RWTH

IT Center

Advanced OpenMP Features

Christian Terboven, Dirk Schmidl
IT Center, RWTH Aachen University
Member of the HPC Group
{terboven,schmidl}@itc.rwth-aachen.de

IT Center der RWTH Aachen University

Vectorization

2 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Vectorization n ‘ RWTH

@ SIMD = Single Instruction Multiple Data

— Special hardware instructions to operate on multiple data points at once
—> Instructions work on vector registers

- Vector length is hardware dependent

Sequential Vectorized

Step1 Step2 Step3 Step 4 Step 1 Step 2

double a[4],b[4],c[4];
woseatisiacs |\ oy) D || I
+ + + + + +

for(i=0;i<4;i++)

| colcir) | cf2iets
ali]=b[i]+cl[i];
} = = = = = =
£l o201 o121

3 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

\ectorization n Rwilj.l!i’\li\el%llw

@ Vector lengths on Intel architectures
— 128 bit: SSE = Streaming SIMD Extensions
2 x double

4 x float

Advanced Vector Extensions
4 x double

8 x float

4 Advanced OpenMP Features
C. Terboven| IT Center der RWTH Aachen University

Data Alignment n RWTHAACHEN

UNIVERSITY

Vectorization works best on aligned data structures.

Good alignment
Address: O 8

5
R)

Bad alignment
Address:

8 16 24 32 40 48 56 64
Data: a0l alt) aRl a3 el als) alel al7]

Very bad alignment
Address: 4 12 20 6
R
Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

6

O

H RWTHAACHEN
] UNIVERSITY

“ Ways to Vectorize

Advanced OpenMP Features
C. Terboven| IT Center der RWTH Aachen University

The OpenMP SIMD constructs

The SIMD construct RWTH

The SIMD construct enables the execution of multiple iterations of
the associated loops concurrently by means of SIMD instructions.

C/C++: Fortran:
#pragma omp simd [clause(s)] ISomp simd [clause(s)]
for-loops do-loops
[!Somp end simd]

where clauses are:

- linear(list[:linear-step]), a variable increases linearly in every loop iteration
—> aligned(list[:alignment]), specifies that data is aligned

—> private(list), as usual

—> lastprivate(list) , as usual

—> reduction(reduction-identifier:list) , as usual

—> collapse(n), collapse loops first, and than apply SIMD instructions

Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

The SIMD construct n ‘ R\WNTH

“ The safelen clause allows to specify a distance of loop iterations

where no dependencies occur.
Sequential Vector length 128-bit

Step1 Step2 Step3 Step4 Step 1 Step 2

double a[6],b[6];
} al[0],a[1]

for(i=2 ;i< 6; i++)
{ JJPARJE] k4],b[5]

ali]=a[i-2]1*bl[i];
}

Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

The SIMD construct RWTH

The safelen clause allows to specify a distance of loop iterations

where no dependencies occur. , _
Vector length 128-bit Vector length 256-bit

Step 1 Step 2 b

doubl 6],b[6];
e © aleLbIo] a[0],a[1]

for(i=2 ;i< 6; i++)
{ b[2],b[3] h14],b[5]
ali]=a[i-2]1*bl[i];

}

a[2],a[3],a[4],a[5]

Any vector length smaller than or equal to the length specified by
safelen can be chosen for vectorizaion.

In contrast to parallel for/do loops the iterations are executed in a
SAE)ecified order.
0 \'

1 anced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

The loop SIMD construct RWTH

The loop SIMD construct specifies aloop that can be executed in
parallel by all threads and in SIMD fashion on each thread.

C/C++: Fortran:
#pragma omp for simd [clause(s)] ISomp do simd [clause(s)]
for-loops do-loops
[!Somp end do simd [nowait]]

Loop iterations are first distributed across threads, then each chunk
Is handled as a SIMD loop.

Clauses:

- All clauses from the loop- or SIMD-construct are allowed

— Clauses which are allowed for both constructs are applied twice, once for the

threads and once for the SIMDization.

11 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

The declare SIMD construct RWTH

Function calls in SIMD-loops can lead to bottlenecks, because
functions need to be executed serially.

IMD | PR
for(i=0; i< N ; i++) > anes Squtlo.r:js. .
{ * avoid orinline
functions
ali]=b[i]+c[i]; . Crﬁ?t: funcl:<tions
which work on
d[i]=sin(al[i]); vecltors instead of
scalars
e[i]=5*d[i];
}

12 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

RWTH

The declare SIMD construct

Enables the creation of multiple versions of a function or subroutine
where one or more versions can process multiple arguments using
SIMD instructions.

C/C++: Fortran:

#pragma omp declare simd [clause(s)] ISomp declare simd (proc_name)|clause(s)]

[#pragma omp declare simd [clause(s)]]
function definition / declaration

where clauses are:

— simdlen(length), the number of arguments to process simultanously

- linear(list[:linear-step]), a variable increases linearly in every loop iteration
- aligned(argument-list[:alignment]), specifies that data is aligned

- uniform(argument-list), arguments have an invariant value

—> inbranch / notinbranch, function is always/never called from within a

conditional statement

13 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

File: f.c
#pragma omp declare simd
double f(double x)

{
return (4.0 / (1.0 + x*x));

}

File: pi.c
#pragma omp declare simd
double f(double x);

#pragma omp simd linear(i) private(fX) reduction(+:fSum)

for (i=0;i<n;i++)

{
fX = fH * ((double)i + 0.5);
fSum += f(fX);

}

return fH * fSum;

14 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

‘R\Nﬂ'l

Calculating Pi with
numerical integration
of:
1
4
"= f 1+ x?
0
aF - y ; 14
35 / Hhh‘"\‘ 135
3t H‘qh 13
25 hh.‘.‘ 25
= I e
15 \-1.5
1 11
05t 0.5
-%.5 0 0.5 1 1 E

Example 1: Pi RWTH

Runtime of the benchmark on:
- Westmere CPU with SSE (128-bit vectors)

- Intel Xeon Phi with AVX-512 (512-bit vectors)

Runtime Speedup Runtime Speedup

Westmere Westmere Xeon Phi Xeon Phi
nor.1 1.44 sec 1 16.25 sec 1
vectorized
vectorized 0.72 sec 2 1.82 sec 8.9

Note: Speedup for memory bound applications might be lower on both
systems.

15 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

OpenMP for Accelerators

16 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Intel Xeon Phi

\\‘\.‘.‘\‘
(G p
Yoort " Coprocesses]

Source: Intel

Intel Xeon Phi Coprocessor

* 1 xIntel Xeon Phi @ 1090 MHz

* 60 Cores (in-order)

e ~ 1 TFLOPS DP Peak

e 4 hardware threads per core (SMT)
* 8 GB GDDR5 memory

e 512-bit SIMD vectors (32 registers)
* Fully-coherent L1 and L2 caches

e Plugged into PCl Express bus

Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

RWTHAACHEN
UNIVERSITY

GPU architecture: Fermi RWTH

3 billion transistors
14-16 streaming multiprocessors (SM)

- Each comprises 32 cores SM .
-
448-512 cores/ streaming processors (SP)

- I.a. Floating point & integer unit

H

Memory hierarchy _____

Peak performance I____;'g_';__;_;__il
- SP: 1.03 TFlops
- DP: 515 GFlops

ECC support

Compute capability: 2.0

- Defines features, e.g. double precision capability,
memory access pattern

18 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

e o e e

© NVIDIA Corporation 2010

Execution + Data

Model

Data environment is lexically scoped

RWTH

— Data environment is destroyed at closing curly brace

— Allocated buffers/data are automatically released

Use target const

— Transfer control from the host to the device

ruct to

— Establish a data environment (if not yet done)

— Host thread waits until offloaded region completed

Host

19 Adlvanced OpenMP Features
ClTerboven] IT Center der RW1

[H Aachen University

\

Device
T | alloc]..)
1 1|
#pragma omp target \
’//// map (alloc:...)
map (to:...) \

map (from: ..

}

f©

-)

Example: SAXPY

20 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

SAXPY: Serial (Host) RWTH

int main(int argc, const char* argv[]) {
int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Initialize x, y

// Run SAXPY TWICE

for (int i = 0; i < n; ++i){
yl[i] = a*x[i] + yl[i];
}

// y is needed and modified on the host here
for (int 1 = 0; i < n; ++i){

y[i] = b*x[i] + yI[il];
}

free(x); free(y); return O;

21 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

SAXPY: OpenMP 4.0 (Intel MIC) RWTH

int main(int argc, const char* argv[]) {
int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Initialize x, y

// Run SAXPY TWICE
#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])
#pragma omp parallel for
for (int i = 0; i < n; ++i){
y[i] = a*x[1i] + y[i];
}

// y is needed and modified on the host here
#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])
#pragma omp parallel for

for (int 1i 0; 1i < n; ++i){

y[i] b*x[i] + yl[il];

}

free(x); free(y); return 0O;

}

22 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

SAXPY: OpenMP 4.0 (Intel MIC) RWTH

int main(int argc, const char* argv[]) {
int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Initialize x, y

// Run SAXPY TWICE
#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y[0:n])
#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = a*x[i] + yl[i];
}

// y is needed and modified on the host here
#pragma omp target map(tofrom:y[0:n])
#pragma omp parallel for
for (int i 0; 1i < n; ++i){
y[i] = b*x[i] + y[i];

}
}

free(x); free(y); return O;

23 } Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

SAXPY: OpenMP 4.0 (NVIDIA GPGPU) RWTH

int main(int argc, const char* argv[]) {
int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Initialize x, y

// Run SAXPY TWICE
#pragma omp target data map(to:x[0:n])
{
#pragma omp target map (tofrom:y[0:n])
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; 1 < n; ++i){

y[i] = a*x[i] + y[i];
}

// y is needed and modified on the host here
#pragma omp target map (tofrom:y[0:n])
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for (int i 0; i < n; ++i){

y[i]l = b*x[i] + y[i];

}
}

free(x); free(y); return O;

}

24 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Target Construct

25 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Target Data Construct RWTH

Creates a device data environment for the extent of the region

— when a target data construct is encountered, a new device data environment

IS created, and the encountering task executes the target data region

= when an if clause is present and the if-expression evaluates to false, the

device is the host

C/IC++:

The syntax of the target data construct is as follows:

#pragma omp target data [clause[[,] clause],...] new-line
structured-block

where clause is one of the following:
device(integer-expression)

map([map-type : | list)
if(scalar-expression)

26 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Map Clause RWTH

Map a variable from the current task's data environment to the
device data environment associated with the construct

— the list items that appear in a map clause may include array sections

— alloc-type: each new corresponding list item has an undefined initial value

- to-type: each new corresponding list item is initialized with the original lit

item's value

- from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

- tofrom-type: the default, combination of to and from

C/IC++:

The syntax of the map clause is as follows:
map([map-type : | list)

27 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Target Construct RWTH

Creates a device data environment and execute the construct on the
same device

—> superset of the target data constructs - in addition, the target construct
specifies that the region is executed by a device and the encountering task

walits for the device to complete the target region

C/IC++:

The syntax of the target construct is as follows:

#pragma omp target [clausef[,] clause],...] new-line
structured-block

where clause is one of the following:
device(integer-expression)

map([map-type : | list)
if(scalar-expression)

28 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Example: Target Construct RWTH

for (i=0; 1i<N; 1i++)

for (k = 0; k < NUM K; k++)

for (J = 0; J < NUM J; J++)

29 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Target Update Construct RWTH

Makes the corresponding list items in the device data environment
consistent with their original list items, according to the specified
motion clauses

C/IC++:

The syntax of the target update construct is as follows:
#pragma omp target update motion-clause[, clause[[,] clause],...] new-line
where motion-clause is one of the following:

to(list)
from(list)

and where clause is one of the following:

device(integer-expression)
if(scalar-expression)

Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

RWTH

Declare Target Directive

Specifies that [static] variables, functions (C, C++ and Fortran) and
subroutines (Fortran) are mapped to a device

—> if a list item is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

—> if a list item is a variable then the original variable is mapped to a

corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)
—> all declarations and definitions for a function must have a declare target

directive

C/IC++:

The syntax of the declare target directive is as follows:

#pragma omp declare target new-line
declarations-definition-seq

Tl #pragma omp end decdlare target new-line
C. lerboven| 11 Center der RW I H Aachen university

Teams Construct (1/2) RWTH

Creates a league of thread teams where the master thread of each
team executes the region

— the number of teams is determined by the num_teams clause, the number of
threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get team_num())

- once created, the number of teams remeinas constant for the duration of the

teams region

The teams region is executed by the master thread of each team

The threads other than the master thread to not begin execution
until the master thread encounteres a parallel region

Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and
parallel workshare

32 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Teams Construct (2/2) RWTH

A teams construct must be contained within a target construct,
which must not contain any statements or directives outside of the
teams construct

After the teams have completed execution of the teams region, the
encountering thread resumes execution of the enclosing target
region

C/IC++:

The syntax of the teams construct is as follows

#pragma omp teams [clause[[,] clause],...] new-line
structured-block

where clause is one of the following:

num_teams(integer-expression)
num_threads(integer-expression)
default(shared | none)

private(/ist)

firstprivate(/ist)

shared(/ist)

reduction(operator : list)

Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Distribute Construct RWTH

Specifies that the iteration of one or more loops will be executed by
the thread teams, the iterations are distributed across the master
threads of all teams

—> there is no implicit barrier at the end of a distribute construct

—> a distribute construct must be closely nested in a teams region

C/IC++:

The syntax of the distribute construct is as follows:

#pragma omp distribute [clause[[,] clause],...] new-line
for-loops

Where clause is one of the following:

private(/ist)

firstprivate(/ist)

collapse(n)

dist_schedule(kind[, chunk_size])

All associated for-loops must have the canonical form described in Section 2.5.

34 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

Questions?

35 Advanced OpenMP Features
C. Terboven] IT Center der RWTH Aachen University

