
IT Center der RWTH Aachen University

Advanced OpenMP Features

Christian Terboven, Dirk Schmidl

IT Center, RWTH Aachen University

Member of the HPC Group

{terboven,schmidl}@itc.rwth-aachen.de

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
2

Vectorization

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
3

Vectorization

 SIMD = Single Instruction Multiple Data

 Special hardware instructions to operate on multiple data points at once

 Instructions work on vector registers

 Vector length is hardware dependent

double a[4],b[4],c[4];
…

for(i=0 ; i < 4 ; i++)
{

a[i]=b[i]+c[i];
}

a[0]

c[0]

b[0]

=

+

Step 1

a[1]

c[1]

b[1]

=

+

Step 2

a[2]

c[2]

b[2]

=

+

Step 3

a[3]

c[3]

b[3]

=

+

Step 4

b[0],b[1]

c[0],c[1]

a[0],a[1]

=

+

b[2],b[3]

c[2],c[3]

a[2],a[3]

=

+

Step 2Step 1

Sequential Vectorized

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
4

Vectorization

 Vector lengths on Intel architectures

 128 bit: SSE = Streaming SIMD Extensions

 256 bit: AVX = Advanced Vector Extensions

 512 bit: AVX-512

2 x double

4 x float

4 x double

8 x float

8 x double

16 x float

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
5

Data Alignment

 Vectorization works best on aligned data structures.

Address: 0 8 16 24 32 40 48 56

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 8 16 24 32 40 48 56 64

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 4 12 20 28 36 44 52 60

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Good alignment

Bad alignment

Very bad alignment

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
6

 Ways to Vectorize

Compiler
auto-vectorization

Explicit Vector Programming
(e.g. with OpenMP)

Inline Assembly
(e.g.)

Assembler Code
(e.g. addps, mulpd, …)

easy

explicit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
7

The OpenMP SIMD constructs

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
8

The SIMD construct

 The SIMD construct enables the execution of multiple iterations of

the associated loops concurrently by means of SIMD instructions.

 where clauses are:

 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(list[:alignment]), specifies that data is aligned

 private(list), as usual

 lastprivate(list) , as usual

 reduction(reduction-identifier:list) , as usual

 collapse(n), collapse loops first, and than apply SIMD instructions

C/C++:
#pragma omp simd [clause(s)]

for-loops

Fortran:
!$omp simd [clause(s)]

do-loops
[!$omp end simd]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
9

The SIMD construct

 The safelen clause allows to specify a distance of loop iterations

where no dependencies occur.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[2]

b[2]

a[0]

=

*

Step 1

a[3]

b[3]

a[1]

=

*

Step 2

a[4]

b[4]

a[2]

=

*

Step 3

a[5]

b[5]

a[3]

=

*

Step 4

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Sequential Vector length 128-bit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
10

The SIMD construct

 The safelen clause allows to specify a distance of loop iterations

where no dependencies occur.

 Any vector length smaller than or equal to the length specified by

safelen can be chosen for vectorizaion.

 In contrast to parallel for/do loops the iterations are executed in a

specified order.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[0],a[1],a[2],a[3]

b[2],b[3],b[4],b[5]

a[2],a[3],a[4],a[5]

=

*

Step 1

Vector length 256-bit

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Vector length 128-bit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
11

The loop SIMD construct

 The loop SIMD construct specifies a loop that can be executed in

parallel by all threads and in SIMD fashion on each thread.

 Loop iterations are first distributed across threads, then each chunk

is handled as a SIMD loop.

 Clauses:

 All clauses from the loop- or SIMD-construct are allowed

 Clauses which are allowed for both constructs are applied twice, once for the

threads and once for the SIMDization.

C/C++:
#pragma omp for simd [clause(s)]

for-loops

Fortran:
!$omp do simd [clause(s)]

do-loops
[!$omp end do simd [nowait]]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
12

The declare SIMD construct

 Function calls in SIMD-loops can lead to bottlenecks, because

functions need to be executed serially.

for(i=0 ; i < N ; i++)
{

a[i]=b[i]+c[i];

d[i]=sin(a[i]);

e[i]=5*d[i];

}

SIMD lanes Solutions:
• avoid or inline

functions
• create functions

which work on
vectors instead of
scalars

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
13

The declare SIMD construct

 Enables the creation of multiple versions of a function or subroutine

where one or more versions can process multiple arguments using

SIMD instructions.

 where clauses are:

 simdlen(length), the number of arguments to process simultanously

 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(argument-list[:alignment]), specifies that data is aligned

 uniform(argument-list), arguments have an invariant value

 inbranch / notinbranch, function is always/never called from within a

conditional statement

C/C++:
#pragma omp declare simd [clause(s)]
[#pragma omp declare simd [clause(s)]]

function definition / declaration

Fortran:
!$omp declare simd (proc_name)[clause(s)]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
14

 PI Example Code Calculating Pi with
numerical integration

of:

𝜋 =

0

1
4

1 + 𝑥2

File: f.c
#pragma omp declare simd
double f(double x)
{

return (4.0 / (1.0 + x*x));
}

File: pi.c
#pragma omp declare simd
double f(double x);
…
#pragma omp simd linear(i) private(fX) reduction(+:fSum)
for (i = 0; i < n; i++)
{

fX = fH * ((double)i + 0.5);
fSum += f(fX);

}
return fH * fSum;

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
15

Example 1: Pi

 Runtime of the benchmark on:

 Westmere CPU with SSE (128-bit vectors)

 Intel Xeon Phi with AVX-512 (512-bit vectors)

Note: Speedup for memory bound applications might be lower on both

systems.

Runtime
Westmere

Speedup
Westmere

Runtime
Xeon Phi

Speedup
Xeon Phi

non
vectorized

1.44 sec 1 16.25 sec 1

vectorized 0.72 sec 2 1.82 sec 8.9

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
16

OpenMP for Accelerators

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
17

Intel Xeon Phi

Intel Xeon Phi Coprocessor
• 1 x Intel Xeon Phi @ 1090 MHz
• 60 Cores (in-order)
• ~ 1 TFLOPS DP Peak
• 4 hardware threads per core (SMT)
• 8 GB GDDR5 memory
• 512-bit SIMD vectors (32 registers)
• Fully-coherent L1 and L2 caches
• Plugged into PCI Express bus

Source: Intel

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
18

GPU architecture: Fermi

 3 billion transistors

 14-16 streaming multiprocessors (SM)

 Each comprises 32 cores

 448-512 cores/ streaming processors (SP)

 i.a. Floating point & integer unit

 Memory hierarchy

 Peak performance

 SP: 1.03 TFlops

 DP: 515 GFlops

 ECC support

 Compute capability: 2.0

 Defines features, e.g. double precision capability,

memory access pattern

©
 N

V
ID

IA
 C

o
rp

o
ra

ti
o

n
 2

0
1

0

GPU

SM

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
19

 Data environment is lexically scoped

 Data environment is destroyed at closing curly brace

 Allocated buffers/data are automatically released

 Use target construct to

 Transfer control from the host to the device

 Establish a data environment (if not yet done)

 Host thread waits until offloaded region completed

Execution + Data Model

Host Device

#pragma omp target \

alloc(…)

1

from(…)

4

to(…)

2

pA

map(alloc:...) \

map(to:...) \

{ ... }

3

map(from:...)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
20

Example: SAXPY

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
21

SAXPY: Serial (Host)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
22

SAXPY: OpenMP 4.0 (Intel MIC)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
23

SAXPY: OpenMP 4.0 (Intel MIC)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
24

SAXPY: OpenMP 4.0 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:y[0:n])

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n])

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
25

Target Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
26

 Creates a device data environment for the extent of the region

 when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

 when an if clause is present and the if-expression evaluates to false, the

device is the host

 C/C++:

Target Data Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
27

 Map a variable from the current task's data environment to the

device data environment associated with the construct

 the list items that appear in a map clause may include array sections

 alloc-type: each new corresponding list item has an undefined initial value

 to-type: each new corresponding list item is initialized with the original lit

item's value

 from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

 tofrom-type: the default, combination of to and from

 C/C++:

Map Clause

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
28

 Creates a device data environment and execute the construct on the

same device

 superset of the target data constructs - in addition, the target construct

specifies that the region is executed by a device and the encountering task

waits for the device to complete the target region

 C/C++:

Target Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
29

Example: Target Construct

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++) ...

#pragma omp target

#pragma omp teams num_teams(8) num_threads(4)

#pragma omp distribute

for (k = 0; k < NUM_K; k++)

{

#pragma omp parallel for

for (j = 0; j < NUM_J; j++)

{

...

}

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
30

 Makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified

motion clauses

 C/C++:

Target Update Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
31

 Specifies that [static] variables, functions (C, C++ and Fortran) and

subroutines (Fortran) are mapped to a device

 if a list item is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

 if a list item is a variable then the original variable is mapped to a

corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)

 all declarations and definitions for a function must have a declare target

directive

 C/C++:

Declare Target Directive

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
32

 Creates a league of thread teams where the master thread of each

team executes the region

 the number of teams is determined by the num_teams clause, the number of

threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get_team_num())

 once created, the number of teams remeinas constant for the duration of the

teams region

 The teams region is executed by the master thread of each team

 The threads other than the master thread to not begin execution

until the master thread encounteres a parallel region

 Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and

parallel workshare

Teams Construct (1/2)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
33

 A teams construct must be contained within a target construct,

which must not contain any statements or directives outside of the

teams construct

 After the teams have completed execution of the teams region, the

encountering thread resumes execution of the enclosing target

region

 C/C++:

Teams Construct (2/2)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
34

 Specifies that the iteration of one or more loops will be executed by

the thread teams, the iterations are distributed across the master

threads of all teams

 there is no implicit barrier at the end of a distribute construct

 a distribute construct must be closely nested in a teams region

 C/C++:

Distribute Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
35

Questions?

