
IT Center der RWTH Aachen University

Advanced OpenMP Features

Christian Terboven, Dirk Schmidl

IT Center, RWTH Aachen University

Member of the HPC Group

{terboven,schmidl}@itc.rwth-aachen.de

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
2

Vectorization

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
3

Vectorization

 SIMD = Single Instruction Multiple Data

 Special hardware instructions to operate on multiple data points at once

 Instructions work on vector registers

 Vector length is hardware dependent

double a[4],b[4],c[4];
…

for(i=0 ; i < 4 ; i++)
{

a[i]=b[i]+c[i];
}

a[0]

c[0]

b[0]

=

+

Step 1

a[1]

c[1]

b[1]

=

+

Step 2

a[2]

c[2]

b[2]

=

+

Step 3

a[3]

c[3]

b[3]

=

+

Step 4

b[0],b[1]

c[0],c[1]

a[0],a[1]

=

+

b[2],b[3]

c[2],c[3]

a[2],a[3]

=

+

Step 2Step 1

Sequential Vectorized

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
4

Vectorization

 Vector lengths on Intel architectures

 128 bit: SSE = Streaming SIMD Extensions

 256 bit: AVX = Advanced Vector Extensions

 512 bit: AVX-512

2 x double

4 x float

4 x double

8 x float

8 x double

16 x float

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
5

Data Alignment

 Vectorization works best on aligned data structures.

Address: 0 8 16 24 32 40 48 56

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 8 16 24 32 40 48 56 64

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Address: 4 12 20 28 36 44 52 60

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]Data:

Vectors:

Good alignment

Bad alignment

Very bad alignment

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
6

 Ways to Vectorize

Compiler
auto-vectorization

Explicit Vector Programming
(e.g. with OpenMP)

Inline Assembly
(e.g.)

Assembler Code
(e.g. addps, mulpd, …)

easy

explicit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
7

The OpenMP SIMD constructs

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
8

The SIMD construct

 The SIMD construct enables the execution of multiple iterations of

the associated loops concurrently by means of SIMD instructions.

 where clauses are:

 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(list[:alignment]), specifies that data is aligned

 private(list), as usual

 lastprivate(list) , as usual

 reduction(reduction-identifier:list) , as usual

 collapse(n), collapse loops first, and than apply SIMD instructions

C/C++:
#pragma omp simd [clause(s)]

for-loops

Fortran:
!$omp simd [clause(s)]

do-loops
[!$omp end simd]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
9

The SIMD construct

 The safelen clause allows to specify a distance of loop iterations

where no dependencies occur.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[2]

b[2]

a[0]

=

*

Step 1

a[3]

b[3]

a[1]

=

*

Step 2

a[4]

b[4]

a[2]

=

*

Step 3

a[5]

b[5]

a[3]

=

*

Step 4

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Sequential Vector length 128-bit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
10

The SIMD construct

 The safelen clause allows to specify a distance of loop iterations

where no dependencies occur.

 Any vector length smaller than or equal to the length specified by

safelen can be chosen for vectorizaion.

 In contrast to parallel for/do loops the iterations are executed in a

specified order.

double a[6],b[6];
…

for(i=2 ; i < 6 ; i++)
{

a[i]=a[i-2]*b[i];
}

a[0],a[1],a[2],a[3]

b[2],b[3],b[4],b[5]

a[2],a[3],a[4],a[5]

=

*

Step 1

Vector length 256-bit

a[0],a[1]

b[2],b[3]

a[2],a[3]

=

*

a[2],a[3]

b[4],b[5]

a[4],a[5]

=

*

Step 2Step 1

Vector length 128-bit

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
11

The loop SIMD construct

 The loop SIMD construct specifies a loop that can be executed in

parallel by all threads and in SIMD fashion on each thread.

 Loop iterations are first distributed across threads, then each chunk

is handled as a SIMD loop.

 Clauses:

 All clauses from the loop- or SIMD-construct are allowed

 Clauses which are allowed for both constructs are applied twice, once for the

threads and once for the SIMDization.

C/C++:
#pragma omp for simd [clause(s)]

for-loops

Fortran:
!$omp do simd [clause(s)]

do-loops
[!$omp end do simd [nowait]]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
12

The declare SIMD construct

 Function calls in SIMD-loops can lead to bottlenecks, because

functions need to be executed serially.

for(i=0 ; i < N ; i++)
{

a[i]=b[i]+c[i];

d[i]=sin(a[i]);

e[i]=5*d[i];

}

SIMD lanes Solutions:
• avoid or inline

functions
• create functions

which work on
vectors instead of
scalars

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
13

The declare SIMD construct

 Enables the creation of multiple versions of a function or subroutine

where one or more versions can process multiple arguments using

SIMD instructions.

 where clauses are:

 simdlen(length), the number of arguments to process simultanously

 linear(list[:linear-step]), a variable increases linearly in every loop iteration

 aligned(argument-list[:alignment]), specifies that data is aligned

 uniform(argument-list), arguments have an invariant value

 inbranch / notinbranch, function is always/never called from within a

conditional statement

C/C++:
#pragma omp declare simd [clause(s)]
[#pragma omp declare simd [clause(s)]]

function definition / declaration

Fortran:
!$omp declare simd (proc_name)[clause(s)]

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
14

 PI Example Code Calculating Pi with
numerical integration

of:

𝜋 =

0

1
4

1 + 𝑥2

File: f.c
#pragma omp declare simd
double f(double x)
{

return (4.0 / (1.0 + x*x));
}

File: pi.c
#pragma omp declare simd
double f(double x);
…
#pragma omp simd linear(i) private(fX) reduction(+:fSum)
for (i = 0; i < n; i++)
{

fX = fH * ((double)i + 0.5);
fSum += f(fX);

}
return fH * fSum;

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
15

Example 1: Pi

 Runtime of the benchmark on:

 Westmere CPU with SSE (128-bit vectors)

 Intel Xeon Phi with AVX-512 (512-bit vectors)

Note: Speedup for memory bound applications might be lower on both

systems.

Runtime
Westmere

Speedup
Westmere

Runtime
Xeon Phi

Speedup
Xeon Phi

non
vectorized

1.44 sec 1 16.25 sec 1

vectorized 0.72 sec 2 1.82 sec 8.9

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
16

OpenMP for Accelerators

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
17

Intel Xeon Phi

Intel Xeon Phi Coprocessor
• 1 x Intel Xeon Phi @ 1090 MHz
• 60 Cores (in-order)
• ~ 1 TFLOPS DP Peak
• 4 hardware threads per core (SMT)
• 8 GB GDDR5 memory
• 512-bit SIMD vectors (32 registers)
• Fully-coherent L1 and L2 caches
• Plugged into PCI Express bus

Source: Intel

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
18

GPU architecture: Fermi

 3 billion transistors

 14-16 streaming multiprocessors (SM)

 Each comprises 32 cores

 448-512 cores/ streaming processors (SP)

 i.a. Floating point & integer unit

 Memory hierarchy

 Peak performance

 SP: 1.03 TFlops

 DP: 515 GFlops

 ECC support

 Compute capability: 2.0

 Defines features, e.g. double precision capability,

memory access pattern

©
 N

V
ID

IA
 C

o
rp

o
ra

ti
o

n
 2

0
1

0

GPU

SM

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
19

 Data environment is lexically scoped

 Data environment is destroyed at closing curly brace

 Allocated buffers/data are automatically released

 Use target construct to

 Transfer control from the host to the device

 Establish a data environment (if not yet done)

 Host thread waits until offloaded region completed

Execution + Data Model

Host Device

#pragma omp target \

alloc(…)

1

from(…)

4

to(…)

2

pA

map(alloc:...) \

map(to:...) \

{ ... }

3

map(from:...)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
20

Example: SAXPY

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
21

SAXPY: Serial (Host)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
22

SAXPY: OpenMP 4.0 (Intel MIC)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n]) map(to:x[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
23

SAXPY: OpenMP 4.0 (Intel MIC)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
24

SAXPY: OpenMP 4.0 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

#pragma omp target data map(to:x[0:n])

{

#pragma omp target map(tofrom:y[0:n])

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n])

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

}

free(x); free(y); return 0;

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
25

Target Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
26

 Creates a device data environment for the extent of the region

 when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

 when an if clause is present and the if-expression evaluates to false, the

device is the host

 C/C++:

Target Data Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
27

 Map a variable from the current task's data environment to the

device data environment associated with the construct

 the list items that appear in a map clause may include array sections

 alloc-type: each new corresponding list item has an undefined initial value

 to-type: each new corresponding list item is initialized with the original lit

item's value

 from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

 tofrom-type: the default, combination of to and from

 C/C++:

Map Clause

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
28

 Creates a device data environment and execute the construct on the

same device

 superset of the target data constructs - in addition, the target construct

specifies that the region is executed by a device and the encountering task

waits for the device to complete the target region

 C/C++:

Target Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
29

Example: Target Construct

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++) ...

#pragma omp target

#pragma omp teams num_teams(8) num_threads(4)

#pragma omp distribute

for (k = 0; k < NUM_K; k++)

{

#pragma omp parallel for

for (j = 0; j < NUM_J; j++)

{

...

}

}

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
30

 Makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified

motion clauses

 C/C++:

Target Update Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
31

 Specifies that [static] variables, functions (C, C++ and Fortran) and

subroutines (Fortran) are mapped to a device

 if a list item is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

 if a list item is a variable then the original variable is mapped to a

corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)

 all declarations and definitions for a function must have a declare target

directive

 C/C++:

Declare Target Directive

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
32

 Creates a league of thread teams where the master thread of each

team executes the region

 the number of teams is determined by the num_teams clause, the number of

threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get_team_num())

 once created, the number of teams remeinas constant for the duration of the

teams region

 The teams region is executed by the master thread of each team

 The threads other than the master thread to not begin execution

until the master thread encounteres a parallel region

 Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and

parallel workshare

Teams Construct (1/2)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
33

 A teams construct must be contained within a target construct,

which must not contain any statements or directives outside of the

teams construct

 After the teams have completed execution of the teams region, the

encountering thread resumes execution of the enclosing target

region

 C/C++:

Teams Construct (2/2)

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
34

 Specifies that the iteration of one or more loops will be executed by

the thread teams, the iterations are distributed across the master

threads of all teams

 there is no implicit barrier at the end of a distribute construct

 a distribute construct must be closely nested in a teams region

 C/C++:

Distribute Construct

Advanced OpenMP Features

C. Terboven| IT Center der RWTH Aachen University
35

Questions?

