multilevel loop. Level
L contains at 8L non-trivial subproblems. Due to refinement, each subproblem across all levels
is approximately an equal amount of work. By choosing the number of refinement levels,
the subproblem size can be adjusted. A minimum size per subproblem is necessary for good
convergence.

In the original code, this level loop distributes subproblems via MPI in a round robin fashion.
Assuming equal work per subproblem and ignoring network effects, an upper limit for scaling
given a number of refinement levels (corresponding to a minimum problem size) can be derived.
The lines in Figure 36 are labelled with the refinement level they represent and the minimal
number of points required for this level, i.e. the topmost line has four refinement levels in
addition to the full point cloud and requires more than eight million points to converge well.

100 101 102 103

MPI Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

0 - min 2.0E+03 pts
1 - min 1.6E+04 pts
2 - min 1.3E+05 pts
3 - min 1.0E+06 pts
4 - min 8.2E+06 pts

Figure 36: Theoretical ideal strong scaling efficiency for multi level iterative solver algorithm 1. Lines
are labelled with the number of refinement levels and minimum number of points required at this level.

For typical problem sizes of this application, up to 1 million points, we find good (95%+)
efficiency only up to ten ranks, at 100 ranks efficiency degrades to 60%. Consequently improving
the parallelisation efficiency is a primary concern, when scaling beyond very small systems.

40

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

8.4 Optimization

8.4.1 Auto Tuning the Brute-Force vs. FMM Threshold

A specialised matrix vector product used to solve sub problems is the a core kernel. Two
versions of this kernel are available, a brute-force algorithm of complexity O(n2) and variant
using the fast multipole method (FMM) of complexity O(n log n).

The constant threshold was chosen during development on an Intel platform. Experiments
showed the ideal threshold for a comparable Intel CPU has moved by a factor of 3, and there
was a factor of 2 between a Cavium ThunderX and Intel Xeon, thus a auto tuning step for this
threshold was implemented. This yields a speed-up of approximately 2, compared to using a
single value across all systems.

8.4.2 Hybrid Parallelism on the Outer Loop

The strong scaling analysis in subsection 8.3 shows, it is impossible to scale practical problem
sizes to very high numbers of MPI ranks. The baseline application already used OpenMP to
parallelise the brute-force and FMM kernels, but did not scale well to a full socket or node (48/96
threads on ThunderX) because the kernels contain complex data access patterns including
writing to shared resources, many synchronisation points and little (µs timescale) work per
iteration.

Parallelising the loop of algorithm 1 yields two benefits over the previous results. First,
on high refinement levels when the outer loop has many iterations, the application now scales
equally well using MPI or OpenMP or a combination. In addition, the memory footprint is
reduced, as most data only needs to be replicated once per process, not per thread. Second,
when the outer loop has fewer iterations than threads, nested parallelism is used to keep all
threads busy while keeping the work per task as large as possible.

8.5 Results

Three test systems were used to evaluate the optimizations. Xeon is a single dual socket node
equipped with Intel(R) Xeon(R) E5-2690 v4 CPUs. An identical node with a NVIDIA Pascal
P-100 GPU was used for the heterogeneous results. These are identified as the Xeon + GPU
test system. Only processor (CPU, GPU, DRAM) power was measured on this system. Intel
Running Average Power Limit (RAPL) counters, accessed via the perf event were used to
measure CPU power. The Nvidia System Management Interface (nvidia-smi) sampled with 10
Hz was used for the GPU power.

The ThunderX test system consists of four boards with two sockets per board. The Thun-
derX has 48 ARMv8-a cores at 1.8 GHz per socket. The interconnect is 10 Gigabit Ethernet.
Power is measured by an external Yokogawa Power Meter (10 Hz sampling, 0.1% precision),
which is read from the cluster head node via a serial interface. This setup includes the com-
mon power supply for all four nodes but excludes infrastructure, i.e. network switches, network
storage, cooling. Since there is only one measurement for all four boards combined, the active
power for jobs not using the full system has to be calculated. We calculate the power of the
active nodes as the difference of total power and idle power per node times the number of idle
nodes.

The results in this section refer only to the iterative solver phase. Input and output (IO),
data generation and initialisation of supporting structures for the multilevel preconditioner are
excluded. This reflects our use case, where the mesh deformation solver is called frequently

41

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

during a CFD simulation, all IO is handled via memory without copying, and the support
structures are only set up once.

The reported results are for a sphere of 262144 approximately equidistant points. For each
evaluated core count, all valid domain decomposition refinement levels and distributions of
physical cores to OpenMP threads and MPI ranks were measured. For the Xeon+GPU tests,
all cores were assigned as MPI ranks.

Table 17: Results for ThunderX Test System

Cores Energy Time Level Rel. Energy Gain Speedup

1 391.0 3103.2 3 1.0 1.0
2 198.9 1568.9 3 2.0 2.0
4 202.5 1599.7 3 1.9 1.9
8 52.3 406.5 3 7.5 7.6
16 29.3 223.8 3 13.4 13.9
32 18.2 134.0 3 21.5 23.2
48 14.9 108.2 3 26.3 28.7
96 10.5 72.0 3 37.3 43.1

For the ThunderX system, the results in Table 17 show similar and acceptable scaling
behaviour for both energy and time to solution. Due to the high number of cores available, only
refinement level three was tested.

As shown in Table 17 energy to solution was always improved by using as much of the node
as possible, thereby reducing unused idle power. In general use, however, a node would typically
be either fully used or the unused cores would be used by another job. A more practical question
for production use is, whether energy and time to solution are always minimised at the same
time, or if they are orthogonal goals. For our problem and given a fixed system both goals are
very similar, we can not say if after further work the goals will diverge.

1 2 4 8 12 16 20 242832 48 96
cores

100

120

140

160

180

200

220

Av
g.

 P
ow

er
 [W

]

CPU Level 1
CPU Level 2
CPU Level 3
GPU Level 0
GPU Level 1
GPU Level 2
GPU Level 3
ARM Level 3
CPU Minimal Time
GPU Minimal Time
ARM Minimal Time

Figure 37: Average power per run for each test system for all configurations

A related concept is the idea of race to sleep, that it is often beneficial for energy to solution
to solve a problem fast at the cost of increased power. In Figure 37 we show the average

42

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

power draw of all systems and highlight the fastest solutions. Our results indicate agreement
with this idea on the ThunderX system, where time to solution was very variable for different
configurations. On the Xeon systems where the tested configurations were more similar in
runtime, there are cases where lower power use can yield faster time to solution.

43

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

References

[1] Report on profiling and benchmarking of the initial set of applications on arm-based hpc
systems. Deliverable D6.1 of the Mont-Blanc 3 project, 2016.

[2] Report on the experimentation of new technologies. Deliverable D7.5 of the Mont-Blanc 3
project, 2016.

[3] Initial report on automatic region of interest extraction and porting to openmp4.0-ompss.
Deliverable D6.5 of the Mont-Blanc 3 project, 2017.

[4] M. Garcia, J. Corbalan, and J. Labarta. Lewi: A runtime balancing algorithm for nested
parallelism. In 2009 International Conference on Parallel Processing, pages 526–533, Sept
2009.

[5] Marta Garcia, Jesus Labarta, and Julita Corbalan. Hints to improve automatic load bal-
ancing with lewi for hybrid applications. Journal of Parallel and Distributed Computing,
74(9):2781 – 2794, 2014.

[6] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. Hpcg benchmark: a new metric
for ranking high performance computing systems. Technical report, Electrical Engineering
and Computer Science Department, Knoxville, Tennesse, 2015.

[7] Mont-Blanc consortium. Student cluster competition 2017. https://goo.gl/4BBkGs.

[8] Kiyoshi Kumahata and Kazuo Minami. Hpcg performance improvement on the k com-
puter. http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_
computer.pdf, 2014.

[9] Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Alexander Heinecke, Dhi-
raj D. Kalamkar, Xing Liu, Md. Mosotofa Ali Patwary, Yutong Lu, and Pradeep Dubey.
Efficient shared-memory implementation of high-performance conjugate gradient bench-
mark and its application to unstructured matrices. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 945–955, Piscataway, NJ, USA, 2014. IEEE Press.

[10] Arm Limited. Arm compiler for hpc. https://goo.gl/yeUnt8, 2016.

[11] Report on the experimentation of new technologies. Deliverable 7.5 of the Mont-Blanc 2
project, 2016.

[12] Intermediate report on deployment and evaluation of mini-clusters. Deliverable 4.5 of the
Mont-Blanc 3 project, 2017.

[13] Daniel Ganellari and Gundolf Haase. Reducing the memory footprint of an Eikonal solver.
In 2017 International Conference on High Performance Computing Simulation (HPCS).
IEEE, 2017. accepted.

[14] E. Vigmond, M. Hughes, G. Plank, and L. Leon. Computational tools for modeling elec-
trical activity in cardiac tissue. J Electrocardiol, 36:69–74, 2003.

[15] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.0.0, Argonne Nat. Lab., 2008.

44

 https://goo.gl/4BBkGs
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
https://goo.gl/yeUnt8

D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

[16] Hypre team. Hypre - high performance preconditioners User’s Manual. Technical Re-
port Software Version: 2.0.0, Center for Applied Scientific Computing, Lawrence Liv-
ermore National Laboratory, https://computation.llnl.gov/casc/hypre/download/hypre-
2.0.0 usr manual.pdf, Dec. 2006.

[17] Karypis G. and Kumar V. MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. http://www.cs.umn.edu/ metis, University of Minnesota, Minneapolis,
MN, 2009.

[18] Gundolf Haase, Manfred Liebmann, Craig C. Douglas, and Gernot Plank. A parallel
algebraic multigrid solver on graphics processing units. In Wu Zhang, Zhangxin Chen,
Craig C. Douglas, and Weiqin Tong, editors, HPCA (China), Revised Selected Papers,
volume 5938 of Lecture Notes in Computer Science, pages 38–47. Springer, 2009.

[19] S. Niederer, L. Mitchell, N. Smith, and G. Plank. Simulating human cardiac electrophysi-
ology on clinical time-scales. Front Physiol, 2:14, 2011.

[20] M. Munteanu, L.F. Pavarino, and S. Scacchi. A scalable Newton-Krylov-Schwarz method
for the bidomain reaction-diffusion system. SIAM J. Sci. Comput., 2009.

[21] E. J. Vigmond, R. Weber dos Santos, A. J. Prassl, M. Deo, and G. Plank. Solvers for the
cardiac bidomain equations. Prog Biophys Mol Biol, 96(1-3):3–18, 2008.

[22] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, 1985.

[23] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[24] S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows. International Journal of Heat and Mass
Transfer, 15(10):1787–1806, 1972.

[25] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in Computational Methods
in Mechanics and Thermal Sciences. McGraw-Hill, New York, 1980.

[26] H. A. Barnes. The yield stress—a review—everything flows? Journal of Non-Newtonian
Fluid Mechanics, 81:133–178, 1999.

[27] H. Zhu, Y.D. Kim, and D. De Kee. Non-newtonian fluids with a yield stress. Journal of
Non-Newtonian Fluid Mechanics, 129:177–181, 2005.

[28] A. C. A. Gratão, V. Silveira Jr., and J. Telis-Romero. Laminar flow of soursop juice
through concentric annuli: Friction factors and rheology. Journal of Food Engineering,
78:1343–1354, 2007.

[29] J. Telis-Romero, V. R. N. Telis, and F. Yamashita. Friction factors and rheological prop-
erties of orange juice. Journal of Food Engineering, 40:101–106, 1999.

[30] J. Yue and B. Klein. Influence of rheology on the performance of horizontal stirred mills.
Minerals Engineering, 17:1169–1177, 2004.

[31] A. Merve Genc, I. Kilickaplan, and J. S. Laskowski. Effect of pulp rheology on flotation
of nickel sulphide ore with fibrous gangue particles. Canadian Metallurgical Quarterly,
51:368–375, 2012.

45

MB3 D6.4 - Report on application tuning and optimization on ARM platform
Version 1.0

[32] W. R. Richmond, R. L. Jones, and P. D. Fawell. The relationship between particle ag-
gregation and rheology in mixed silicatitania suspensions. Chemical Engineering Journal,
71(1):67 – 75, 1998.

[33] A. Katiyar, A. N. Singh, P. Shukla, and T. Nandi. Rheological behavior of magnetic
nanofluids containing spherical nanoparticles of feni. Powder Technology, 224:86 – 89,
2012.

[34] A. K. Sharma, A. K. Tiwari, and A. R. Dixit. Rheological behaviour of nanofluids: A
review. Renewable and Sustainable Energy Reviews, 53:779 – 791, 2016.

[35] W. J. Tseng and S.-Y. Li. Rheology of colloidal batio3 suspension with ammonium poly-
acrylate as a dispersant. Materials Science and Engineering: A, 333(12):314 – 319, 2002.

[36] W. J. Tseng and F. Tzeng. Effect of ammonium polyacrylate on dispersion and rheology
of aqueous {ITO} nanoparticle colloids. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 276(13):34 – 39, 2006.

[37] J. Banaszek, Y. Jaluria, T. A. Kowalewski, and M. Rebow. Semi-implicit fem analysis
of natural convection in freezing water. Numerical Heat Transfer, Part A: Applications,
36(5):449–472, 1999.

[38] E. J. O’Donovan and R. I. Tanner. Numerical study of the bingham squeeze film problem.
Journal of Non-Newtonian Fluid Mechanics, 15(1):75 – 83, 1984.

[39] S. R. Djeddi, A. Masoudi, and P. Ghadimi. Numerical simulation of flow around diamond-
shaped obstacles at low to moderate reynolds numbers. American Journal of Applied
Mathematics and Statistics, 1(1):11–20, 2013.

[40] Schiffmann Patrick, Martin Dirk, Haase Gundolf, and Günter Offner. Optimizing a rbf in-
terpolation solverfor energy on heterogeneous systems. Accepted for ParCo 2017, Bologna,
Italy.

[41] G. Haase, D. Martin, P. Schiffmann, and G. Offner. A domain decomposition multilevel
preconditioner for interpolation with radial basis functions. In I. Lirkov, S. Margenov, and
J. Wasniewski, editors, Large Scale Scientific Computing LSSC’17, volume xx of Lecture
Notes in Computer Science, page 8. Springer, 2017. accepted, peer-review.

[42] Gundolf Haase, Dirk Martin, and Günter Offner. Towards RBF Interpolation on Hetero-
geneous HPC Systems, pages 182–190. Springer International Publishing, Cham, 2015.

46

	Executive Summary
	Lulesh
	Description
	OmpSs Port
	DLB

	HPCG
	Description
	Analysis
	Optimizations

	QuantumESPRESSO
	Description
	Results
	Conclusions

	Compiler evaluation
	Methodology
	Results
	Lulesh
	CoMD
	Polybench
	QuantumESPRESSO

	Conclusions

	Eikonal Solver - UGRAZ
	Description
	Analysis
	Energy Measurements
	Conclusions

	CARP - UGRAZ
	Description
	Analysis
	Energy Measurements
	Conclusions

	Non-Newtonian Fluid solver - UGRAZ
	Descriptions
	Viscoplastic Non-Newtonian Fluids
	Numerical solution of the coupled problem
	Scaling and Efficiency results
	Future work

	Mesh Interpolation Mini-App
	Description
	Original Implementation and Performance Analysis
	Theoretical Performance Analysis
	Optimization
	Auto Tuning the Brute-Force vs. FMM Threshold
	Hybrid Parallelism on the Outer Loop

	Results

