
Advanced Micro Devices

Publication No. Revision Date

24594 3.32 March 2021

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Publication No. Revision Date

24594 3.32 March 2021

© 2013 – 2021 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Contents i

24594—Rev. 3.32—March 2021 AMD64 Technology

Contents

Contents . i

Figures. xi

Tables . xiii

Revision History . xvii

Preface. xxiii
About This Book. xxiii
Audience . xxiii
Organization . xxiii
Conventions and Definitions . xxiv
Related Documents . xxxvi

1 Instruction Encoding .1
1.1 Instruction Encoding Overview. 1

1.1.1 Encoding Syntax. 1
1.1.2 Representation in Memory . 4

1.2 Instruction Prefixes . 5
1.2.1 Summary of Legacy Prefixes . 6
1.2.2 Operand-Size Override Prefix . 7
1.2.3 Address-Size Override Prefix . 9
1.2.4 Segment-Override Prefixes. 10
1.2.5 Lock Prefix . 12
1.2.6 Repeat Prefixes . 12
1.2.7 REX Prefix . 14
1.2.8 VEX and XOP Prefixes . 16

1.3 Opcode. 16
1.4 ModRM and SIB Bytes . 17

1.4.1 ModRM Byte Format . 17
1.4.2 SIB Byte Format . 18
1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes 20
1.4.4 Operand Addressing in 64-bit Mode. 23

1.5 Displacement Bytes . 24
1.6 Immediate Bytes . 24
1.7 RIP-Relative Addressing . 24

1.7.1 Encoding . 25
1.7.2 REX Prefix and RIP-Relative Addressing . 25
1.7.3 Address-Size Prefix and RIP-Relative Addressing. 25

1.8 Encoding Considerations Using REX . 26
1.8.1 Byte-Register Addressing . 26
1.8.2 Special Encodings for Registers . 26

1.9 Encoding Using the VEX and XOP Prefixes . 29
1.9.1 Three-Byte Escape Sequences . 29
1.9.2 Two-Byte Escape Sequence . 32

ii Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

2 Instruction Overview. .35
2.1 Instruction Groups . 35
2.2 Reference-Page Format . 36
2.3 Summary of Registers and Data Types . 38

2.3.1 General-Purpose Instructions . 38
2.3.2 System Instructions. 41
2.3.3 SSE Instructions . 43
2.3.4 64-Bit Media Instructions . 48
2.3.5 x87 Floating-Point Instructions . 50

2.4 Summary of Exceptions. 51
2.5 Notation . 53

2.5.1 Mnemonic Syntax. 53
2.5.2 Opcode Syntax . 56
2.5.3 Pseudocode Definition . 57

3 General-Purpose Instruction Reference .73
AAA. 75
AAD. 76
AAM . 77
AAS . 78
ADC. 79
ADCX . 81
ADD. 83
ADOX . 85
AND. 87
ANDN . 90
BEXTR
(register form) . 92
BEXTR
(immediate form) . 94
BLCFILL . 96
BLCI . 98
BLCIC . 100
BLCMSK. 102
BLCS . 104
BLSFILL . 106
BLSI. 108
BLSIC . 110
BLSMSK . 112
BLSR . 114
BOUND . 116
BSF . 118
BSR . 119
BSWAP . 120
BT . 121
BTC . 123
BTR . 125
BTS . 127

Contents iii

24594—Rev. 3.32—March 2021 AMD64 Technology

BZHI . 129
CALL (Near) . 131
CALL (Far) . 134
CBW
CWDE
CDQE . 141
CWD
CDQ
CQO. 142
CLC . 143
CLD . 144
CLFLUSH . 145
CLFLUSHOPT . 147
CLZERO . 151
CMC . 152
CMOVcc . 153
CMP. 157
CMPS
CMPSB
CMPSW
CMPSD
CMPSQ . 160
CMPXCHG . 162
CMPXCHG8B
CMPXCHG16B. 164
CPUID . 166
CRC32 . 168
DAA. 170
DAS . 171
DEC . 172
DIV . 174
ENTER . 176
IDIV. 178
IMUL . 180
IN . 183
INC . 185
INS
INSB
INSW
INSD . 187
INT. 189
INTO . 197
Jcc . 198
JCXZ
JECXZ
JRCXZ . 202
JMP (Near). 203

iv Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

JMP (Far) . 205
LAHF. 210
LDS
LES
LFS
LGS
LSS . 211
LEA . 213
LEAVE. 215
LFENCE . 216
LLWPCB . 217
LODS
LODSB
LODSW
LODSD
LODSQ . 220
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ . 222
LWPINS. 224
LWPVAL . 226
LZCNT. 229
MCOMMIT . 231
MFENCE . 232
MONITORX . 233
MOV . 235
MOVBE. 238
MOVD . 240
MOVMSKPD . 244
MOVMSKPS. 246
MOVNTI . 248
MOVS
MOVSB
MOVSW
MOVSD
MOVSQ. 250
MOVSX. 252
MOVSXD . 253
MOVZX. 254
MUL. 255
MULX . 257
MWAITX. 259
NEG . 262
NOP . 264
NOT . 265

Contents v

24594—Rev. 3.32—March 2021 AMD64 Technology

OR . 266
OUT . 269
OUTS
OUTSB
OUTSW
OUTSD . 270
PAUSE . 272
PDEP . 273
PEXT . 275
POP . 277
POPA
POPAD. 280
POPCNT . 281
POPF
POPFD
POPFQ. 283
PREFETCH
PREFETCHW . 286
PREFETCHlevel . 288
PUSH . 290
PUSHA
PUSHAD . 292
PUSHF
PUSHFD
PUSHFQ . 293
RCL . 295
RCR . 297
RDFSBASE
RDGSBASE . 299
RDPID . 300
RDPRU . 301
RDRAND . 302
RDSEED . 303
RET (Near) . 304
RET (Far) . 306
ROL . 311
ROR . 313
RORX . 315
SAHF . 317
SAL
SHL . 318
SAR . 321
SARX. 323
SBB . 325
SCAS
SCASB
SCASW

vi Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

SCASD
SCASQ . 327
SETcc. 329
SFENCE . 331
SHL . 332
SHLD. 333
SHLX. 335
SHR . 337
SHRD. 339
SHRX. 341
SLWPCB . 343
STC . 345
STD . 346
STOS
STOSB
STOSW
STOSD
STOSQ. 347
SUB . 349
T1MSKC . 351
TEST . 353
TZCNT. 355
TZMSK . 357
UD0, UD1, UD2 . 359
WRFSBASE
WRGSBASE . 360
XADD . 361
XCHG . 363
XLAT . 365
XLATB . 365
XOR. 366

4 System Instruction Reference .369
ARPL . 371
CLAC. 373
CLGI . 374
CLI. 375
CLTS . 377
CLRSSBSY . 378
HLT . 380
INCSSP . 381
INT 3 . 383
INVD . 386
INVLPG. 387
INVLPGA . 388
INVLPGB . 389
INVPCID . 392
IRET

Contents vii

24594—Rev. 3.32—March 2021 AMD64 Technology

IRETD
IRETQ . 394
LAR . 402
LGDT. 404
LIDT . 406
LLDT . 408
LMSW . 410
LSL . 411
LTR . 413
MONITOR. 415
MOV CRn . 417
MOV DRn . 419
MWAIT . 421
PSMASH . 423
PVALIDATE . 426
RDMSR . 429
RDPKRU . 430
RDPMC . 431
RDSSP . 433
RDTSC . 434
RDTSCP . 436
RMPADJUST . 438
RMPUPDATE . 441
RSM. 445
RSTORSSP . 447
SAVEPREVSSP. 450
. 450
SETSSBSY . 452
SGDT. 454
SIDT. 455
SKINIT . 456
SLDT . 458
SMSW . 460
STAC . 461
STI . 462
STGI . 464
STR . 465
SWAPGS . 466
SYSCALL . 468
SYSENTER . 472
SYSEXIT. 474
SYSRET. 476
TLBSYNC . 480
VERR. 481
VERW . 483
VMLOAD . 485
VMMCALL. 487

viii Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

VMGEXIT. 487
VMRUN . 488
VMSAVE. 493
WBINVD. 495
WBNOINVD . 495
WRMSR . 497
WRPKRU . 499
WRSS . 500
WRUSS . 503

Appendix A Opcode and Operand Encodings .505
A.1 Opcode Maps . 508

Legacy Opcode Maps . 508
3DNow!™ Opcodes . 524
x87 Encodings . 527
rFLAGS Condition Codes for x87 Opcodes . 536
Extended Instruction Opcode Maps. 536

A.2 Operand Encodings . 547
ModRM Operand References . 547
SIB Operand References . 552

Appendix B General-Purpose Instructions in 64-Bit Mode .557
B.1 General Rules for 64-Bit Mode . 557
B.2 Operation and Operand Size in 64-Bit Mode . 558
B.3 Invalid and Reassigned Instructions in 64-Bit Mode . 585
B.4 Instructions with 64-Bit Default Operand Size . 586
B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode . 587
B.6 NOP in 64-Bit Mode . 588
B.7 Segment Override Prefixes in 64-Bit Mode . 588

Appendix C Differences Between Long Mode and Legacy Mode.589

Appendix D Instruction Subsets and CPUID Feature Flags. .591
D.1 Instruction Set Overview . 592
D.2 CPUID Feature Flags Related to Instruction Support . 594

Appendix E Obtaining Processor Information Via the CPUID Instruction597
E.1 Special Notational Conventions . 597
E.2 Standard and Extended Function Numbers . 598
E.3 Standard Feature Function Numbers . 598

Function 0h—Maximum Standard Function Number and Vendor String. 598
Function 1h—Processor and Processor Feature Identifiers. 599
Functions 2h–4h—Reserved . 602
Function 5h—Monitor and MWait Features . 603
Function 6h—Power Management Related Features . 603
Function 7h—Structured Extended Feature Identifiers . 604
Functions 8h–Ah—Reserved. 605
Function Bh — Extended Topology Enumeration . 606
Function Ch—Reserved. 607
Function Dh—Processor Extended State Enumeration . 607

Contents ix

24594—Rev. 3.32—March 2021 AMD64 Technology

Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use 612
E.4 Extended Feature Function Numbers . 612

Function 8000_0000h—Maximum Extended Function Number and Vendor String 612
Function 8000_0001h—Extended Processor and Processor Feature Identifiers. 613
Functions 8000_0002h–8000_0004h—Extended Processor Name String 616
Function 8000_0005h—L1 Cache and TLB Information . 616
Function 8000_0006h—L2 Cache and TLB and L3 Cache Information 618
Function 8000_0007h—Processor Power Management and RAS Capabilities 620
Function 8000_0008h—Processor Capacity Parameters and Extended Feature Identification .

622
Function 8000_0009h—Reserved . 624
Function 8000_000Ah—SVM Features . 624
Functions 8000_000Bh–8000_0018h—Reserved . 626
Function 8000_0019h—TLB Characteristics for 1GB pages . 626
Function 8000_001Ah—Instruction Optimizations . 627
Function 8000_001Bh—Instruction-Based Sampling Capabilities. 629
Function 8000_001Ch—Lightweight Profiling Capabilities. 629
Function 8000_001Dh—Cache Topology Information . 631
Function 8000_001Eh—Processor Topology Information . 633
Function 8000_001Fh—Encrypted Memory Capabilities. 634
Function 8000_0020—Reserved . 636
Function 8000_0021—Extended Feature Identification 2 . 636

E.5 Multiple Processor Calculation . 636
Legacy Method . 636
Extended Method (Recommended) . 637

Appendix F Instruction Effects on RFLAGS .639

Index . 643

x Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

Figures xi

24594—Rev. 3.32—March 2021 AMD64 Technology

Figures

Figure 1-1. Instruction Encoding Syntax. 2

Figure 1-2. An Instruction as Stored in Memory. 5

Figure 1-3. REX Prefix Format . 15

Figure 1-4. ModRM-Byte Format . 17

Figure 1-5. SIB Byte Format . 19

Figure 1-6. Encoding Examples Using REX R, X, and B Bits . 28

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format . 29

Figure 1-8. VEX Two-byte Escape Sequence Format. 33

Figure 2-1. Format of Instruction-Detail Pages . 37

Figure 2-2. General Registers in Legacy and Compatibility Modes . 38

Figure 2-3. General Registers in 64-Bit Mode . 39

Figure 2-4. Segment Registers. 40

Figure 2-5. General-Purpose Data Types . 41

Figure 2-6. System Registers . 42

Figure 2-7. System Data Structures . 43

Figure 2-8. SSE Registers . 44

Figure 2-9. 128-Bit SSE Data Types . 45

Figure 2-10. SSE 256-bit Data Types . 46

Figure 2-11. SSE 256-Bit Data Types (Continued). 47

Figure 2-12. 64-Bit Media Registers . 48

Figure 2-13. 64-Bit Media Data Types . 49

Figure 2-14. x87 Registers. 50

Figure 2-15. x87 Data Types . 51

Figure 2-16. Syntax for Typical Two-Operand Instruction. 53

Figure 3-1. MOVD Instruction Operation . 241

Figure A-1. ModRM-Byte Fields . 517

Figure A-2. ModRM-Byte Format . 547

Figure A-3. SIB Byte Format . 553

Figure D-1. AMD64 ISA Instruction Subsets . 593

xii Figures

AMD64 Technology 24594—Rev. 3.32—March 2021

Tables xiii

24594—Rev. 3.32—March 2021 AMD64 Technology

Tables

Table 1-1. Legacy Instruction Prefixes . 7

Table 1-2. Operand-Size Overrides . 8

Table 1-3. Address-Size Overrides. 9

Table 1-4. Pointer and Count Registers and the Address-Size Prefix . 10

Table 1-5. Segment-Override Prefixes . 11

Table 1-6. REP Prefix Opcodes . 12

Table 1-7. REPE and REPZ Prefix Opcodes . 13

Table 1-8. REPNE and REPNZ Prefix Opcodes . 14

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode . 15

Table 1-10. ModRM.reg and .r/m Field Encodings . 18

Table 1-11. SIB.scale Field Encodings . 19

Table 1-12. SIB.index and .base Field Encodings . 20

Table 1-13. SIB.base encodings for ModRM.r/m = 100b . 20

Table 1-14. Operand Addressing Using ModRM and SIB Bytes . 21

Table 1-15. REX Prefix-Byte Fields . 23

Table 1-16. Encoding for RIP-Relative Addressing. 25

Table 1-17. Special REX Encodings for Registers . 27

Table 1-18. Three-byte Escape Sequence Field Definitions . 30

Table 1-19. VEX.map_select Encoding . 30

Table 1-20. XOP.map_select Encoding . 31

Table 1-21. VEX/XOP.vvvv Encoding . 32

Table 1-22. VEX/XOP.pp Encoding . 32

Table 1-23. VEX Two-byte Escape Sequence Field Definitions . 33

Table 1-24. Fixed Field Values for VEX 2-Byte Format. 33

Table 2-1. Interrupt-Vector Source and Cause. 52

Table 2-2. +rb, +rw, +rd, and +rq Register Value . 57

Table 3-1. Instruction Support Indicated by CPUID Feature Bits . 73

Table 3-2. Processor Vendor Return Values . 167

Table 3-3. Locality References for the Prefetch Instructions. 288

Table 4-1. System Instruction Support Indicated by CPUID Feature Bits. 369

Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h . 509

Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh . 510

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h . 512

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh . 514

xiv Tables

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc . 516

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 . 517

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map . 519

Table A-8. Opcode 01h ModRM Extensions . 520

Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h]
522

Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh] . 522

Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h] . 523

Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh] . 523

Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h . 525

Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh. 526

Table A-15. x87 Opcodes and ModRM Extensions . 528

Table A-16. rFLAGS Condition Codes for FCMOVcc . 536

Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h] . 537

Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued. 538

Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh] . 539

Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h] . 540

Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh] . 541

Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h] . 542

Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh] . 543

Table A-24. VEX Opcode Groups . 544

Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]. 544

Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh] . 545

Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]. 545

Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh] . 546

Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h] . 546

Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh] . 546

Table A-31. XOP Opcode Groups . 546

Table A-32. ModRM reg Field Encoding, 16-Bit Addressing . 548

Table A-33. ModRM Byte Encoding, 16-Bit Addressing. 548

Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing . 550

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing. 551

Table A-36. Addressing Modes: SIB base Field Encoding . 553

Table A-37. Addressing Modes: SIB Byte Encoding . 554

Table B-1. Operations and Operands in 64-Bit Mode . 558

Table B-2. Invalid Instructions in 64-Bit Mode . 585

Table B-3. Reassigned Instructions in 64-Bit Mode. 586

Tables xv

24594—Rev. 3.32—March 2021 AMD64 Technology

Table B-4. Invalid Instructions in Long Mode . 586

Table B-5. Instructions Defaulting to 64-Bit Operand Size . 587

Table C-1. Differences Between Long Mode and Legacy Mode . 589

Table D-1. Feature Flags for Instruction / Instruction Subset Support . 594

Table E-1. CPUID Fn0000_0000_E[D,C,B]X values . 601

Table E-2. CPUID Fn8000_0000_E[D,C,B]X values . 613

Table E-3. L1 Cache and TLB Associativity Field Encodings. 617

Table E-4. L2/L3 Cache and TLB Associativity Field Encoding. 620

Table E-5. LogicalProcessorCount, CmpLegacy, HTT, and NC . 636

Table F-1. Instruction Effects on RFLAGS . 637

xvi Tables

AMD64 Technology 24594—Rev. 3.32—March 2021

Revision History xvii

24594—Rev. 3.32—March 2021 AMD64 Technology

Revision History

Date Revision Description

March 2021 3.32

Chapter 1: Updated Instruction Encoding Syntax and An
Instruction as Stored in Memory figures.

Added content to Summary of Legacy Prefixes section.

Chapter 3: Added content Instruction Support Indicated by
CPUID Feature Bits table.

Added content to LFENCE

Updated note 1 in the Legacy Instruction Prefixes table.

Chapter 4: Added content to the System Instruction Support
Indicated by CPUID Feature Bits table.

Added VMGEXIT instruction.

Added content to WRMSR instruction.

Appendix D: Added content to the Feature Flags for Instruction /
Instruction Subset Support table.

Appendix E: Updated instructions and added instructions to
sections E.3 and E.4: See bold line items.

October 2020 3.31

Chapter 2: Added to pseudocode Definition section. Table 2-1:
Added content.

Chapter 3: Added pseudocode updates.

Chapter 4: Added pseudocode updates. Added 8 new
instructions. Added INVLPGB, TLBSYNC to System Instruction
Support Indicated by CPUID Feature Bits table. Updated
INVLPGB and TLBSYNC description.

Appendix A: Instructions encoding clarifications.

Appendix D: Added new instructions to Feature Flags for
Instruction / Instruction Subset Support table.

Appendix E: Added content to CPUID Fn0000_0007_ECX_x0
Structured Extended Feature Identifiers (ECX=0) table and to
Function Dh—Processor Extended State Enumeration section.
Added content to CPUID Fn8000_0008_EBX Extended Feature
Identifiers, CPUID Fn8000_000A_EDX SVM Feature
Identification, and CPUID Fn8000_001F_EAX tables.

April 2020 3.30

Chapter 4: Updated INVLPG, MOV CRn, and RSM sections.

Chapter 4: Added INVLPGB, INVPCID, RDPKRU, TLBSYNC,
and WRPKRU instructions.

Appendix D: Table D-1. Updated table.

Appendix E: Updated E.3.6, E.4.7, and E.4.9 sections.

xviii Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

April 2020 3.29

Table 2-1: Added content.

Chapter 4: Added PSMASH, PVALIDATE, RMPADJUST, and
RMPUPDATE instructions.

Appendix A: Table A-6, A-7, and A-8: Updated table.

Appendix D: Table D-1: Added content. Removed D.3 section.

Appendix E: Material for new features plus clarifications.

Appendix F: Table F-1: Added content.

September 2019 3.28
Added MCOMMIT instruction. Corrected CPUID function
8000_001Dh description.

July 2019 3.27

Added CLWB, RDPID, RDPRU, and WBNOINVD instructions.
Corrected functional details of BZHI instruction. Corrected SAHF
and LAHF #UD fault details. Corrected RSM reserved-bit
behavioral details.

May 2018 3.26

Modified description of CLFLUSH.

Added clarification that MOVD is referred to in some forms as
MOVQ.

Corrected the operands for VMOVNTDQA .

Updated L2/L3 Cache and Associativity tables with new
encodings over old reserved encodings

Updated CPUID with Nested Virtualization and Virtual GIF
indication bits.

December 2017 3.25 Updated Appendix E.

November 2017 3.24

Modified Mem16int in Section 2.5.1 Mnemonic Syntax

Corrected Opcode for ADCX and ADOX.

Clarified the explanation for Load Far Pointer

Modified the Description for CLAC and STAC

Added clarification to MWAITX.

Added clarifying footnote to Table A-6.

Added CPUID flags for new SVM features.

Added Bit descriptions for CPUID Fn8000_0008_EBX Reserved

Modified SAL1 and SAL count in Appendix F, Table F-1.

Date Revision Description

Revision History xix

24594—Rev. 3.32—March 2021 AMD64 Technology

March 2017 3.23

Added CR0.PE, CR0.PE=1, EFER.LME=0 to Conventions and
Definitions in the Preface.

Modified Note 4 in Table 1-10.

Chapter 3:

Added ADCX, ADOX, CLFLUSHOPT, CLZERO, RDSEED, UD0
and UD1.

Modified CALL (Far).

Moved UD2 and MONITORX, MWAITX, from Chapter 4.

Chapter 4:

Modified RDTSC and RDTSCP.

Added CLAC and STAC.

Appendix A:

Modified Table A-7, Group 11.

Appendix D:

Modified Table D-1 and Added new Feature Flags.

June 2015 3.22 Added MONITORX and MWAITX to Chapter 4.

October 2013 3.21

Added BMI2 instructions to Chapter 3.

Added BZHI to Table F-1 on page 639.

Changed CPUID Fn8000_0001_ECX[25] to reserved.

Changed CPUID Fn8000_0007_EAX and _EDX[11] to reserved.

Added CPUID Fn0000_0006_EDX[ARAT] (bit 2).

May 2013 3.20

Updated Appendix D "Instruction Subsets and CPUID Feature
Flags" on page 591 to make instruction list comprehensive.

Added a new Appendix E "Obtaining Processor Information Via
the CPUID Instruction" on page 597 which describes all defined
processor feature bits. Supersedes and replaces the CPUID
Specification (PID # 25481).

Previous Appendix E "Instruction Effects on RFLAGS"
renumbered as Appendix F.

September
2012

3.19
Corrected the value specified for the most significant nibble of
the encoding for the VPSHAx instructions in Table A-28 on
page 546.

Date Revision Description

xx Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

March 2012 3.18

Added MOVBE instruction reference page to Chapter 3
"General-Purpose Instruction Reference" on page 71.

Added instruction reference pages for the
RDFSBASE/RDGSBASE and WRFSBASE/WRGSBASE
instructions to Chapter 3.

Added opcodes for the instructions to the opcode maps in
Appendix A.

December 2011 3.17

Corrected second byte of VEX C5 escape sequence in
Figure 1-2 on page 5.

Made multiple corrections to the description of register-indirect
addressing in Section 1.4 on page 17.

Corrected mod field value in third row of Figure 1-16 on page 25.

Updated pseudocode definition (see Section 2.5.3 on page 57).

Corrected exception tables for LZCNT and TZCNT instructions.

Added discussion of UD opcodes to introduction of Appendix A.

Provided ommitted definition of “B” used in the specification of
operand types in opcode maps of Appendix A.

Provided numerous corrections to instruction entries in opcode
maps of Appendix A.

Added ymm register mnemonic to Table A-32 on page 548 and
Table A-34 on page 550.

Changed notational convention for indicating addressing modes
in Table A-33 on page 548, Table A-35 on page 551, Table A-36
on page 553, and Table A-37 on page 554; edited footnotes.

September 2011 3.16

Reworked “Instruction Byte Order” section of Chapter 1. See
“Instruction Encoding Overview” on page 1.

Added clarification: Execution of VMRUN is disallowed while in
System Management Mode.

Made wording for BMI and TBM feature flag indication
consistent with other instructions.

Moved BMI and TBM instructions to this volume from Volume 4.

Added instruction reference page for CRC32 Instruction.

Removed one cause of #GP fault from exception table for LAR
and LSL instructions.

Added three-byte, VEX, and XOP opcode maps to Appendix A.

Revised description of RDPMC instruction.

Corrected errors in description of CLFLUSH instruction.

Corrected footnote of Table A-35 on page 551.

Date Revision Description

Revision History xxi

24594—Rev. 3.32—March 2021 AMD64 Technology

November 2009 3.15

Clarified MFENCE serializing behavior.

Added multibyte variant to “NOP” on page 237.

Corrected descriptive text to “CMPXCHG8B CMPXCHG16B” on
page 151.

September 2007 3.14
Added minor clarifications and corrected typographical and
formatting errors.

July 2007 3.13

Added the following instructions: LZCNT, POPCNT, MONITOR,
and MWAIT.

Reformatted information on instruction support indicated by
CPUID feature bits into a table.

Added minor clarifications and corrected typographical and
formatting errors.

September 2006 3.12
Added minor clarifications and corrected typographical and
formatting errors.

December 2005 3.11
Added SVM instructions; added PAUSE instructions; made
factual changes.

January 2005 3.10
Clarified CPUID information in exception tables on instruction
pages. Added information under “CPUID” on page 153. Made
numerous small corrections.

September 2003 3.09
Corrected table of valid descriptor types for LAR and LSL
instructions and made several minor formatting, stylistic and
factual corrections. Clarified several technical definitions.

April 2003 3.08

Corrected description of the operation of flags for RCL, RCR,
ROL, and ROR instructions. Clarified description of the
MOVSXD and IMUL instructions. Corrected operand
specification for the STOS instruction. Corrected opcode of
SETcc, Jcc, instructions. Added thermal control and thermal
monitoring bits to CPUID instruction. Corrected exception tables
for POPF, SFENCE, SUB, XLAT, IRET, LSL, MOV(CRn),
SGDT/SIDT, SMSW, and STI instructions. Corrected many small
typos and incorporated branding terminology.

Date Revision Description

xxii Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

Preface xxiii

24594—Rev. 3.32—March 2021 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMD64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions

• System instructions

• Streaming SIMD Extensions–SSE (includes 128-bit and 256-bit media instructions)

• 64-bit media instructions (MMX™)

• x87 floating-point instructions

Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xxiv Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed
by a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Registers section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)

An instruction exception—in this example, a general-protection exception with error code of 0.

1011b

A binary value—in this example, a 4-bit value.

F0EA_0B02h

A hexadecimal value. Underscore characters may be inserted to improve readability.

128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4

A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE], CR0.PE

Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

Preface xxv

24594—Rev. 3.32—March 2021 AMD64 Technology

CR0[PE] = 1, CR0.PE = 1

Notation indicating that the PE bit of the CR0 register has a value of 1.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER[LME] = 0, EFER.LME = 0

Notation indicating that the LME bit of the EFER register has a value of 0.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxiii for descriptions of the legacy x86 architecture.

128-bit media instructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX™ and 3DNow!™ instruction sets, with some additional instructions from the SSE1 and
SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

xxvi Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte

Eight bits.

clear

To write a bit value of 0. Compare set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL

Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword

Eight words, or 16 bytes, or 128 bits. Also called octword.

Preface xxvii

24594—Rev. 3.32—March 2021 AMD64 Technology

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT

Global descriptor table.

IDT

Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST

The long-mode interrupt-stack table.

xxviii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

IVT

The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxxiii for descriptions of the
legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

LIP

Linear Instruction Pointer. LIP = (CS.base + rIP).

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb

Least-significant bit.

LSB

Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory

Unless otherwise specified, main memory.

Preface xxix

24594—Rev. 3.32—March 2021 AMD64 Technology

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb

Most-significant bit.

MSB

Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media instructions.

octword

Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed

See vector.

PAE

Physical-address extensions.

physical memory

Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack

A portion of a stack segment in memory that is used to link procedures. Also known as a program

xxx Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

stack.

program stack

See procedure stack.

protected mode

A submode of legacy mode.

quadword

Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode

See real mode.

real mode

A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved

Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing

Addressing relative to the 64-bit RIP instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

Preface xxxi

24594—Rev. 3.32—March 2021 AMD64 Technology

shadow stack

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

set

To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD

Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit

A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP

The x87 top-of-stack pointer.

TPR

Task-priority register (CR8).

TSS

Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

xxxii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode

A submode of legacy mode.

word

Two bytes, or 16 bits.

x86

See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn

Control register number n.

CS

Code segment register.

eAX–eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER

Extended features enable register.

eFLAGS

16-bit or 32-bit flags register. Compare rFLAGS.

Preface xxxiii

24594—Rev. 3.32—March 2021 AMD64 Technology

EFLAGS

32-bit (extended) flags register.

eIP

16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS

16-bit flags register.

GDTR

Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR

Interrupt descriptor table register.

IP

16-bit instruction-pointer register.

LDTR

Local descriptor table register.

MSR

Model-specific register.

r8–r15

The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX

64-bit version of the EAX register.

xxxiv Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

RBP

64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI

64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI

64-bit version of the ESI register.

RSP

64-bit version of the ESP register.

SP

Stack pointer register.

SS

Stack segment register.

SSP

Shadow-stack pointer register.

TPR

Task priority register, a new register introduced in the AMD64 architecture to speed interrupt
management.

Preface xxxv

24594—Rev. 3.32—March 2021 AMD64 Technology

TR

Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

xxxvi Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

• AMD, BIOS and Kernel Developer's Guide (BKDG) for particular hardware implementations of
older families of the AMD64 architecture.

• AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

Preface xxxvii

24594—Rev. 3.32—March 2021 AMD64 Technology

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

xxxviii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

Instruction Encoding 1

24594—Rev. 3.32—March 2021 AMD64 Technology

1 Instruction Encoding

AMD64 technology instructions are encoded as byte strings of variable length. The order and meaning
of each byte of an instruction’s encoding is specified by the architecture. Fields within the encoding
specify the instruction’s basic operation, the location of the one or more source operands, and the
destination of the result of the operation. Data to be used in the execution of the instruction or the
computation of addresses for memory-based operands may also be included. This section describes the
general format and parameters used by all instructions.

For information on the specific encoding(s) for each instruction, see:

• Chapter 3, “General-Purpose Instruction Reference.”

• Chapter 4, “System Instruction Reference.”

• “SSE Instruction Reference” in Volume 4.

• “64-Bit Media Instruction Reference” in Volume 5.

• “x87 Floating-Point Instruction Reference” in Volume 5.

For information on determining the instruction form and operands specified by a given binary
encoding, see Appendix A.

1.1 Instruction Encoding Overview

An instruction is encoded as a string between one and 15 bytes in length. The entire sequence of bytes
that represents an instruction, including the basic operation, the location of source and destination
operands, any operation modifiers, and any immediate and/or displacement values, is called the
instruction encoding.The following sections discuss instruction encoding syntax and representation in
memory.

1.1.1 Encoding Syntax

Figure 1-1 provides a schematic representation of the encoding syntax of an instruction.

2 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 1-1. Instruction Encoding Syntax

Each square in this diagram represents an instruction byte of a particular type and function. To
understand the diagram, follow the connecting paths in the direction indicated by the arrows from
“Start” to “End.” The squares passed through as the graph is traversed indicate the order and number of

REX
prefix¹

Start legacy
prefix

Primary
opcode

map

0Fh
escape

0Fh
escape

38h
escape

3Ah
escape

Second.
opcode

map

VEX
opcode
map 1

VEX
prefix

R.vvvv
.L.pp

C5 2-byte sequence

C4 3-byte sequence

VEX
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=01h
map=02h

map=03h

0F_38h
opcode

map

VEX
opcode
map 2

0F_3Ah
opcode

map

VEX
opcode
map 3

XOP
opcode
map 8

XOP
opcode
map 9

XOP
opcode
map A

XOP
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=09h

map=0Ah

map=08h

≤ additional

3DNow!

VEX or XOP

NOTES:
1. REX prefix is not allowed in extended

instruction encodings that employ the
VEX or XOP prefixes

2. map = VEX/XOP.map_select field
3. The total number of bytes in an

instruction encoding must be less than
or equal to 15

4. Instructions that encode an 8-byte
immediate field do not use a displace-
ment field and vice versa.

End

ModRM SIB
1,2,4,8

byte
Disp

1,2,4,8
byte

immed

3DNow!
opcode

map

note 4

Instruction Encoding 3

24594—Rev. 3.32—March 2021 AMD64 Technology

bytes used to encode the instruction. Note that the path shown above the legacy prefix byte loops back
indicating that up to four additional prefix bytes may be used in the encoding of a single instruction.
Branches indicate points in the syntax where alternate semantics are employed based on the instruction
being encoded. The “VEX or XOP” gate across the path leading down to the VEX prefix and XOP
prefix blocks means that only extended instructions employing the VEX or XOP prefixes use this
particular branch of the syntax diagram. This diagram will be further explained in the sections that
follow.

1.1.1.1 Legacy Prefixes

As shown in the figure, an instruction optionally begins with up to five legacy prefixes. These prefixes
are described in “Summary of Legacy Prefixes” on page 6. The legacy prefixes modify an instruction’s
default address size, operand size, or segment, or they invoke a special function such as modification
of the opcode, atomic bus-locking, or repetition.

In the encoding of most SSE instructions, a legacy operand-size or repeat prefix is repurposed to
modify the opcode. For the extended encodings utilizing the XOP or VEX prefixes, these prefixes are
not allowed.

1.1.1.2 REX Prefix

Following the optional legacy prefix or prefixes, the REX prefix can be used in 64-bit mode to access
the AMD64 register number and size extensions. Refer to the diagram in “Application-Programming
Register Set” in Volume 1 for an illustration of these facilities. If a REX prefix is used, it must
immediately precede the opcode byte or the first byte of a legacy escape sequence. The REX prefix is
not allowed in extended instruction encodings using the VEX or XOP encoding escape prefixes.
Violating this restriction results in an #UD exception.

1.1.1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. Every instruction
requires an opcode. The correspondence between the binary value of an opcode and the operation it
represents is presented in a table called an opcode map. Because it is indexed by an 8-bit value, an
opcode map has 256 entries. Since there are more than 256 instructions defined by the architecture,
multiple different opcode maps must be defined and the selection of these alternate opcode maps must
be encoded in the instruction. Escape sequences provide this access to alternate opcode maps.

If there are no opcode escapes, the primary (“one-byte”) opcode map is used. In the figure this is the
path pointing from the REX Prefix block to the Primary opcode map block.

Section , “Primary Opcode Map” of Appendix A provides details concerning this opcode map.

1.1.1.4 Escape Sequences

Escape sequences allow access to alternate opcode maps that are distinct from the primary opcode
map. Escape sequences may be one, two, or three bytes in length and begin with a unique byte value
designated for this purpose in the primary opcode map. Escape sequences are of two distinct types:

4 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

legacy escape sequences and extended escape sequences. The legacy escape sequences will be covered
here. For more details on the extended escape sequences, see “VEX and XOP Prefixes” on page 16.

Legacy Escape Sequences

The legacy syntax allows one 1-byte escape sequence (0Fh), and three 2-byte escape sequences (0Fh,
0Fh; 0Fh, 38h; and 0Fh, 3Ah). The 1-byte legacy escape sequence 0Fh selects the secondary (“two-
byte”) opcode map. In legacy terminology, the sequence [0Fh, opcode] is called a two-byte opcode.
See Section , “Secondary Opcode Map” of Appendix A for details concerning this opcode map.

The 2-byte escape sequence 0F, 0Fh selects the 3DNow! opcode map which is indexed using an
immediate byte rather than an opcode byte. In this case, the byte following the escape sequence is the
ModRM byte instead of the opcode byte. In Figure 1-1 this is indicated by the path labeled “3DNow!”
leaving the second 0Fh escape block. Details concerning the 3DNow! opcode map are presented in
Section A.1.2, “3DNow!™ Opcodes” of Appendix A.

The 2-byte escape sequences [0Fh, 38h] and [0Fh, 3Ah] respectively select the 0F_38h opcode map
and the 0F_3Ah opcode map. These are used primarily to encode SSE instructions and are described in
Section , “0F_38h and 0F_3Ah Opcode Maps” of Appendix A.

1.1.1.5 ModRM and SIB Bytes

The opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The ModRM byte may also be followed by a scale-index-base (SIB) byte,
which is used to specify indexed register-indirect forms of memory addressing. The ModRM and SIB
bytes are described in “ModRM and SIB Bytes” on page 17. Their legacy functions can be augmented
by the REX prefix (see “REX Prefix” on page 14) or the VEX and XOP escape sequences (See “VEX
and XOP Prefixes” on page 16).

1.1.1.6 Displacement and Immediate Fields

The instruction encoding may end with a 1-, 2-, or 4-byte displacement field and/or a 1-, 2-, or 4-byte
immediate field depending on the instruction and/or the addressing mode. Specific instructions also
allow either an 8-byte immediate field or an 8-byte displacement field.

1.1.2 Representation in Memory

Instructions are stored in memory in little-endian order. The first byte of an instruction is stored at the
lowest memory address, as shown in Figure 1-2 below. Since instructions are strings of bytes, they
may start at any memory address. The total instruction length must be less than or equal to 15. If this
limit is exceeded, a general-protection exception results.

Instruction Encoding 5

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 1-2. An Instruction as Stored in Memory

1.2 Instruction Prefixes

Instruction prefixes are of two types: instruction modifier prefixes and encoding escape prefixes.
Instruction modifier prefixes can change the operation of the instruction (including causing its
execution to repeat), change its operand types, specify an alternate operand size, augment register
specification, or even change the interpretation of the opcode byte.

The instruction modifier prefixes comprise the legacy prefixes and the REX prefix. The legacy
prefixes are discussed in the next section. The REX prefix is discussed in “REX Prefix” on page 14.

Encoding escape prefixes, on the other hand, signal that the two or three bytes that follow obey a
different encoding syntax. As a group, the encoding escape prefix and its subsequent bytes constitute a
multi-byte escape sequence. These multi-byte escape sequences perform functions similar to that of

‡ optional, with most instructions

≤ 15 Bytes

7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode
Escape*
Escape*

REX¹
Legacy Prefix

Legacy Prefix

Legacy Prefix

Legacy Prefix
7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode

W.vvvv.L.pp
RXB.map_select

VEX/XOP
Legacy Prefix³
Legacy Prefix³
Legacy Prefix³

≤ 4≤

†1,2,4, or 8†

1,2,4, or 8

Highest
Address

Lowest
Address

Legacy encoding including
optional REX Prefix

Extended encoding
using VEX/XOP²

not present for VEX C5
R.vvvv.L.pp for VEX C5

* optional, based on instruction
† optional, based addressing mode

Legacy Prefix³
‡

 see note 4

Notes:
¹ Available only in 64-Bit Mode
² Available only in Long or Protected Mode
³ F0, F2, F3, and 66 prefixes not allowed
 Instructions that specify an 8-byte immediate field do
not include a displacement field and vice versa.
4

6 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

the instruction modifier prefixes, but they also provide a means to directly specify alternate opcode
maps.

The currently defined encoding escape prefixes are the VEX and XOP prefixes. They are discussed
further in the section entitled “VEX and XOP Prefixes” on page 16.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 7 shows the legacy prefixes. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. An instruction encoding may include a maximum of one
prefix from each of the five groups. The legacy prefixes can appear in any order within the position
shown in Figure 1-1 for legacy prefixes. The result of using multiple prefixes from a single group is
undefined.

Some of the restrictions on legacy prefixes are:

• Operand-Size Override—This prefix only affects the operand size for general-purpose instructions
or for other instructions whose source or destination is a general-pupose register. When used in the
encoding of SIMD and some other instructions, this prefix is repurposed to modify the opcode.

• Address-Size Override—This prefix only affects the address size of memory operands.

• Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are
ignored.

• LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.

• Repeat Prefixes—These prefixes affect only certain string instructions. When used in the encoding
of SIMD and some other instructions, these prefixes are repurposed to modify the opcode.

Note that Lock and Repeat prefixes are in effect mutually exclusive when used as instruction
modifiers, in that there are no instructions for which both are meaningful.

Instruction Encoding 7

24594—Rev. 3.32—March 2021 AMD64 Technology

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

Table 1-1. Legacy Instruction Prefixes

Prefix Group1 Mnemonic
Prefix

Byte (Hex)
Description

Operand-Size
Override

none 662 Changes the default operand size of a memory or
register operand, as shown in Table 1-2 on page 8.

Address-Size Override none 673 Changes the default address size of a memory operand,
as shown in Table 1-3 on page 9.

Segment Override

CS 2E4 Forces use of the current CS segment for memory
operands.

DS 3E4 Forces use of the current DS segment for memory
operands.

ES 264 Forces use of the current ES segment for memory
operands.

FS 64
Forces use of the current FS segment for memory
operands.

GS 65
Forces use of the current GS segment for memory
operands.

SS 364 Forces use of the current SS segment for memory
operands.

Lock LOCK F05 Causes certain kinds of memory read-modify-write
instructions to occur atomically.

Repeat

REP

F36

Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is cleared to 0.

REPNE or
REPNZ F26

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is set to 1.

Notes:
1. A single instruction should include no more than one prefix from each of the Override prefix groups plus either a

Lock or Repeat prefix, when used as instruction modifiers.
2. When used in the encoding of SIMD and some other instructions, this prefix is repurposed to extend the opcode.

The prefix is ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the
Operand-Size Prefix” on page 8.

3. This prefix also changes the size of the RCX register when used as an implied count register.
4. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
5. The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 11.
6. This prefix should be used only with compare-string and scan-string instructions. When used in the encoding of

SIMD and some other instructions, the prefix is repurposed to extend the opcode.

8 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENV, FNSTENV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 14) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

• Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.

• All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack
Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENV, FNSTENV, FNSAVE, and FRSTOR

Table 1-2. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix1

66h REX.W3

Long
Mode

64-Bit
Mode

322

64 don’t care yes

32 no no

16 yes no

Compatibility
Mode

32
32 no

Not Appli-
cable

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no

16 yes

16
32 yes

16 no

Notes:
1. A “no’ indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand

sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefix” on page 14.

Instruction Encoding 9

24594—Rev. 3.32—March 2021 AMD64 Technology

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

For other instructions (mostly SIMD instructions) the 66h, F2h, and F3h prefixes are used as opcode
extensions to extend the instruction encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode maps.

Operand-Size and REX Prefixes. The W bit field of the REX prefix takes precedence over the 66h
prefix. See “REX.W: Operand width (Bit 3)” on page 23 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the
default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor

Table 1-3. Address-Size Overrides

Operating Mode
Default

Address
Size (Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1

Required?

Long Mode

64-Bit
Mode

64
64 no

32 yes

Compatibility
Mode

32
32 no

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no

16 yes

16
32 yes

16 no

Notes:
1. A “no” indicates that the default address size is used.

10 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Instruction

Pointer or Count Register

16-Bit
Address Size

32-Bit
Address Size

64-Bit
Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare
Strings

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

INS, INSB, INSW, INSD—
Input String

DI, CX EDI, ECX RDI, RCX

JCXZ, JECXZ, JRCXZ—
Jump on CX/ECX/RCX Zero

CX ECX RCX

LODS, LODSB, LODSW,
LODSD, LODSQ—Load
String

SI, CX ESI, ECX RSI, RCX

LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop

CX ECX RCX

MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move
String

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

OUTS, OUTSB, OUTSW,
OUTSD—Output String

SI, CX ESI, ECX RSI, RCX

REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes

CX ECX RCX

SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan
String

DI, CX EDI, ECX RDI, RCX

STOS, STOSB, STOSW,
STOSD, STOSQ—Store
String

DI, CX EDI, ECX RDI, RCX

XLAT, XLATB—Table Look-up
Translation

BX EBX RBX

Instruction Encoding 11

24594—Rev. 3.32—March 2021 AMD64 Technology

for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

• Instructions that Reference a Non-Stack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

• String Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

• Instructions that Reference the Stack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS or GS prefix causes their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

Table 1-5. Segment-Override Prefixes

Mnemonic
Prefix Byte

(Hex)
Description

CS1 2E Forces use of current CS segment for memory operands.

DS1 3E Forces use of current DS segment for memory operands.

ES1 26 Forces use of current ES segment for memory operands.

FS 64 Forces use of current FS segment for memory operands.

GS 65 Forces use of current GS segment for memory operands.

SS1 36 Forces use of current SS segment for memory operands.

Notes:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

12 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 10.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP
prefix opcodes.

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX

REP INSB
F3 6C

REP INS reg/mem16/32, DX

REP INSW

REP INSD

F3 6D

REP LODS mem8

REP LODSB
F3 AC

REP LODS mem16/32/64

REP LODSW

REP LODSD

REP LODSQ

F3 AD

REP MOVS mem8, mem8

REP MOVSB
F3 A4

REP MOVS mem16/32/64, mem16/32/64

REP MOVSW

REP MOVSD

REP MOVSQ

F3 A5

REP OUTS DX, reg/mem8

REP OUTSB
F3 6E

Instruction Encoding 13

24594—Rev. 3.32—March 2021 AMD64 Technology

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 14 shows the valid REPNE and
REPNZ prefix opcodes.

REP OUTS DX, reg/mem16/32

REP OUTSW

REP OUTSD

F3 6F

REP STOS mem8

REP STOSB
F3 AA

REP STOS mem16/32/64

REP STOSW

REP STOSD

REP STOSQ

F3 AB

Table 1-7. REPE and REPZ Prefix Opcodes

Mnemonic Opcode

REPx CMPS mem8, mem8

REPx CMPSB
F3 A6

REPx CMPS mem16/32/64, mem16/32/64

REPx CMPSW

REPx CMPSD

REPx CMPSQ

F3 A7

REPx SCAS mem8

REPx SCASB
F3 AE

REPx SCAS mem16/32/64

REPx SCASW

REPx SCASD

REPx SCASQ

F3 AF

Table 1-6. REP Prefix Opcodes (continued)

Mnemonic Opcode

14 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8 above. For other instructions (mostly SIMD
instructions) the 66h, F2h, and F3h prefixes are used as instruction modifiers to extend the instruction
encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode maps.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have
a setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by
substituting a simple loop to move or store the data. Repeated string instructions can be expanded into
equivalent sequences of inline loads and stores or a sequence of stores can be used to emulate a REP
STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF = 1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefix

The REX prefix, available in 64-bit mode, enables use of the AMD64 register and operand size
extensions. Unlike the legacy instruction modification prefixes, REX is not a single unique value, but
occupies a range (40h to 4Fh). Figure 1-1 on page 2 shows how the REX prefix fits within the
encoding syntax of instructions.

The REX prefix enables the following features in 64-bit mode:

• Use of the extended GPR (Figure 2-3 on page 39) and YMM/XMM registers (Figure 2-8 on
page 44).

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8

REPNx CMPSB
F2 A6

REPNx CMPS mem16/32/64, mem16/32/64

REPNx CMPSW

REPNx CMPSD

REPNx CMPSQ

F2 A7

REPNx SCAS mem8

REPNx SCASB
F2 AE

REPNx SCAS mem16/32/64

REPNx SCASW

REPNx SCASD

REPNx SCASQ

F2 AF

Instruction Encoding 15

24594—Rev. 3.32—March 2021 AMD64 Technology

• Use of the 64-bit operand size when accessing GPRs.

• Use of the extended control and debug registers, as described in Section 2.4 “Registers” in
Volume 2.

• Use of the uniform byte registers (AL–R15).

REX contains five fields. The upper nibble is unique to the REX prefix and identifies it is as such. The
lower nibble is divided into four 1-bit fields (W, R, X, and B). See below for a discussion of these
fields.Figure 1-3 below shows the format of the REX prefix. Since each bit of the lower nibble can be
a 1 or a 0, REX spans one full row of the primary opcode map occupying entries 40h through 4Fh.

Figure 1-3. REX Prefix Format

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or YMM/XMM registers. A few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These instructions are listed in
Table 1-9 below.

An instruction may have only one REX prefix which must immediately precede the opcode or first
escape byte in the instruction encoding. The use of a REX prefix in an instruction that does not access
an extended register is ignored. The instruction-size limit of 15 bytes applies to instructions that
contain a REX prefix.

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jcc POP FS

JrCXZ POP GS

JMP (Near) POPF, POPFD, POPFQ

LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LOOP PUSH FS

LOOPcc PUSH GS

LTR PUSHF, PUSHFD, PUSHFQ

MOV CRn RET (Near)

MOV DRn

v3_REX_byte_format.eps

01234567
W R X B4

16 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Implications for INC and DEC Instructions

The REX prefix values are taken from the 16 single-byte INC and DEC instructions, one for each of
the eight legacy GPRs. Therefore, these single-byte opcodes for INC and DEC are not available in 64-
bit mode, although they are available in legacy and compatibility modes. The functionality of these
INC and DEC instructions is still available in 64-bit mode, however, using the ModRM forms of those
instructions (opcodes FF /0 and FF /1).

1.2.8 VEX and XOP Prefixes

The extended instruction encoding syntax, available in protected and long modes, provides one 2-byte
and three 3-byte escape sequences introduced by either the VEX or XOP prefixes. These multi-byte
sequences not only select opcode maps, they also provide instruction modifiers similar to, but in lieu
of, the REX prefix.

The 2-byte escape sequence initiated by the VEX C5h prefix implies a map_select encoding of 1. The
three-byte escape sequences, initiated by the VEX C4h prefix or the XOP (8Fh) prefix, select the target
opcode map explicitly via the VEX/XOP.map_select field. The five-bit VEX.map_select field allows
the selection of one of 31 different opcode maps (opcode map 00h is reserved). The XOP.map_select
field is restricted to the range 08h – 1Fh and thus can only select one of 24 different opcode maps.

The VEX and XOP escape sequences contain fields that extend register addressing to a total of 16,
increase the operand specification capability to four operands, and modify the instruction operation.

The extended SSE instruction subsets AVX, AES, CLMU, FMA, FMA4, and XOP and a few non-SSE
instructions utilize the extended encoding syntax. See “Encoding Using the VEX and XOP Prefixes”
on page 29 for details on the encoding of the two- and three-byte extended escape sequences.

1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. In some cases, it also
specifies the operands for the instruction. Every instruction requires an opcode. The correspondence
between the binary value of the opcode and the operation it represents is defined by a table called an
opcode map. As discussed in the previous sections, the legacy prefixes 66h, F2h, and F3h and other
fields within the instruction encoding may be used to modify the operation encoded by the opcode.

The affect of the presence of a 66h, F2h, or F3h prefix on the operation performed by the opcode is
represented in the opcode map by additional rows in the table indexed by the applicable prefix. The 3-
bit reg and r/m fields of the ModRM byte (“ModRM and SIB Bytes” on page 17) are used as well in
the encoding of certain instructions. This is represented in the opcode maps via instruction group
tables that detail the modifications represented via the extra encoding bits. See Section A.1, “Opcode
Maps” of Appendix A for examples.

Even though each instruction has a unique opcode map and opcode, assemblers often support multiple
alternate mnemonics for the same instruction to improve the readability of assembly language code.

Instruction Encoding 17

24594—Rev. 3.32—March 2021 AMD64 Technology

The 64-bit floating-point 3DNow! instructions utilize the two-byte escape sequence 0Fh, 0Fh to select
the 3DNow! opcode map. For these instructions the opcode is encoded in the immediate field at the
end of the instruction encoding.

For details on how the opcode byte encodes the basic operation for specifc instructions, see Section
A.1, “Opcode Maps” of Appendix A

1.4 ModRM and SIB Bytes

The ModRM byte is optional depending on the instruction. When present, it follows the opcode and is
used to specify:

• two register-based operands, or

• one register-based operand and a second memory-based operand and an addressing mode.

In the encoding of some instructions, fields within the ModRM byte are repurposed to provide
additional opcode bits used to define the instruction’s function.

The ModRM byte is partitioned into three fields—mod, reg, and r/m. Normally the reg field specifies a
register-based operand and the mod and r/m fields used together specify a second operand that is either
register-based or memory-based. The addressing mode is also specified when the operand is memory-
based.

In 64-bit mode, the REX.R and REX.B bits augment the reg and r/m fields respectively allowing the
specification of twice the number of registers.

1.4.1 ModRM Byte Format

Figure 1-4 below shows the format of a ModRM byte.

Figure 1-4. ModRM-Byte Format

Depending on the addressing mode, the SIB byte may appear after the ModRM byte. SIB is used in the
specification of various forms of indexed register-indirect addressing. See the following section for
details.

mod

REX.R, VEX.R or XOP.R
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

reg r/m ModRM
01234567

18 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

ModRM.mod (Bits[7:6]). The mod field is used with the r/m field to specify the addressing mode for
an operand. ModRM.mod = 11b specifies the register-direct addressing mode. In the register-direct
mode, the operand is held in the specified register. ModRM.mod values less than 11b specify register-
indirect addressing modes. In register-indirect addressing modes, values held in registers along with an
optional displacement specified in the instruction encoding are used to calculate the address of a
memory-based operand. Other encodings of the 5 bits {mod, r/m} are discussed below.

ModRM.reg (Bits[5:3]). The reg field is used to specify a register-based operand, although for some
instructions, this field is used to extend the operation encoding. The encodings for this field are shown
in Table 1-10 below.

ModRM.r/m (Bits[2:0]). As stated above, the r/m field is used in combination with the mod field to
encode 32 different operand specifications (See Table 1-14 on page 21). The encodings for this field
are shown in Table 1-10 below.

Similar to the reg field, r/m is used in some instructions to extend the operation encoding.

1.4.2 SIB Byte Format

The SIB byte has three fields—scale, index, and base—that define the scale factor, index-register
number, and base-register number for the 32-bit and 64-bit indexed register-indirect addressing
modes.

Table 1-10. ModRM.reg and .r/m Field Encodings

Encoded value
(binary) ModRM.reg1 ModRM.r/m (mod = 11b)1

ModRM.r/m

(mod ≠ 11b)2

000 rAX, MMX0, XMM0, YMM0 rAX, MMX0, XMM0, YMM0 [rAX]

001 rCX, MMX1, XMM1, YMM1 rCX, MMX1, XMM1, YMM1 [rCX]

010 rDX, MMX2, XMM2, YMM2 rDX, MMX2, XMM2, YMM2 [rDX]

011 rBX, MMX3, XMM3, YMM3 rBX, MMX3, XMM3, YMM3 [rBX]

100 AH, rSP, MMX4, XMM4, YMM4 AH, rSP, MMX4, XMM4, YMM4 SIB3

101 CH, rBP, MMX5, XMM5, YMM5 CH, rBP, MMX5, XMM5, YMM5 [rBP]4

110 DH, rSI, MMX6, XMM6, YMM6 DH, rSI, MMX6, XMM6, YMM6 [rSI]

111 BH, rDI, MMX7, XMM7, YMM7 BH, rDI, MMX7, XMM7, YMM7 [rDI]

Notes:
1. Specific register used is instruction-dependent.
2. mod = 01 and mod = 10 include an offset specified by the instruction displacement field.

The notation [*] signifies that the specified register holds the address of the operand.
3. Indexed register-indirect addressing. SIB byte follows ModRM byte. See following section for SIB encoding.
4. For mod = 00b , r/m = 101b signifies absolute (displacement-only) addressing in 32-bit mode or RIP-relative

addressing in 64-bit mode, where the rBP register is not used. For mod = [01b, 10b], r/m = 101b specifies
the base + offset addressing mode with [rBP] as the base.

Instruction Encoding 19

24594—Rev. 3.32—March 2021 AMD64 Technology

The basic formula for computing the effective address of a memory-based operand using the indexed
register-indirect address modes is:

effective_address = scale * index + base + offset

Specific variants of this addressing mode set one or more elements of the sum to zero.

Figure 1-5 below shows the format of the SIB byte.

Figure 1-5. SIB Byte Format

SIB.scale (Bits[7:6]). The scale field is used to specify the scale factor used in computing the
scale*index portion of the effective address. In normal usage scale represents the size of data elements
in an array expressed in number of bytes. SIB.scale is encoded as shown in Table 1-11 below.

SIB.index (Bits[5:3]). The index field is used to specify the register containing the index portion of
the indexed register-indirect effective address. SIB.index is encoded as shown in Table 1-12 below.

SIB.base (Bits[2:0]). The base field is used to specify the register containing the base address
portion of the indexed register-indirect effective address. SIB.base is encoded as shown in Table 1-12
below.

Table 1-11. SIB.scale Field Encodings

Encoded value
(binary)

scale
factor

00 1

01 2

10 4

11 8

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

20 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

More discussion of operand addressing follows in the next two sections.

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes

The mod and r/m fields of the ModRM byte provide a total of five bits used to encode 32 operand
specification and memory addressing modes. Table 1-14 below shows these encodings.

Table 1-12. SIB.index and .base Field Encodings

Encoded value
(binary)

SIB.index SIB.base

000 [rAX] [rAX]

001 [rCX] [rCX]

010 [rDX] [rDX]

011 [rBX] [rBX]

100 (none)1 [rSP]

101 [rBP] [rBP], (none)2

110 [rSI] DH, [rSI]

111 [rDI] BH, [rDI]

Notes:
1. Register specification is null. The scale*index portion of the indexed register-indirect effec-

tive address is set to 0.
2. If ModRM.mod = 00b, the register specification is null. The base portion of the indexed reg-

ister-indirect effective address is set to 0. Otherwise, base encodes the rBP register as
the source of the base address used in the effective address calculation.

Table 1-13. SIB.base encodings for ModRM.r/m = 100b

SIB base Field

mod 000 001 010 011 100 101 110 111

00

[rAX] [rCX] [rDX] [rBX] [rSP]

disp32

[rSI] [rDI]01 [rBP]+disp8

10 [rBP]+disp32

11 (not applicable)

Instruction Encoding 21

24594—Rev. 3.32—March 2021 AMD64 Technology

Table 1-14. Operand Addressing Using ModRM and SIB Bytes

ModRM.mod ModRM.r/m Register / Effective Address

00

000 [rAX]

001 [rCX]

010 [rDX]

011 [rBX]

100 SIB1

101 disp32

110 [rSI]

111 [rDI]

01

000 [rAX]+disp8

001 [rCX]+disp8

010 [rDX]+disp8

011 [rBX]+disp8

100 SIB+disp82

101 [rBP]+disp8

110 [rSI]+disp8

111 [rDI]+disp8

10

000 [rAX]+disp32

001 [rCX]+disp32

010 [rDX]+disp32

011 [rBX]+disp32

100 SIB+disp323

101 [rBP]+disp32

110 [rSI]+disp32

111 [rDI]+disp32

Notes:
0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

22 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Note that the addressing mode mod = 11b is a register-direct mode, that is, the operand is contained in
the specified register, while the modes mod = [00b:10b] specify different addressing modes for a
memory-based operand.

For mod = 11b, the register containing the operand is specified by the r/m field. For the other modes
(mod = [00b:10b]), the mod and r/m fields are combined to specify the addressing mode for the
memory-based operand. Most are register-indirect addressing modes meaning that the address of the
memory-based operand is contained in the register specified by r/m. For these register-indirect modes,
mod = 01b and mod = 10b include an offset encoded in the displacement field of the instruction.

The encodings {mod ≠ 11b, r/m = 100b} specify the indexed register-indirect addressing mode in
which the target address is computed using a combination of values stored in registers and a scale
factor encoded directly in the SIB byte. For these addressing modes the effective address is given by
the formula:

effective_address = scale * index + base + offset

Scale is encoded in SIB.scale field. Index is contained in the register specified by SIB.index field and
base is contained in the register specified by SIB.base field. Offset is encoded in the displacement field
of the instruction using either one or four bytes.

If {mod, r/m} = 00100b, the offset portion of the formula is set to 0. For {mod, r/m} = 01100b and
{mod, r/m} =10100b, offset is encoded in the one- or 4-byte displacement field of the instruction.

Finally, the encoding {mod, r/m} = 00101b specifies an absolute addressing mode. In this mode, the
address is provided directly in the instruction encoding using a 4-byte displacement field. In 64-bit
mode this addressing mode is changed to RIP-relative (see “RIP-Relative Addressing” on page 24).

11

000 AL/rAX/MMX0/XMM0/YMM0

001 CL/rCX/MMX1/XMM1/YMM1

010 DL/rDX/MMX2/XMM2/YMM2

011 BL/rBX/MMX3/XMM3/YMM3

100 AH/SPL/rSP/MMX4/XMM4/YMM4

101 CH/BPL/rBP/MMX5/XMM5/YMM5

110 DH/SIL/rSI/MMX6/XMM6/YMM6

111 BH/DIL/rDI/MMX7/XMM7/YMM7

Table 1-14. Operand Addressing Using ModRM and SIB Bytes (continued)

ModRM.mod ModRM.r/m Register / Effective Address

Notes:
0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

Instruction Encoding 23

24594—Rev. 3.32—March 2021 AMD64 Technology

1.4.4 Operand Addressing in 64-bit Mode

AMD64 architecture doubles the number of GPRs and increases their width to 64-bits. It also doubles
the number of YMM/XMM registers. In order to support the specification of register operands
contained in the eight additional GPRs or YMM/XMM registers and to make the additional GPRs
available to hold addresses to be used in the addressing modes, the REX prefix provides the R, X, and
B bit fields to extend the reg, r/m, index, and base fields of the ModRM and SIB bytes in the various
operand addressing modes to four bits. A fourth REX bit field (W) allows instruction encodings to
specify a 64-bit operand size.

Table 1-15 below and the sections that follow describe each of these bit fields.

REX.W: Operand width (Bit 3). Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size override prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the W bit set to 1, the 66h prefix is
ignored. However, if a 66h prefix is used together with a REX prefix that has the W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register field extension (Bit 2). The REX.R bit adds a 1-bit extension (in the most
significant bit position) to the ModRM.reg field when that field encodes a GPR, YMM/XMM, control,
or debug register. REX.R does not modify ModRM.reg when that field specifies other registers or is
used to extend the opcode. REX.R is ignored in such cases.

REX.X: Index field extension (Bit 1). The REX.X bit adds a 1-bit (msb) extension to the SIB.index
field. See “ModRM and SIB Bytes” on page 17.

Table 1-15. REX Prefix-Byte Fields

Mnemonic Bit Position(s) Definition

— 7:4 0100 (4h)

REX.W 3
0 = Default operand size
1 = 64-bit operand size

REX.R 2
1-bit (msb) extension of the ModRM reg

field1, permitting access to 16 registers.

REX.X 1 1-bit (msb) extension of the SIB index field1,
permitting access to 16 registers.

REX.B 0
1-bit (msb) extension of the ModRM r/m

field1, SIB base field1, or opcode reg field,
permitting access to 16 registers.

Notes:
1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on

page 17.

24 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

REX.B: Base field extension (Bit 0). The REX.B bit adds a 1-bit (msb) extension to either the
ModRM.r/m field to specify a GPR or XMM register, or to the SIB.base field to specify a GPR. (See
Table 2-2 on page 56 for more about the B bit.)

1.5 Displacement Bytes

A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit
RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of 2 Gbytes from the RIP.

Instruction Encoding 25

24594—Rev. 3.32—March 2021 AMD64 Technology

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.7.1 Encoding

Table 1-16 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of
32-bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM disp32 (32-bit displacement) encoding ({mod,r/m} =
00101b) is redefined to be RIP + disp32 rather than displacement-only.

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the r/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B = 1, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 9) does not disable RIP-relative
addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

Table 1-16. Encoding for RIP-Relative Addressing

ModRM SIB
Legacy and

Compatibility Modes
64-bit Mode

Additional 64-bit
Implications

• mod = 00

• r/m = 101
not present disp32 RIP + disp32

Zero-based (normal)
displacement addressing
must use SIB form (see
next row).

• mod = 00

• r/m = 1001

• base = 1012

• index = 1003

• scale = xx

disp32 Same as Legacy None

Notes:
1. Encodes the indexed register-indirect addressing mode with 32-bit offset.
2. Base register specification is null (base portion of effective address calculation is set to 0)
3. index register specification is null (scale*index portion of effective address calculation is set to 0)

26 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

1.8 Encoding Considerations Using REX

Figure 1-6 on page 28 shows four examples of how the R, X, and B bits of the REX prefix are
concatenated with fields from the ModRM byte, SIB byte, and opcode to specify register and memory
addressing.

1.8.1 Byte-Register Addressing

In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 38) are encoded in the ModRM reg or r/m field or in the opcode reg field as
registers 0 through 7. The REX prefix provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte operations (Figure 2-3 on page 39).
This provides a uniform set of byte, word, doubleword, and quadword registers better suited for
register allocation by compilers.

1.8.2 Special Encodings for Registers

Readers who need to know the details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special meaning for register encodings. For some of
these combinations, the instruction fields expanded by the REX prefix are not decoded (treated as
don’t cares), thereby creating aliases of these encodings in the extended registers. Table 1-17 on
page 27 describes how each of these cases behaves.

Instruction Encoding 27

24594—Rev. 3.32—March 2021 AMD64 Technology

Table 1-17. Special REX Encodings for Registers

ModRM and SIB

Encodings2
Meaning in Legacy and

Compatibility Modes

Implications in Legacy
and Compatibility

Modes

Additional REX
Implications

ModRM Byte:

• mod ≠ 11

• r/m1 = 100 (ESP)

SIB byte is present.
SIB byte is required for
ESP-based addressing.

REX prefix adds a fourth
bit (b), which is decoded
and modifies the base
register in the SIB byte.
Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:

• mod = 00

• r/m1 = x101 (EBP)

Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:

• index1 = x100 (ESP)
Index register is not used.

ESP cannot be used as
an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:

• base = b101 (EBP)

• ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:
1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB

index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-6
on page 28) indicates that the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

28 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Examples of Operand Addressing Extension Using REX

Figure 1-6. Encoding Examples Using REX R, X, and B Bits

REX Prefix

Case 1: Register-Register Addressing (No Memory Operand)

REX.X is not used4WRXB
Opcode

ModRM Byte
mod reg r/m

rrr11 bbb

Rrrr Bbbb

4
4

mod reg r/mREX Prefix

Case 3: Memory Addressing With an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 100

SIB Byte
scale index base

xxxbb bbb

BbbbXxxx

44
4

REX.X is not used
mod reg r/mREX Prefix

Case 2: Memory Addressing Without an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 bbb

Bbbb

4
4

ModRM reg field != 100

REX.R is not used
REX.X is not used

REX Prefix

Case 4: Register Operand Coded in Opcode Byte

Bbbb

4WRXB bbb

4

op reg

Instruction Encoding 29

24594—Rev. 3.32—March 2021 AMD64 Technology

1.9 Encoding Using the VEX and XOP Prefixes

An extended escape sequence is introduced by an encoding escape prefix which establishes the context
and the format of the bytes that follow. The currently defined prefixes fall in two classes: the XOP and
the VEX prefixes (of which there are two). The XOP prefix and the VEX C4h prefix introduce a three
byte sequence with identical syntax, while the VEX C5h prefix introduces a two-byte escape sequence
with a different syntax.

These escape sequences supply fields used to extend operand specification as well as provide for the
selection of alternate opcode maps. Encodings support up to two additional operands and the
addressing of the extended (beyond 7) registers. The specification of two of the operands is
accomplished using the legacy ModRM and optional SIB bytes with the reg, r/m, index, and base
fields extended by one bit in a manner analogous to the REX prefix.

The encoding of the extended SSE instructions utilize extended escape sequences. XOP instructions
use three-byte escape sequences introduced by the XOP prefix. The AVX, FMA, FMA4, and CLMUL
instruction subsets use three-byte or two-byte escape sequences introduced by the VEX prefixes.

1.9.1 Three-Byte Escape Sequences

All the extended instructions can be encoded using a three-byte escape sequence, but certain VEX-
encoded instructions that comply with the constraints described below in Section 1.9.2, “Two-Byte
Escape Sequence” can also utilize a two-byte escape sequence. Figure 1-7 below shows the format of
the three-byte escape sequence which is common to the XOP and VEX-based encodings.

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format

Byte 0 Byte 1 Byte 2

7 0 7 6 5 4 0 7 6 3 2 1 0

Encoding escape prefix R X B map_select W vvvv L pp

Byte Bit Mnemonic Description

0 [7:0] VEX, XOP Value specific to the extended instruction set

1 [7] R Inverted one-bit extension of ModRM reg field

[6] X Inverted one-bit extension of SIB index field

[5] B Inverted one-bit extension, r/m field or SIB base
field

[4:0] map_select Opcode map select

30 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Table 1-18. Three-byte Escape Sequence Field Definitions

Byte 0 (VEX/XOP Prefix)

Byte 0 is the encoding escape prefix byte which introduces the encoding escape sequence and
establishes the context for the bytes that follow. The VEX and XOP prefixes have the following
encodings:

• VEX prefix is encoded as C4h

• XOP prefix is encoded as 8Fh

Byte 1

VEX/XOP.R (Bit 7). The bit-inverted equivalent of the REX.R bit. A one-bit extension of the
ModRM.reg field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, the value must be 1.

VEX/XOP.X (Bit 6). The bit-inverted equivalent of the REX.X bit. A one-bit extension of the
SIB.index field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, this value must be 1.

VEX/XOP.B (Bit 5). The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix
format. A one-bit extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of
the SIB base field, to specify a GPR. This permits access to all 16 GPR and YMM/XMM registers. In
32-bit protected and compatibility modes, this bit is ignored.

VEX/XOP.map_select (Bits [4:0]). The five-bit map_select field is used to select an alternate
opcode map. The map_select encoding spaces for VEX and XOP are disjoint. Table 1-19 below lists
the encodings for VEX.map_select and Table 1-20 lists the encodings for XOP.map_select.

2 [7] W Default operand size override for a general
purpose register to 64-bit size in 64-bit mode;

operand configuration specifier for certain
YMM/XMM-based operations.

[6:3] vvvv Source or destination register selector, in ones’
complement format

[2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map

00000 Reserved –

00001 VEX opcode map 1 Secondary (“two-byte”) opcode map

Byte Bit Mnemonic Description

Instruction Encoding 31

24594—Rev. 3.32—March 2021 AMD64 Technology

AVX instructions are encoded using the VEX opcode maps 1–3. The AVX instruction set includes
instructions that provide operations similar to most legacy SSE instructions. For those AVX
instructions that have an analogous legacy SSE instruction, the VEX opcode maps use the same binary
opcode value and modifiers as the legacy version. The correspondence between the VEX opcode maps
and the legacy opcode maps are shown in Table 1-19 above.

VEX opcode maps 1–3 are also used to encode the FMA4 and FMA instructions. In addition, not all
legacy SSE instructions have AVX equivalents. Therefore, the VEX opcode maps are not the same as
the legacy opcode maps.

The XOP opcode maps are unique to the XOP instructions. The XOP.map_select value is restricted to
the range [08h:1Fh]. If the value of the XOP.map_select field is less than 8, the first two bytes of the
three-byte XOP escape sequence are interpreted as a form of the POP instruction.

Both legacy and extended opcode maps are covered in detail in Appendix A.

Byte 2

VEX/XOP.W (Bit 7). Function is instruction-specific. The bit is often used to configure source
operand order.

VEX/XOP.vvvv (Bits [6:3]). Used to specify an additional operand for three and four operand
instructions. Encodes an XMM or YMM register in inverted ones’ complement form, as shown in
Table 1-21.

00010 VEX opcode map 2 0F_38h (“three-byte”) opcode map

00011 VEX opcode map 3 0F_3Ah (“three-byte”) opcode map

00100 – 11111 Reserved –

Table 1-20. XOP.map_select Encoding

Binary Value Opcode Map

00000 – 00111 Reserved

01000 XOP opcode map 8

01001 XOP opcode map 9

01010 XOP opcode map 10 (Ah)

01011 – 11111 Reserved

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map

32 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Values 0000h to 0111h are not valid in 32-bit modes. vvvv is typically used to encode the first source
operand, but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD,
VPSLLW, VPSLLD, and VPSLLQ shift instructions, the field specifies the destination register.

VEX/XOP.L (Bit 2). L = 0 specifies 128-bit vector length (XMM registers/128-bit memory
locations). L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations). For SSE or
XOP instructions with scalar operands, the L bit is ignored. Some vector SSE instructions support only
the 128 bit vector size. For these instructions, L is cleared to 0.

VEX/XOP.pp (Bits [1:0]). Specifies an implied 66h, F2h, or F3h opcode extension which is used in a
way analogous to the legacy instruction encodings to extend the opcode encoding space. The
correspondence between the encoding of the VEX/XOP.pp field and its function as an opcode modifier
is shown in Table 1-22. The legacy prefixes 66h, F2h, and F3h are not allowed in the encoding of
extended instructions.

1.9.2 Two-Byte Escape Sequence

All VEX-encoded instructions can be encoded using the three-byte escape sequence, but certain
instructions can also be encoded utilizing a more compact, two-byte VEX escape sequence. The
format of the two-byte escape sequence is shown in Figure 1-8 below.

Table 1-21. VEX/XOP.vvvv Encoding

Binary Value Register Binary Value Register

0000 XMM15/YMM15 1000 XMM07/YMM07

0001 XMM14/YMM14 1001 XMM06/YMM06

0010 XMM13/YMM13 1010 XMM05/YMM05

0011 XMM12/YMM12 1011 XMM04/YMM04

0100 XMM11/YMM11 1100 XMM03/YMM03

0101 XMM10/YMM10 1101 XMM02/YMM02

0110 XMM09/YMM09 1110 XMM01/YMM01

0111 XMM08/YMM08 1111 XMM00/YMM00

Table 1-22. VEX/XOP.pp Encoding

Binary Value Implied Prefix

00 None

01 66h

10 F3h

11 F2h

Instruction Encoding 33

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 1-8. VEX Two-byte Escape Sequence Format

Table 1-23. VEX Two-byte Escape Sequence Field Definitions

Byte 0 (VEX Prefix)

The VEX prefix for the two-byte escape sequence is encoded as C5h.

Byte 1

Note that the bit 7 of this byte is used to encode VEX.R instead of VEX.W as in the three-byte escape
sequence form. The R, vvvv, L, and pp fields are defined as in the three-byte escape sequence.

When the two-byte escape sequence is used, specific fields from the three-byte format take on fixed
values as shown in Table 1-24 below.

Although they may be encoded using the VEX three-byte escape sequence, all instructions that
conform with the constraints listed in Table 1-24 may be encoded using the two-byte escape sequence.
Note that the implied value of map_select is 00001b, which means that only instructions included in
the VEX opcode map 1 may be encoded using this format.

VEX-encoded instructions that use the other defined values of map_select (00010b and 00011b)
cannot be encoded using this a two-byte escape sequence format. Note that the VEX.pp field value is

Byte 0 Byte 1

7 0 7 6 3 2 1 0

VEX R vvvv L pp

Prefix Byte Bit Mnemonic Description

0 [7:0] VEX VEX 2-byte encoding escape prefix

1 [7] R Inverted one-bit extension of ModRM.reg field

[6:3] vvvv Source or destination register selector, in ones’
complement format.

[2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension.

Table 1-24. Fixed Field Values for VEX 2-Byte Format

VEX Field Value

X 1

B 1

W 0

map_select 00001b

34 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

explicitly encoded in this form and can be used to specify any of the implied legacy prefixes as defined
in Table 1-22.

Instruction Overview 35

24594—Rev. 3.32—March 2021 AMD64 Technology

2 Instruction Overview

2.1 Instruction Groups

For easier reference, the instruction descriptions are divided into five groups based on usage. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

• Chapter 3, “General-Purpose Instruction Reference”—The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

• Chapter 4, “System Instruction Reference”—The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

• “SSE Instruction Reference” in Volume 4—The Streaming SIMD Extensions (SSE) instructions
load, store, or operate on data located in the YMM/XMM registers. These instructions define both
vector and scalar operations on floating-point and integer data types. They include the SSE and
SSE2 instructions that operate on the YMM/XMM registers. Some of these instructions convert
source operands in YMM/XMM registers to destination operands in GPR, MMX, or x87 registers
or otherwise affect YMM/XMM state.

• “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MMX™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, YMM/XMM, or x87 registers or otherwise affect MMX state.

• “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)–ST(7) stack registers (the FPR0–FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOVSD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

36 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.2 Reference-Page Format

Figure 2-1 on page 37 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGS Doubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
a description summary. Related instructions are listed below this, followed by a table showing the
flags that the instruction can affect. Finally, each instruction has a summary of the possible exceptions
that can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply
only to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and
long mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

Instruction Overview 37

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-1. Format of Instruction-Detail Pages

24594 Rev. 3.07 September 2003 AMD64 Technology

AAM 63

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH = (AL/10d)
AL = (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction directly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.

Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Mnemonic and any operands Opcode Description of operation

“M” means the flag is either set or
cleared, depending on the result.

Possible exceptions
and causes, by mode of
operation

“Protected” column
covers both legacy

and long mode

Alphabetic mnemonic locator

38 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3 Summary of Registers and Data Types

This section summarizes the registers available to software using the five instruction subsets described
in “Instruction Groups” on page 35. For details on the organization and use of these registers, see their
respective chapters in volumes 1 and 2.

2.3.1 General-Purpose Instructions

Registers. The size and number of general-purpose registers (GPRs) depends on the operating
mode, as do the size of the flags and instruction-pointer registers. Figure 2-2 shows the registers
available in legacy and compatibility modes.

Figure 2-2. General Registers in Legacy and Compatibility Modes

Figure 2-3 on page 39 shows the registers accessible in 64-bit mode. Compared with legacy mode,
registers become 64 bits wide, eight new data registers (R8–R15) are added and the low byte of all 16
GPRs is available for byte operations, and the four high-byte registers of legacy mode (AH, BH, CH,
and DH) are not available if the REX prefix is used. The high 32 bits of doubleword operands are zero-
extended to 64 bits, but the high bits of word and byte operands are not modified by operations in 64-

31 15 016

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

16-bit
low
8-bit

high
8-bit 32-bit

BX

CX

DX

SI

DI

BP

SP

AH (4)

BH (7)

CH (5)

DH (6)

AL

BL

CL

DL

SI

DI

BP

SP

FLAGS

IP

31 0

FLAGS

IP

EFLAGS

EIP

0

3

1

2

6

7

5

4

register
encoding

Instruction Overview 39

24594—Rev. 3.32—March 2021 AMD64 Technology

bit mode. The RFLAGS register is 64 bits wide, but the high 32 bits are reserved. They can be written
with anything but they read as zeros (RAZ).

Figure 2-3. General Registers in 64-Bit Mode

For most instructions running in 64-bit mode, access to the extended GPRs requires a either a REX
instruction modification prefix or extended encoding encoding using the VEX or XOP sequences
(page 14).

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

32-bit

R8

R9

R10

R11

R12

R13

R14

R15

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

64-bit

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

AX

16-bit

BX

CX

DX

SI

DI

BP

SP

63 31 15 7 081632

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

zero-extended
for 32-bit operands

not modified for 8-bit operands
not modified for 16-bit operands low

8 bits

BPL**

AH*

BH*

CH*

DH*

AL

BL

CL

DL

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

SIL**

DIL**

SPL**

63 31 032

RFLAGS

RIP

0

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

Re
g

is
te

r E
n

co
d

in
g

40 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-4 shows the segment registers which, like the instruction pointer, are used by all instructions.
In legacy and compatibility modes, all segments are accessible. In 64-bit mode, which uses the flat
(non-segmented) memory model, only the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored (the base for each of these segments is
assumed to be zero, and neither their segment limit nor attributes are checked). For details, see
“Segmented Virtual Memory” in Volume 2.

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 41 shows the general-purpose data types. They are all scalar, integer
data types. The 64-bit (quadword) data types are only available in 64-bit mode, and for most
instructions they require a REX instruction prefix.

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

Instruction Overview 41

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-5. General-Purpose Data Types

2.3.2 System Instructions

Registers. The system instructions use several specialized registers shown in Figure 2-6 on page 42.
System software uses these registers to, among other things, manage the processor’s operating
environment, define system resource characteristics, and monitor software execution. With the
exception of the RFLAGS register, system registers can be read and written only from privileged
software.

All system registers are 64 bits wide, except for the descriptor-table registers and the task register,
which include 64-bit base-address fields and other fields.

127

63

63

31

15

7 0

Quadword

Double
Quadword

Doubleword

Word

Byte

0

s

s

s

s

Quadword

Unsigned Integer

Signed Integer

Doubleword

Word

Byte

Bit

8 bytes (64-bit mode only)

s 16 bytes (64-bit mode only)

127
Double
Quadword

0

16 bytes (64-bit mode only)

4 bytes

2 bytes

31

15

7 3

Packed BCD

BCD Digit

0

8 bytes (64-bit mode only)

4 bytes

2 bytes

42 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 43 shows the system data structures. These are created and
maintained by system software for use in protected mode. A processor running in protected mode uses
these data structures to manage memory and protection, and to store program-state information when
an interrupt or task switch occurs.

Control Registers
CR0
CR2
CR3
CR4
CR8

System-Flags Register
RFLAGS

Debug Registers
DR0
DR1
DR2
DR3
DR6
DR7

Memory-Typing Registers
MTRRcap

MTRRdefType
MTRRphysBasen
MTRRphysMaskn

MTRRfixn
PAT

TOP_MEM
TOP_MEM2

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MCi_CTL

MCi_STATUS
MCi_ADDR
MCi_MISC

Model-Specific Registers

Descriptor-Table Registers
GDTR
IDTR
LDTR

Task Register
TR

Extended-Feature-Enable Register
EFER

Debug-Extension Registers
DebugCtl

LastBranchFromIP
LastBranchToIP
LastIntFromIP

LastIntToIP

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR

LSTAR
CSTAR

FS.base
GS.base

KernelGSbase
SYSENTER_CS

SYSENTER_ESP
SYSENTER_EIP

SFMASK Performance-Monitoring Registers
TSC

PerfEvtSeln
PerfCtrn

Instruction Overview 43

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-7. System Data Structures

2.3.3 SSE Instructions

Registers. The SSE instructions operate primarily on 128-bit and 256-bit floating-point vector
operands located in the 256-bit YMM/XMM registers. Each 128-bit XMM register is defined as the
lower octword of the corresponding YMM register. The number of available YMM/XMM data
registers depends on the operating mode, as shown in Figure 2-8 below. In legacy and compatibility
modes, eight YMM/XMM registers (YMM/XMM0–7) are available. In 64-bit mode, eight additional
YMM/XMM data registers (YMM/XMM8–15) are available. These eight additional registers are
addressed via the encoding extensions provided by the REX, VEX, and XOP prefixes.

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

44 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

The MXCSR register contains floating-point and other control and status flags used by the 128-bit
media instructions. Some 128-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and
the MMX registers (Figure 2-12 on page 48) or set or clear flags in the rFLAGS register (see
Figure 2-2 and Figure 2-3).

Figure 2-8. SSE Registers

Data Types. The SSE instruction set architecture provides support for 128-bit and 256-bit packed
floating-point and integer data types as well as integer and floating-point scalars. Figure 2-9 below
shows the 128-bit data types. Figure 2-10 on page 46 and Figure 2-11 on page 47 show the 256-bit
data types. The floating-point data types include IEEE-754 single precision and double precision
types.

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

Instruction Overview 45

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-9. 128-Bit SSE Data Types

s

s

s

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand

63 51 exp

s

31 22 0

0

127 0

Scalar Unsigned Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

0

bit

sss

s

31 2263 5495 86127 118 0

Vector (Packed) Floating-Point – Double Precision and Single Precision

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

s

s

71523313947556371798795103111119127 0

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

Vector (Packed) Signed Integer – Quadword, Doubleword, Word, Byte

s s s s s sssss

s

s s

ss

s

s

s

s s

s

s

s s

s

s

s

s

byte byte byte byte byte byte byte byte byte byte byte byte byte bytebytebytes s

71523313947556371798795103111119127 0

Vector (Packed) Unsigned Integer – Quadword, Doubleword, Word, Byte

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

doubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

quadword

doubleword

Scalar Signed Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

ss

s

s

s

s

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

46 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-10. SSE 256-bit Data Types

Vector (Packed) Floating-Point – Double Precision and Single Precision

ssss

ss

ssss

ss

31 2263 5495 86127 118 0

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

ssss

ss

ssss

ss

159 150191 182223 214255 246 128

significand

exp significand

128191 179255 243

exp significand

expsignificandexpsignificandexpsignificandexp

Vector (Packed) Signed Integer – Double Quadword, Quadword, Doubleword, Word, Byte

ssssssss

ssss

ss

ssssssssssssssss

ssssssss

ssss

ss

s

ssssssssssssssss

135143151159167175183191199207215223231239247255 128

quadword

double quadword (octword)

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

ssssssss

ssss

s

ssssssssssssssss

ssssssss

ssss

ss

ssssssssssssssss

71523313947556371798795103111119127 0

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

s

quadword

Instruction Overview 47

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-11. SSE 256-Bit Data Types (Continued)

Vector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, ByteVector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, Byte

135143151159167175183191199207215223231239247255 128

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

71523313947556371798795103111119127 0

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

127 0

Scalar Unsigned Integers

127

double quadword

15

31

63

quadword

doubleword

word

7

0

byte

bit

Scalar Signed Integers

127

double quadword

15

31

63

quadword

doubleword

word

7 0

byte

ss

s

s

s

s

s

s

s

s

31 22 0

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand
63 51 exp

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

48 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3.4 64-Bit Media Instructions

Registers. The 64-bit media instructions use the eight 64-bit MMX registers, as shown in
Figure 2-12. These registers are mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and the XMM registers
(Figure 2-8).

Figure 2-12. 64-Bit Media Registers

Data Types. Figure 2-13 on page 49 shows the 64-bit media data types. They include floating-point
and integer vectors and integer scalars. The floating-point data type, used by 3DNow! instructions,
consists of a packed vector or two IEEE-754 32-bit single-precision data types. Unlike other kinds of
floating-point instructions, however, the 3DNow!™ instructions do not generate floating-point
exceptions. For this reason, there is no register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

Instruction Overview 49

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-13. 64-Bit Media Data Types

ss ss

ssss

ss

ssssssss

ssss

ss

ssssssss

715233139475563 0

bytebytebytebytebytebytebytebyte

31 2263 54 0

Vector (Packed) Single-Precision Floating-Point

Vector (Packed) Unsigned Integers

715233139475563 0

doubleworddoubleword

wordwordwordword

doubleworddoubleword

wordwordwordword

bytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integers

significandexpsignificandexp

63

31

15

7 0

s

s

s

s

Unsigned Integers

Signed Integers

quadword

doubleword

word

byte

63

31

15

7

0

quadword

doubleword

word

byte

50 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3.5 x87 Floating-Point Instructions

Registers. The x87 floating-point instructions use the x87 registers shown in Figure 2-14. There are
eight 80-bit data registers, three 16-bit registers that hold the x87 control word, status word, and tag
word, and three registers (last instruction pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPR0–FPR7, although x87 software references these registers
as a stack of registers, named ST(0)–ST(7). The x87 instructions store operands only in their own 80-
bit floating-point registers or in memory. They do not access the GPR or XMM registers.

Figure 2-14. x87 Registers

Data Types. Figure 2-15 on page 51 shows all x87 data types. They include three floating-point
formats (80-bit double-extended precision, 64-bit double precision, and 32-bit single precision), three
signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format.

Tag Word

Status Word

Control Word

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Instruction Pointer (rIP)

Data Pointer (rDP)

Tag Word

Status Word

Control Word

Opcode

Instruction Overview 51

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-15. x87 Data Types

2.4 Summary of Exceptions

Table 2-1 on page 52 lists all possible exceptions. The table shows the interrupt-vector numbers,
names, mnemonics, source, and possible causes. Exceptions that apply to specific instructions are
documented with each instruction in the instruction-detail pages that follow.

s

63

31

31

22

15 0

0

0

Quadword

Doubleword

Words

s

s

Signed Integer

Binary-Coded Decimal (BCD)

Floating-Point

8 bytes

4 bytes

63

63

51

Double Precision

Single Precisions

s

2 bytes

79

79

079 71

Double-Extended
Precision

Packed Decimal

s i

significand

exp significand

exp significand

exp

s

52 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Table 2-1. Interrupt-Vector Source and Cause

Vector Interrupt (Exception) Mnemonic Source Cause

0 Divide-By-Zero-Error #DE Software DIV, IDIV, AAM instructions

1 Debug #DB Internal Instruction accesses and data accesses

2 Non-Maskable-Interrupt #NMI External External NMI signal

3 Breakpoint #BP Software INT3 instruction

4 Overflow #OF Software INTO instruction

5 Bound-Range #BR Software BOUND instruction

6 Invalid-Opcode #UD Internal Invalid instructions

7 Device-Not-Available #NM Internal x87 instructions

8 Double-Fault #DF Internal Interrupt during an interrupt

9 Coprocessor-Segment-Overrun — External Unsupported (reserved)

10 Invalid-TSS #TS Internal
Task-state segment access and task
switch

11 Segment-Not-Present #NP Internal Segment access through a descriptor

12 Stack #SS Internal SS register loads and stack references

13 General-Protection #GP Internal
Memory accesses and protection
checks

14 Page-Fault #PF Internal
Memory accesses when paging
enabled

15 Reserved —

16
Floating-Point Exception-
Pending

#MF Software
x87 floating-point and 64-bit media
floating-point instructions

17 Alignment-Check #AC Internal Memory accesses

18 Machine-Check #MC
Internal
External

Model specific

19 SIMD Floating-Point #XF Internal 128-bit media floating-point instructions

20 Reserved —

21 Control-Protection #CP Internal Shadow Stack Protection checks

22—27 Reserved (Internal and External) —

28 Hypervisor Injection Exception #HV Software Event injection

29 VMM Communication Exception #VC Internal Virtualization event

30 SVM Security Exception #SX External Security-sensitive events

31 Reserved (Internal and External) —

0—255 External Interrupts (Maskable) #INTR External External interrupt signal

0—255 Software Interrupts — Software INTn instruction

Instruction Overview 53

24594—Rev. 3.32—March 2021 AMD64 Technology

2.5 Notation

2.5.1 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the instruction can
take. Figure 2-16 shows an example of a syntax in which the instruction takes two operands. In most
instructions that take two operands, the first (left-most) operand is both a source operand (the first
source operand) and the destination operand. The second (right-most) operand serves only as a source,
not a destination.

Figure 2-16. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination operands:

• cReg—Control register.

• dReg—Debug register.

• imm8—Byte (8-bit) immediate.

• imm16—Word (16-bit) immediate.

• imm16/32—Word (16-bit) or doubleword (32-bit) immediate.

• imm32—Doubleword (32-bit) immediate.

• imm32/64—Doubleword (32-bit) or quadword (64-bit) immediate.

• imm64—Quadword (64-bit) immediate.

• mem—An operand of unspecified size in memory.

• mem8—Byte (8-bit) operand in memory.

• mem16—Word (16-bit) operand in memory.

• mem16/32—Word (16-bit) or doubleword (32-bit) operand in memory.

• mem32—Doubleword (32-bit) operand in memory.

• mem32/48—Doubleword (32-bit) or 48-bit operand in memory.

• mem48—48-bit operand in memory.

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

ADDPD xmm1, xmm2/mem128

54 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

• mem64—Quadword (64-bit) operand in memory.

• mem128—Double quadword (128-bit) operand in memory.

• mem16:16—Two sequential word (16-bit) operands in memory.

• mem16:32—A doubleword (32-bit) operand followed by a word (16-bit) operand in memory.

• mem32real—Single-precision (32-bit) floating-point operand in memory.

• mem16int—Word (16-bit) integer operand in memory.

• mem32int—Doubleword (32-bit) integer operand in memory.

• mem64real—Double-precision (64-bit) floating-point operand in memory.

• mem64int—Quadword (64-bit) integer operand in memory.

• mem80real—Double-extended-precision (80-bit) floating-point operand in memory.

• mem80dec—80-bit packed BCD operand in memory, containing 18 4-bit BCD digits.

• mem2env—16-bit x87 control word or x87 status word.

• mem14/28env—14-byte or 28-byte x87 environment. The x87 environment consists of the x87
control word, x87 status word, x87 tag word, last non-control instruction pointer, last data pointer,
and opcode of the last non-control instruction completed.

• mem94/108env—94-byte or 108-byte x87 environment and register stack.

• mem512env—512-byte environment for 128-bit media, 64-bit media, and x87 instructions.

• mmx—Quadword (64-bit) operand in an MMX register.

• mmx1—Quadword (64-bit) operand in an MMX register, specified as the left-most (first) operand
in the instruction syntax.

• mmx2—Quadword (64-bit) operand in an MMX register, specified as the right-most (second)
operand in the instruction syntax.

• mmx/mem32—Doubleword (32-bit) operand in an MMX register or memory.

• mmx/mem64—Quadword (64-bit) operand in an MMX register or memory.

• mmx1/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the left-
most (first) operand in the instruction syntax.

• mmx2/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the right-
most (second) operand in the instruction syntax.

• moffset—Direct memory offset that specifies an operand in memory.

• moffset8—Direct memory offset that specifies a byte (8-bit) operand in memory.

• moffset16—Direct memory offset that specifies a word (16-bit) operand in memory.

• moffset32—Direct memory offset that specifies a doubleword (32-bit) operand in memory.

• moffset64—Direct memory offset that specifies a quadword (64-bit) operand in memory.

• pntr16:16—Far pointer with 16-bit selector and 16-bit offset.

• pntr16:32—Far pointer with 16-bit selector and 32-bit offset.

• reg—Operand of unspecified size in a GPR register.

Instruction Overview 55

24594—Rev. 3.32—March 2021 AMD64 Technology

• reg8—Byte (8-bit) operand in a GPR register.

• reg16—Word (16-bit) operand in a GPR register.

• reg16/32—Word (16-bit) or doubleword (32-bit) operand in a GPR register.

• reg32—Doubleword (32-bit) operand in a GPR register.

• reg64—Quadword (64-bit) operand in a GPR register.

• reg/mem8—Byte (8-bit) operand in a GPR register or memory.

• reg/mem16—Word (16-bit) operand in a GPR register or memory.

• reg/mem32—Doubleword (32-bit) operand in a GPR register or memory.

• reg/mem64—Quadword (64-bit) operand in a GPR register or memory.

• rel8off—Signed 8-bit offset relative to the instruction pointer.

• rel16off—Signed 16-bit offset relative to the instruction pointer.

• rel32off—Signed 32-bit offset relative to the instruction pointer.

• segReg or sReg—Word (16-bit) operand in a segment register.

• ST(0)—x87 stack register 0.

• ST(i)—x87 stack register i, where i is between 0 and 7.

• xmm—Double quadword (128-bit) operand in an XMM register.

• xmm1—Double quadword (128-bit) operand in an XMM register, specified as the left-most (first)
operand in the instruction syntax.

• xmm2—Double quadword (128-bit) operand in an XMM register, specified as the right-most
(second) operand in the instruction syntax.

• xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM register or memory.

• xmm/mem128—Double quadword (128-bit) operand in an XMM register or memory.

• xmm1/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

• xmm2/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

• ymm—Double octword (256-bit) operand in an YMM register.

• ymm1—Double octword (256-bit) operand in an YMM register, specified as the left-most (first)
operand in the instruction syntax.

• ymm2—Double octword (256-bit) operand in an YMM register, specified as the right-most
(second) operand in the instruction syntax.

• ymm/mem64—Quadword (64-bit) operand in a 256-bit YMM register or memory.

• ymm/mem128—Double quadword (128-bit) operand in an YMM register or memory.

• ymm1/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

56 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

• ymm2/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

2.5.2 Opcode Syntax

In addition to the notation shown above in “Mnemonic Syntax” on page 52, the following notation
indicates the size and type of operands in the syntax of an instruction opcode:

• /digit—Indicates that the ModRM byte specifies only one register or memory (r/m) operand. The
digit is specified by the ModRM reg field and is used as an instruction-opcode extension. Valid
digit values range from 0 to 7.

• /r—Indicates that the ModRM byte specifies both a register operand and a reg/mem (register or
memory) operand.

• cb, cw, cd, cp—Specifies a code-offset value and possibly a new code-segment register value. The
value following the opcode is either one byte (cb), two bytes (cw), four bytes (cd), or six bytes
(cp).

• ib, iw, id, iq—Specifies an immediate-operand value. The opcode determines whether the value is
signed or unsigned. The value following the opcode, ModRM, or SIB byte is either one byte (ib),
two bytes (iw), or four bytes (id). Word and doubleword values start with the low-order byte.

• +rb, +rw, +rd, +rq—Specifies a register value that is added to the hexadecimal byte on the left,
forming a one-byte opcode. The result is an instruction that operates on the register specified by
the register code. Valid register-code values are shown in Table 2-2.

• m64—Specifies a quadword (64-bit) operand in memory.

• +i—Specifies an x87 floating-point stack operand, ST(i). The value is used only with x87 floating-
point instructions. It is added to the hexadecimal byte on the left, forming a one-byte opcode. Valid
values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value

REX.B

Bit1
Value

Specified Register

+rb +rw +rd +rq

0
or no REX

Prefix

0 AL AX EAX RAX

1 CL CX ECX RCX

2 DL DX EDX RDX

3 BL BX EBX RBX

4 AH, SPL1 SP ESP RSP

5 CH, BPL1 BP EBP RBP

6 DH, SIL1 SI ESI RSI

7 BH, DIL1 DI EDI RDI

1. See “REX Prefix” on page 14.

Instruction Overview 57

24594—Rev. 3.32—March 2021 AMD64 Technology

2.5.3 Pseudocode Definition

Pseudocode examples are given for the actions of several complex instructions (for example, see
“CALL (Near)” on page 126). The following definitions apply to all such pseudocode examples:

///
// Pseudo Code Definition
///
//
// Comments start with double slashes.
//
// '=' can mean "is", or assignment based on context
// '==' is the equals comparison operator
//
///
// Constants
///

0 // numbers are in base-10 (decimal), unless followed by a suffix
0000_0001b // a number in binary notation, underbars added for readability
FFE0_0000h // a number expressed in hexadecimal notation

// in the following, '&&' is the logical AND operator. See "Logical Operators"
// below.
// reg[fld] identifies a field (one or more bits) within architected register
// or within a sub-element of a larger data structure. A dot separates the
// higher-level data structure name from the sub-element name.
//
CS.desc = Code Segment descriptor // CS.desc has sub-elements: base, limit, attr
SS.desc = Stack Segment descriptor // SS.desc has the same sub-elements
CS.desc.base = base subfield of CS.desc
CS = Code Segment Register
SS = Stack Segment Register
CPL = Current Privilege Level (0 <= CPL <= 3)
REAL_MODE = (CR0[PE] == 0)

1

0 R8B R8W R8D R8

1 R9B R9W R9D R9

2 R10B R10W R10D R10

3 R11B R11W R11D R11

4 R12B R12W R12D R12

5 R13B R13W R13D R13

6 R14B R14W R14D R14

7 R15B R15W R15D R15

Table 2-2. +rb, +rw, +rd, and +rq Register Value (continued)

REX.B

Bit1
Value

Specified Register

+rb +rw +rd +rq

1. See “REX Prefix” on page 14.

58 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

PROTECTED_MODE = ((CR0[PE] == 1) && (RFLAGS[VM] == 0))
VIRTUAL_MODE = ((CR0[PE] == 1) && (RFLAGS[VM] == 1))
LEGACY_MODE = (EFER[LMA] == 0)
LONG_MODE = (EFER[LMA] == 1)
64BIT_MODE = ((EFER[LMA]==1) && (CS_desc.attr[L] == 1) && (CS_desc.attr[D] == 0))
COMPATIBILITY_MODE = (EFER[LMA] == 1) && (CS_desc.attr[L] == 0)
PAGING_ENABLED = (CR0[PG] == 1)
ALIGNMENT_CHECK_ENABLED = ((CR0[AM] == 1) && (RFLAGS[AC] == 1) && (CPL == 3))

OPERAND_SIZE = 16, 32, or 64 // size, in bits, of an operand
// OPERAND_SIZE depends on processor mode, the current code segment descriptor
// default operand size [D], presence of the operand size override prefix (66h)
// and, in 64-bit mode, the REX prefix.
// NOTE: Specific instructions take 8-bit operands, but for these instructions,
// operand size is fixed and the variable OPERAND_SIZE is not needed.

ADDRESS_SIZE = 16, 32, or 64 // size, in bits, of the effective address for
// memory reads. ADDRESS_SIZE depends processor mode, the current code segment
// descriptor default operand size [D], and the presence of the address size
// override prefix (67h)

STACK_SIZE = 16, 32, or 64 // size, in bits of stack operation operand
// STACK_SIZE depends on current code segment descriptor attribute D bit and
// the Stack Segment descriptor attribute B bit.

///
// Architected Registers
///
// Identified using abbreviated names assigned by the Architecture; can represent
// the register or its contents depending on context.
RAX = the 64-bit contents of the general-purpose register
EAX = 32-bit contents of GPR EAX
AX = 16-bit contents of GPR AX
AL = lower 8 bits of GPR AX
AH = upper 8 bits of GPR AX

index_of(reg) = value used to encode the register.
index_of(AX) = 0000b
index_of(RAX) = 0000b

// in legacy and compatibility modes the msb of the index is fixed as 0

///
// Defined Variables
///

old_RIP = RIP at the start of current instruction
old_RSP = RSP at the start of current instruction
old_RFLAGS = RFLAGS at the start of the instruction

Instruction Overview 59

24594—Rev. 3.32—March 2021 AMD64 Technology

old_CS = CS selector at the start of current instruction
old_DS = DS selector at the start of current instruction
old_ES = ES selector at the start of current instruction
old_FS = FS selector at the start of current instruction
old_GS = GS selector at the start of current instruction
old_SS = SS selector at the start of current instruction

RIP = the current RIP register
RSP = the current RSP register
RBP = the current RBP register
RFLAGS = the current RFLAGS register
next_RIP = RIP at start of next instruction

CS.desc = the current CS descriptor, including the subfields:
 base limit attr
SS.desc = the current SS descriptor, including the subfields:
 base limit attr

SRC = the instruction’s source operand
SRC1 = the instruction's first source operand
SRC2 = the instruction's second source operand
SRC3 = the instruction's third source operand
IMM8 = 8-bit immediate encoded in the instruction
IMM16 = 16-bit immediate encoded in the instruction
IMM32 = 32-bit immediate encoded in the instruction
IMM64 = 64-bit immediate encoded in the instruction
DEST = instruction’s destination register

temp_* // 64-bit temporary register
temp_*_desc // temporary descriptor, with sub-elements:
 // if it points to a block of memory: base limit attr
 // if it’s a gate descriptor: offet segment attr

NULL = 0000h // null selector is all zeros

///
// Exceptions
///
EXCEPTION [#GP(0)] // Signals an exception; error code in parenthesis
EXCEPTION [#UD] // if no error code

// possible exception types:
#DE // Divide-By-Zero-Error Exception (Vector 0)
#DB // Debug Exception (Vector 1)
#BP // INT3 Breakpoint Exception (Vector 3)
#OF // INTO Overflow Exception (Vector 4)
#BR // Bound-Range Exception (Vector 5)
#UD // Invalid-Opcode Exception (Vector 6)
#NM // Device-Not-Available Exception (Vector 7)
#DF // Double-Fault Exception (Vector 8)
#TS // Invalid-TSS Exception (Vector 10)

60 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

#NP // Segment-Not-Present Exception (Vector 11)
#SS // Stack Exception (Vector 12)
#GP // General-Protection Exception (Vector 13)
#PF // Page-Fault Exception (Vector 14)
#MF // x87 Floating-Point Exception-Pending (Vector 16)
#AC // Alignment-Check Exception (Vector 17)
#MC // Machine-Check Exception (Vector 18)
#XF // SIMD Floating-Point Exception (Vector 19)

///
// Implicit Assignments
///

// V,Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)
IF (OPERAND_SIZE == 16) V = 2
IF (OPERAND_SIZE == 32) V = 4
IF (OPERAND_SIZE == 64) V = 8
IF (OPERAND_SIZE == 16) Z = 2
IF (OPERAND_SIZE == 32) Z = 4
IF (OPERAND_SIZE == 64) Z = 4
IF (ADDRESS_SIZE == 16) A = 2
IF (ADDRESS_SIZE == 32) A = 4
IF (ADDRESS_SIZE == 64) A = 8
IF (STACK_SIZE == 16) S = 2
IF (STACK_SIZE == 32) S = 4
IF (STACK_SIZE == 64) S = 8

///
// Bit Range Inside a Register
///

temp_data[x:y] // Bits x through y (inclusive) of temp_data

///
// Variables and data types
///
NxtValue = 5 //default data type is unsigned int.

int //abstract data type representing an integer
bool //abstract data type; either TRUE or FALSE
vector //An array of data elements. Individual elements are accessed via
 //an unsigned integer zero-based index. Elements have a data type.
bit //a single bit
byte //8-bit value
word //16-bit value
doubleword //32-bit value
quadword //64-bit value
octword //128-bit value
double octword //256-bit value

Instruction Overview 61

24594—Rev. 3.32—March 2021 AMD64 Technology

unsigned int aval //treat aval as an unsigned integer value
signed int valx //treat valx as a signed integer value
bit vector b_vect //b_vect is an array of data elements. Each element is a bit.
b_vect[5] //The sixth element (bit) in the array. Indices are 0-based.

///
// Elements Within a packed data type
///

// element i of size w occupies bits [wi-1:wi]

///
// Moving Data From One Register To Another
///
temp_dest.b = temp_src; // 1-byte move (copies lower 8 bits of temp_src to
 // temp_dest, preserving the upper 56 bits of temp_dest)
temp_dest.w = temp_src; // 2-byte move (copies lower 16 bits of temp_src to
 // temp_dest, preserving the upper 48 bits of temp_dest)
temp_dest.d = temp_src; // 4-byte move (copies lower 32 bits of temp_src to
 // temp_dest; zeros out the upper 32 bits of temp_dest)
temp_dest.q = temp_src; // 8-byte move (copies all 64 bits of temp_src to
 // temp_dest)
temp_dest.v = temp_src; // 2-byte move if V==2
 // 4-byte move if V==4
 // 8-byte move if V==8
temp_dest.z = temp_src; // 2-byte move if Z==2
 // 4-byte move if Z==4
temp_dest.a = temp_src; // 2-byte move if A==2
 // 4-byte move if A==4
 // 8-byte move if A==8
temp_dest.s = temp_src; // 2-byte move if S==2
 // 4-byte move if S==4
 // 8-byte move if S==8

///
// Arithmetic Operators
///
a + b // integer addition
a - b // integer subtraction
a * b // integer multiplication
a / b // integer division. Result is the quotient
a % b // modulo. Result is the remainder after a is divided by b
// multiplication has precedence over addition where precedence is not explicitly
// indicated by grouping terms with parentheses

///
// Bitwise Operators
///
// temp, a, and b are values or register contents of the same size
temp = a AND b; // Corresponding bits of a and b are logically ANDed together

62 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

temp = a OR b; // Corresponding bits of a and b are logically ORed together
temp = a XOR b; // Each bit of temp is the exclusive OR of the corresponding
 // bits of a and b
temp = NOT a; // Each bit of temp is the complement of the corresponding
 // bit of a

// Concatenation
value = {field1,field2,100b}; //pack values of field1, field2 and 100b
size_of(value) = (size_of(field1) + size_of(field2) + 3)

///
// Logical Shift Operators
///
temp = a << b; // Result is a shifted left by _b_ bit positions. Zeros are
 // shifted into vacant positions. Bits shifted out are lost.
temp = a >> b; // Result is a shifted right by _b_ bit positions. Zeros are
 // shifted into vacant positions. Bits shifted out are lost.

///
// Logical Operators
///
// a boolean variable can assume one of two values (TRUE or FALSE)
// In these examples, FOO, BAR, CONE, and HEAD have been defined to be boolean
// variables
FOO && BAR // Logical AND
FOO || BAR // Logical OR
!FOO // Logical complement (NOT)

///
// Comparison Operators
///
// a and b are integer values. The result is a boolean value.
a == b // if a and b are equal, the result is TRUE; otherwise it is FALSE.
a != b // if a and b are not equal, the result is TRUE; otherwise it is FALSE.
a > b // if a is greater than b, the result is TRUE; otherwise it is FALSE.
a < b // if a is less than b, the result is TRUE; otherwise it is FALSE.
a >= b // if a is greater than or equal to b, the result is TRUE; otherwise
 // it is FALSE.
a <= b // if a is less than or equal to b, the result is TRUE; otherwise
 // it is FALSE.
///
// Logical Expressions
///
// Logical binary (two operand) and unary (one operand) operators can be combined
// with comparison operators to form more complex expressions. Parentheses are
// used to enclose comparison terms and to show precedence. If precedence is not
// explicitly shown, logical AND has precedence over logical OR. Unary operators
// have precedence over binary operators.

FOO && (a < b) || !BAR // evaluate the comparison a < b first, then
 // AND this with FOO. Finally OR this intermediate result

Instruction Overview 63

24594—Rev. 3.32—March 2021 AMD64 Technology

 // with the complement of BAR.

// Logical expressions can be English phrases that can be evaluated to be TRUE
// or FALSE. Statements assume knowledge of the system architecture (Volumes 1 and
// 2).
///

IF (it is raining)
 close the window

///
// Assignment Operators
///
a = a + b // The value a is assigned the sum of the values a and b
 //
temp = R1 // The contents of the register temp is replaced by a copy of the
 // contents of register R1.
R0 += 2 // R0 is assigned the sum of the contents of R0 and the integer 2.
 //
R5 |= R6 // R5 is assigned the result of the bit-wise OR of the contents of R5
 // and R6. Contents of R6 is unchanged.
R4 &= R7 // R4 is assigned the result of the bit-wise AND of the contents of
 // R4 and R7. Contents of R7 is unchanged.
///
// IF-THEN-ELSE
///
IF (FOO) <expression> // evaluation of <expression> is dependent on FOO
 // being TRUE. If FOO is FALSE, <expression> is not
 // evaluated.

IF (FOO)
 <dependent expression1> // scope of IF is indicated by indentation
 ...
 <dependent expressionx>

IF (FOO) // If FOO is TRUE, <dependent expression> is
 // evaluated and the remaining ELSEIF and ELSE
 <dependent expression> // clauses are skipped.
 //
ELSIF (BAR) // IF FOO is FALSE and BAR is TRUE, <alt expression>
 <alt expression> // is evaluated and the subsequent ELSEIF or ELSE
 // clauses are skipped.
ELSE
 <default expressions> // evaluated if all the preceeding IF and ELSEIF
 // conditions are FALSE.

IF ((FOO && BAR) || (CONE && HEAD)) // The condition can be an expression.
 <dependent expressions>

///
// Loops

64 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

///
FOR i = <init_val> to <final_val>, BY <step>
 <expression> // scope of loop is indicated by indentation
 // if <step> = 1, may omit "BY" clause

// nested loop example
temp = 0 //initialize temp
FOR i = 0 to 7 // i takes on the values 0 through 7 in succession
 temp += 1 // In the outer loop. Evaluated a total of 8 times.
 For j = 0 to 7, BY 2 // j takes on the values 0, 2, 4, and 6; but not 7.
 <inner-most exp> // This will be evaluated a total of 8 * 4 times.
<next expression outside both loops>

// C Language form of loop syntax is also allowed

FOR (i = 0; i < MAX; i++)
{

<expressions> //evaluated MAX times
}

///
// Functions
///
// Syntax for function definition
<return data type> <function_name>(argument,..)
 <expressions>
RETURN <result>

///
// Built-in Functions
///
SignExtend(arg) // returns value of _arg_ sign extended to the width of the data
 // type of the function. Data type of function is inferred from
 // the context of the function's invocation.

ZeroExtend(arg) // returns value of _arg_ zero extended to the width of the data
 // type of the function. Data type of function is inferred from
 // the context of the function's invocation.

indexof(reg) //returns binary value used to encode reg specification

///
// READ_MEM
// General memory read. This zero-extends the data to 64 bits and returns it.
///

usage:
 temp = READ_MEM.x [seg:offset] // where x is one of {v, z, b, w, d, q}
 // and denotes the size of the memory read

Instruction Overview 65

24594—Rev. 3.32—March 2021 AMD64 Technology

definition:

IF ((seg AND 0xFFFC) == NULL)
 // GP fault for using a null segment to reference memory
 EXCEPTION [#GP(0)]

 IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical

 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // #GP fault for segment limit violation in non-64-bit mode
 EXCEPTION [#GP(0)]

 IF ((64BIT_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in 64-bit mode
 EXCEPTION [#GP(0)]

 ELSIF (seg==SS) // SS checks for segment limit or canonical

 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // stack fault for segment limit violation in non-64-bit mode
 EXCEPTION [#SS(0)]

 IF ((64BIT_MODE) && (offset is non-canonical))
 // stack fault for non-canonical address in 64-bit mode
 EXCEPTION [#SS(0)]

 ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical

 IF (offset > seg.limit)
 // #GP fault for segment limit violation in all modes
 EXCEPTION [#GP(0)]

 IF ((LONG_MODE) && (offset is non-canonical))
 EXCEPTION [#GP(0)] // #GP fault for non-canonical address in long mode

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset misaligned, considering its
 size and alignment))
 EXCEPTION [#AC(0)]

 IF ((64_bit_mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (virtual-to-physical translation for temp_linear
 results in a page-protection violation))
 EXCEPTION [#PF(error_code)] // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)

66 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 temp_data = memory [temp_linear].x // zero-extends the data to 64
 // bits, and saves it in temp_data

 RETURN (temp_data) // return the zero-extended data

///
// WRITE_MEM // General memory write
///

usage:
 WRITE_MEM.x [seg:offset] = temp.x // where <X> is one of these:
 // {V, Z, B, W, D, Q} and denotes the
 // size of the memory write

definition:

 IF ((seg & 0xFFFC)== NULL) // GP fault for using a null segment
 // to reference memory
 EXCEPTION [#GP(0)]

IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // #GP fault for segment limit violation in non-64-bit mode
 EXCEPTION [#GP(0)]
 IF ((64BIT_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in 64-bit mode
 EXCEPTION [#GP(0)]

ELSEIF (seg==SS) // SS checks for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // stack fault for segment limit violation in non-64-bit mode
 EXCEPTION [#SS(0)]
 IF ((64BIT_MODE) && (offset is non-canonical))
 // stack fault for non-canonical address in 64-bit mode
 EXCEPTION [#SS(0)]

ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical
 IF (offset > seg.limit)
 // #GP fault for segment limit violation in all modes
 EXCEPTION [#GP(0)]
 IF ((LONG_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in long mode
 EXCEPTION [#GP(0)]

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset is misaligned, considering
 its size and alignment))
 EXCEPTION [#AC(0)]

Instruction Overview 67

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF ((64_bit_mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (the virtual-to-physical translation for
 temp_linear results in a page-protection violation))
 {
 EXCEPTION [#PF(error_code)]
 // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)
 }

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 memory [temp_linear].x = temp.x // write the bytes to memory

///
// PUSH // Write data to the stack
///

usage:
 PUSH.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the push

definition:

 WRITE_MEM.x [SS:RSP.s - X] = temp.x // write to the stack
 RSP.s = RSP - X // point RSP to the data just written

///
// POP // Read data from the stack, zero-extend it to 64 bits
///

usage:
 POP.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the pop

definition:

 temp = READ_MEM.x [SS:RSP.s] // read from the stack
 RSP.s = RSP + X // point RSP above the data just read

///
// READ_DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
///

68 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

usage:
 temp_descriptor = READ_DESCRIPTOR (selector, chktype)
 // chktype field is one of the following:
 // cs_chk used for far call and far jump
 // clg_chk used when reading CS for far call or far jump through call gate
 // ss_chk used when reading SS
 // iret_chk used when reading CS for IRET or RETF
 // intcs_chk used when readin the CS for interrupts and exceptions

definition:

 temp_offset = selector AND 0xfff8 // upper 13 bits give an offset
 // in the descriptor table

 IF (selector.TI == 0) // read 8 bytes from the gdt, split it into
 // (base,limit,attr) if the type bits
 temp_desc = READ_MEM.q [gdt:temp_offset]
 // indicate a block of memory, or split
 // it into (segment,offset,attr)
 // if the type bits indicate
 // a gate, and save the result in temp_desc
 ELSE
 temp_desc = READ_MEM.q [ldt:temp_offset]
 // read 8 bytes from the LDT, split it into
 // (base,limit,attr) if the type bits

// indicate a block of memory, or split
 // it into (segment,offset,attr) if the type
 // bits indicate a gate, and save the result
 // in temp_desc

 IF (selector.rpl or temp_desc.attr.dpl is illegal for the current mode/cpl)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.type is illegal for the current mode/chktype)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.p==0)
 EXCEPTION [#NP(selector)]

 RETURN (temp_desc)

///
// READ_IDT // Read an 8-byte descriptor from the IDT, return the descriptor
///

usage:
 temp_idt_desc = READ_IDT (vector)
 // "vector" is the interrupt vector number

Instruction Overview 69

24594—Rev. 3.32—March 2021 AMD64 Technology

definition:

 IF (LONG_MODE) // long-mode idt descriptors are 16 bytes long
 temp_offset = vector*16
 ELSE // (LEGACY_MODE) legacy-protected-mode idt descriptors are 8 bytes long
 temp_offset = vector*8

// read 8 bytes from the idt, split it into
// (segment,offset,attr), and save it in temp_desc

 temp_desc = READ_MEM.q [idt:temp_offset]

 IF (temp_desc.attr.dpl is illegal for the current mode/cpl)
// exception, with error code that indicates this IDT gate

 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.type is illegal for the current mode)
// exception, with error code that indicates this IDT gate

 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.p==0)
// segment-not-present exception, with an error code that
// indicates this IDT gate

 EXCEPTION [#NP(vector*8+2)]

 RETURN (temp_desc)

///
// READ_INNER_LEVEL_SP
// Read a new stack pointer (RSP or SS:ESP) from the TSS
///

usage:
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP (new_cpl, ist_index)

definition:

 IF (LONG_MODE)
 {
 IF (ist_index>0)
 temp_RSP = READ_MEM.q [tss:ist_index*8+28] // read ISTn stack

// pointer from the TSS
 ELSE // (ist_index==0)
 temp_RSP = READ_MEM.q [tss:new_cpl*8+4] // read RSPn stack

// pointer from the TSS

// in long mode, changing to lower cpl sets SS.sel to NULL+new_cpl
temp_SS_desc.sel = NULL + new_cpl

 ELSE // (LEGACY_MODE)
 {

70 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 temp_RSP = READ_MEM.d [tss:new_cpl*8+4] // read ESPn from the TSS
 temp_sel = READ_MEM.d [tss:new_cpl*8+8] // read SSn from the TSS
 temp_SS_desc = READ_DESCRIPTOR (temp_sel, ss_chk)
 }

 return (temp_RSP:temp_SS_desc)

///
// READ_BIT_ARRAY // Read 1 bit from a bit array in memory
///

usage:
 temp_value = READ_BIT_ARRAY ([mem], bit_number)

definition:

 temp_BYTE = READ_MEM.b [mem + (bit_number SHR 3)]
 // read the byte containing the bit

 temp_BIT = temp_BYTE SHR (bit_number & 7)
 // shift the requested bit position into bit 0

 return (temp_BIT & 0x01) // return ’0’ or ’1’

///
// Shadow Stack Functions
///

define SSTK_ENABLED = (CR4.CET) && (CR0.PE) && (!EFLAGS.VM)
define SSTK_USER_ENABLED = SSTK_ENABLED && (CPL==3) && (U_CET.SH_STK_EN)
define SSTK_SUPV_ENABLED = SSTK_ENABLED && (CPL <3) && (S_CET.SH_STK_EN)

bool ShadowStacksEnabled (privLevel)
IF (SSTK_ENABLED &&
 ((privLevel == 3) && U_CET.SH_STK_EN) ||
 ((privLevel < 3) && S_CET.SH_STK_EN))
 RETURN (TRUE)
ELSE
 RETURN (FALSE)

///
// SSTK_READ_MEM // read shadow stack memory
// Usage: temp = SSTK_READ_MEM.x [linear_addr]
// where x is either d or q (4 or 8 bytes)
///

IF (PAGING_ENABLED) && (
 (the linear address maps to a not-present page)
 || (the linear address maps to a non-shadow stack page)
 || (the access is user-mode &&

Instruction Overview 71

24594—Rev. 3.32—March 2021 AMD64 Technology

 the linear address maps to a supervisor shadow stack page)
 || (the access is supervisor-mode &&
 the linear address maps to a user shadow stack page))
 EXCEPTION [PF(error_code)] // page fault, with the SS (shadow stack) bit
 // set in error_code and the present and
 // protection violation bits as appropriate
temp_data.x = memory [linear_addr].x
RETURN (temp_data)

///
// SSTK_WRITE_MEM // write shadow stack memory
// Usage: SSTK_WRITE_MEM.x [linear_addr] = temp.x
// where x is either d or q (4 or 8 bytes)
///

IF (PAGING_ENABLED) && (
 (the linear address maps to a not-present page)
 || (the linear address maps to a non-shadow stack page)
 || (the access is user-mode &&
 the linear address maps to a supervisor shadow stack page)
 || (the access is supervisor-mode &&
 the linear address maps to a user shadow stack page))
 EXCEPTION [PF(error_code)] // page fault, w/ the SS (shadow stack) bit
 // set in error_code and the present and
 // protection violation bits as appropriate
memory [linear_addr].x = temp.x

///
// SET_SSTK_TOKEN_BUSY (new_SSP)
// Checks shadow stack token and if valid set the token's busy bit
// Usage: SET_SSTK_TOKEN_BUSY (new_SSP)
///

 IF (new_SSP[2:0] != 0) // new SSP must be 8-byte aligned
 EXCEPTION [#GP(0)]
 // check shadow stack token and set busy
 bool FAULT = FALSE
 < start atomic section >
 temp_Token = SSTK_READ_MEM.q [new_SSP] // fetch token with locked read
 IF ((!64-bit mode) && (temp_token[63:32] != 0))
 FAULT = TRUE // address in token must be <4GB
 // in legacy/compatibility mode
 IF ((temp_Token AND 0x01) != 0)
 FAULT = TRUE // token busy bit must be 0
 IF ((temp_Token AND ~0x01) != new_SSP)
 FAULT = TRUE // address in token must match new SSP
 IF (!FAULT)
 temp_Token = temp_Token OR 0x01 // if no faults, set token busy bit
 SSTK_WRITE_MEM.q [new_SSP] = temp_Token // write token and unlock
 < end atomic section >
 IF (FAULT)

72 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 EXCEPTION [#GP(0)]

General-Purpose 73
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the general-purpose instructions. General-purpose instructions are used in
basic software execution. Most of these instructions load, store, or operate on data located in the
general-purpose registers (GPRs), in memory, or in both. The remaining instructions are used to alter
the sequential flow of the program by branching to other locations within the program, or to entirely
different programs. With the exception of the MOVD, MOVMSKPD and MOVMSKPS instructions,
which operate on MMX/XMM registers, the instructions within the category of general-purpose
instructions do not operate on any other register set.

Most general-purpose instructions are supported in all hardware implementations of the AMD64
architecture. However, some instructions in this group are optional and support must be determined by
testing processor feature flags using the CPUID instruction. These instructions are listed in Table 3-1,
along with the CPUID function, register and bit used to test for the presence of the instruction.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Function(s) Register[Bit] Feature Flag

ADCX, ADOX 0000_0007h (ECX=0) EBX[19] ADX

Bit Manipulation Instructions -
group 1 0000_0007h (ECX=0) EBX[3] BMI1

Bit Manipulation Instructions -
group 2 0000_0007h (ECX=0) EBX[8] BMI2

CLFLOPT 0000_0007_0 EBX[23] CLFLOPT

CLWB 0000_0007h (ECX=0) EBX[24] CLWB

CLZERO 8000_0008h EBX[0] CLZERO

CMPXCHG8B 0000_0001h, 8000_0001h EDX[8] CMPXCHG8B

CMPXCHG16B 0000_0001h ECX[13] CMPXCHG16B

CMOVcc (Conditional Moves) 0000_0001h, 8000_0001h EDX[15] CMOV

CLFLUSH 0000_0001h EDX[19] CLFSH

CRC32 0000_0001h ECX[20] SSE42

LAHF, SAHF 8000_0001h ECX[0] LahfSahf

LZCNT 8000_0001h ECX[5] ABM

Long Mode and Long Mode
instructions 8000_0001h EDX[29] LM

MCOMMIT 8000_0008h EBX[8] MCOMMIT

MFENCE, LFENCE 0000_0001h EDX[26] SSE2

MONITORX, MWAITX 8000_0001h ECX[29] MONITORX

MOVBE 0000_0001h ECX[22] MOVBE

74 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 160. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The general-purpose instructions can be used in legacy mode or 64-bit long mode. Compilation of
general-purpose programs for execution in 64-bit long mode offers three primary advantages: access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPR0–GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information about the general-purpose instructions and register resources, see:

• “General-Purpose Programming” in Volume 1.

• “Summary of Registers and Data Types” on page 38.

• “Notation” on page 52.

• “Instruction Prefixes” on page 5.

• Appendix B, “General-Purpose Instructions in 64-Bit Mode.” In particular, see “General Rules for
64-Bit Mode” on page 557.

MOVD1
0000_0001h, 8000_0001h EDX[23] MMX

0000_0001h EDX[26] SSE2

MOVNTI 0000_0001h EDX[26] SSE2

POPCNT 0000_0001h ECX[23] POPCNT

PREFETCH /
PREFETCHW2 8000_0001h

ECX[8] 3DNowPrefetch

EDX[29] LM

EDX[31] 3DNow

RDFSBASE, RDGSBASE
WRFSBASE, WRGSBASE 0000_0007h (ECX=0) EBX[0] FSGSBASE

RDPRU 8000_0008h EBX[4] RDPRU

RDRAND 0000_0001h ECX[30] RDRAND

RDSEED 0000_0007h (ECX=0) EBX[18] RDSEED

RDPID 0000_0007h (ECX=0) ECX[22] RDPID

SFENCE 0000_0001h EDX[25] SSE

Trailing Bit Manipulation
Instructions 8000_0001h ECX[21] TBM

Notes:
1. The MOVD variant that moves values to or from MMX registers is part of the MMX subset; the MOVD variant that

moves data to or from XMM registers is part of the SSE2 subset.
2. Instruction is supported if any one of the listed feature flags is set.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits (continued)

Instruction CPUID Function(s) Register[Bit] Feature Flag

General-Purpose 75
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction after using
the ADD instruction to add two unpacked BCD numbers.

The instruction is coded without explicit operands:

AAA

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction
increments the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise, it
does not change the AH register and clears the CF and AF flags to 0. In either case, AAA clears bits
7:4 of the AL register, leaving the correct decimal digit in bits 3:0.

This instruction also makes it possible to add ASCII numbers without having to mask off the upper
nibble ‘3’.

MXCSR Flags Affected

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAD, AAM, AAS

rFLAGS Affected

Exceptions

AAA ASCII Adjust After Addition

Mnemonic Opcode Description

AAA 37 Create an unpacked BCD number.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

76 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant) registers to
a single binary value in the AL register.

The instruction is coded without explicit operands:

AAD

The instruction performs the following operation on the contents of AL and AH using the formula:

AL = ((10d * AH) + (AL))

After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate byte value (ib)
suffixed onto the D5h opcode. For example, code D508h for octal, D50Ah for decimal, and D50Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAM, AAS

rFLAGS Affected

Exceptions

AAD ASCII Adjust Before Division

Mnemonic Opcode Description

AAD D5 0A Adjust two BCD digits in AL and AH.
(Invalid in 64-bit mode.)

(None) D5 ib Adjust two BCD digits to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

General-Purpose 77
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Converts the value in the AL register from binary to two unpacked BCD digits in the AH (most
significant) and AL (least significant) registers.

The instruction is coded without explicit operands:

AAM

The instruction performs the following operation on the contents of AL and AH using the formula:

AH = (AL/10d)
AL = (AL mod 10d)

In most modern assemblers, the AAM instruction adjusts to base-10 values. However, by coding the
instruction directly in binary, it can adjust to any base specified by the immediate byte value (ib)
suffixed onto the D4h opcode. For example, code D408h for octal, D40Ah for decimal, and D40Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib
Create a pair of unpacked values to the immediate byte
base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined
flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

78 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction after using
the SUB instruction to subtract two unpacked BCD numbers.

The instruction is coded without explicit operands:

AAS

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value in
AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise, it clears the CF and
AF flags and the AH register is unchanged. In either case, the instruction clears bits 7:4 of the AL
register, leaving the correct decimal digit in bits 3:0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAM

rFLAGS Affected

Exceptions

AAS ASCII Adjust After Subtraction

Mnemonic Opcode Description

AAS 3F
Create an unpacked BCD number from the contents of
the AL register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

General-Purpose 79
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the carry flag (CF), the value in a register or memory location (first operand), and an immediate
value or the value in a register or memory location (second operand), and stores the result in the first
operand location.

The instruction has two operands:

ADC dest, src

The instruction cannot add two memory operands. The CF flag indicates a pending carry from a
previous addition operation. The instruction sign-extends an immediate value to the length of the
destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

ADC Add with Carry

Mnemonic Opcode Description

ADC AL, imm8 14 ib Add imm8 to AL + CF.

ADC AX, imm16 15 iw Add imm16 to AX + CF.

ADC EAX, imm32 15 id Add imm32 to EAX + CF.

ADC RAX, imm32 15 id Add sign-extended imm32 to RAX + CF.

ADC reg/mem8, imm8 80 /2 ib Add imm8 to reg/mem8 + CF.

ADC reg/mem16, imm16 81 /2 iw Add imm16 to reg/mem16 + CF.

ADC reg/mem32, imm32 81 /2 id Add imm32 to reg/mem32 + CF.

ADC reg/mem64, imm32 81 /2 id Add sign-extended imm32 to reg/mem64 + CF.

ADC reg/mem16, imm8 83 /2 ib Add sign-extended imm8 to reg/mem16 + CF.

ADC reg/mem32, imm8 83 /2 ib Add sign-extended imm8 to reg/mem32 + CF.

ADC reg/mem64, imm8 83 /2 ib Add sign-extended imm8 to reg/mem64 + CF.

ADC reg/mem8, reg8 10 /r Add reg8 to reg/mem8 + CF

ADC reg/mem16, reg16 11 /r Add reg16 to reg/mem16 + CF.

ADC reg/mem32, reg32 11 /r Add reg32 to reg/mem32 + CF.

ADC reg/mem64, reg64 11 /r Add reg64 to reg/mem64 + CF.

ADC reg8, reg/mem8 12 /r Add reg/mem8 to reg8 + CF.

ADC reg16, reg/mem16 13 /r Add reg/mem16 to reg16 + CF.

80 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ADD, SBB, SUB

rFLAGS Affected

Exceptions

ADC reg32, reg/mem32 13 /r Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13 /r Add reg/mem64 to reg64 + CF.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 81
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register (first operand) with a register or memory (second operand) and the carry
flag, and stores the result in the first operand location. This instruction sets the CF based on the
unsigned addition. This instruction is useful in multi-precision addition algorithms.

This i s an ADX ins t ruc t ions . Suppor t fo r th i s ins t ruc t ion i s ind ica ted by CPUID
Fn0000_0007_EBX[ADX]=1.

rFLAGS Affected

Exceptions

ADCX Unsigned ADD with Carry Flag

Mnemonic Opcode Description

ADCX reg32, reg/mem32 66 0F 38 F6 /r Unsigned add with carryflag

ADCX reg64, reg/mem64 66 0F 38 F6 /r Unsigned add with carry flag.

Related Instructions

ADOX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

82 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalid opcode, #UD
X X X Instruction not supported by CPUID

Fn0000_0007_EBX[ADX] = 0.

X X Lock prefix (F0h) preceding opcode.

Exception Real
Virtual
8086 Protected Cause of Exception

General-Purpose 83
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register or memory location (first operand) and an immediate value or the value in
a register or memory location (second operand), and stores the result in the first operand location.

The instruction has two operands:

ADD dest, src

The instruction cannot add two memory operands. The instruction sign-extends an immediate value to
the length of the destination register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

ADD Signed or Unsigned Add

Mnemonic Opcode Description

ADD AL, imm8 04 ib Add imm8 to AL.

ADD AX, imm16 05 iw Add imm16 to AX.

ADD EAX, imm32 05 id Add imm32 to EAX.

ADD RAX, imm32 05 id Add sign-extended imm32 to RAX.

ADD reg/mem8, imm8 80 /0 ib Add imm8 to reg/mem8.

ADD reg/mem16, imm16 81 /0 iw Add imm16 to reg/mem16

ADD reg/mem32, imm32 81 /0 id Add imm32 to reg/mem32.

ADD reg/mem64, imm32 81 /0 id Add sign-extended imm32 to reg/mem64.

ADD reg/mem16, imm8 83 /0 ib Add sign-extended imm8 to reg/mem16

ADD reg/mem32, imm8 83 /0 ib Add sign-extended imm8 to reg/mem32.

ADD reg/mem64, imm8 83 /0 ib Add sign-extended imm8 to reg/mem64.

ADD reg/mem8, reg8 00 /r Add reg8 to reg/mem8.

ADD reg/mem16, reg16 01 /r Add reg16 to reg/mem16.

ADD reg/mem32, reg32 01 /r Add reg32 to reg/mem32.

ADD reg/mem64, reg64 01 /r Add reg64 to reg/mem64.

ADD reg8, reg/mem8 02 /r Add reg/mem8 to reg8.

ADD reg16, reg/mem16 03 /r Add reg/mem16 to reg16.

ADD reg32, reg/mem32 03 /r Add reg/mem32 to reg32.

ADD reg64, reg/mem64 03 /r Add reg/mem64 to reg64.

84 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ADC, SBB, SUB

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 85
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register (first operand) with a register or memory (second operand) and the
overflow flag, and stores the result in the first operand location. This instruction sets the OF based on
the unsigned addition and whether there is a carry out. This instruction is useful in multi-precision
addition algorithms.

This i s an ADX ins t ruc t ions . Suppor t fo r th i s ins t ruc t ion i s ind ica ted by CPUID
Fn0000_0007_EBX[ADX]=1.

rFLAGS Affected

Exceptions

ADOX Unsigned ADD with Overflow Flag

Mnemonic Opcode Description

ADOX reg32, reg/mem32 F3 0F 38 F6 /r Unsigned add with overflow flag

ADOX reg64, reg/mem64 F3 0F 38 F6 /r Unsigned add with overflow flag.

Related Instructions

ADCX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

86 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalid opcode, #UD
X X X Instruction not supported by CPUID

Fn0000_0007_EBX[ADX] = 0.

X X Lock prefix (F0h) preceding opcode.

Exception Real
Virtual
8086 Protected Cause of Exception

General-Purpose 87
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical and operation on the value in a register or memory location (first operand)
and an immediate value or the value in a register or memory location (second operand), and stores the
result in the first operand location. Both operands cannot be memory locations.

The instruction has two operands:

AND dest, src

The instruction sets each bit of the result to 1 if the corresponding bit of both operands is set;
otherwise, it clears the bit to 0. The following table shows the truth table for the logical and operation:

The forms of the AND instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

AND Logical AND

X Y X and Y

0 0 0

0 1 0

1 0 0

1 1 1

Mnemonic Opcode Description

AND AL, imm8 24 ib and the contents of AL with an immediate 8-bit value and store
the result in AL.

AND AX, imm16 25 iw and the contents of AX with an immediate 16-bit value and store
the result in AX.

AND EAX, imm32 25 id and the contents of EAX with an immediate 32-bit value and
store the result in EAX.

AND RAX, imm32 25 id and the contents of RAX with a sign-extended immediate 32-bit
value and store the result in RAX.

AND reg/mem8, imm8 80 /4 ib and the contents of reg/mem8 with imm8.

AND reg/mem16, imm16 81 /4 iw and the contents of reg/mem16 with imm16.

AND reg/mem32, imm32 81 /4 id and the contents of reg/mem32 with imm32.

AND reg/mem64, imm32 81 /4 id and the contents of reg/mem64 with sign-extended imm32.

AND reg/mem16, imm8 83 /4 ib and the contents of reg/mem16 with a sign-extended 8-bit value.

AND reg/mem32, imm8 83 /4 ib and the contents of reg/mem32 with a sign-extended 8-bit value.

AND reg/mem64, imm8 83 /4 ib and the contents of reg/mem64 with a sign-extended 8-bit value.

88 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

TEST, OR, NOT, NEG, XOR

rFLAGS Affected

Exceptions

AND reg/mem8, reg8 20 /r and the contents of an 8-bit register or memory location with the
contents of an 8-bit register.

AND reg/mem16, reg16 21 /r and the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

AND reg/mem32, reg32 21 /r and the contents of a 32-bit register or memory location with the
contents of a 32-bit register.

AND reg/mem64, reg64 21 /r and the contents of a 64-bit register or memory location with the
contents of a 64-bit register.

AND reg8, reg/mem8 22 /r and the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

AND reg16, reg/mem16 23 /r and the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

AND reg32, reg/mem32 23 /r and the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

AND reg64, reg/mem64 23 /r and the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonix‘cal.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 89
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical and of the second source operand and the one's complement of the first
source operand and stores the result into the destination operand.

This instruction has three operands:

ANDN dest, src1, src2

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination operand (dest) is always a general purpose register.

The first source operand (src1) is a general purpose register and the second source operand (src2) is
either a general purpose register or a memory operand.

This instruction implements the following operation:

not tmp, src1
and dest, tmp, src2

The flags are set according to the result of the and pseudo-operation.

The ANDN instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

ANDN Logical And-Not

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

ANDN reg32, reg32, reg/mem32 C4 RXB.02 0.src1.0.00 F2 /r

ANDN reg64, reg64, reg/mem64 C4 RXB.02 1.src1.0.00 F2 /r

90 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
80806

Protected Cause of Exception

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 91
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a general purpose register that provides two fields describing the range of
bits to extract:

• lsb_index (in bits 7:0)—specifies the index of the least significant bit of the field

• length (in bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a BMI1 instruction. Support for this instruction is indicated by
CPUID Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

BEXTR
(register form)

 Bit Field Extract

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, reg32 C4 RXB.02 0.cntl.0.00 F7 /r

BEXTR reg64, reg/mem64, reg64 C4 RXB.02 1.cntl.0.00 F7 /r

92 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 93
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a 32-bit immediate value that provides two fields describing the range of
bits to extract:

• lsb_index (in immediate operand bits 7:0)—specifies the index of the least significant bit of the
field

• length (in immediate operand bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a TBM instruction. Support for this instruction is indicated by
CPUID Fn8000_0001_ECX[TBM] =1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

BEXTR
(immediate form)

 Bit Field Extract

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, imm32 8F RXB.0A 0.1111.0.00 10 /r /id

BEXTR reg64, reg/mem64, imm32 8F RXB.0A 1.1111.0.00 10 /r /id

94 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 95
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0 and writes
the result to the destination. If there is no zero bit in the source operand, the destination is written with
all zeros.

This instruction has two operands:

BLCFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCFILL instruction effectively performs a bit-wise logical and of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmp, src, 1
and dest,tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCFILL Fill From Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /1

BLCFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /1

96 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 97
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets all other bits to 1 and writes the result to
the destination. If there is no zero bit in the source operand, the destination is written with all ones.

This instruction has two operands:

BLCI dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCI instruction effectively performs a bit-wise logical or of the source operand and the inverse
of the result of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
not tmp, tmp
or dest, tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the or pseudo-instruction.

The BLCI instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCI Isolate Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCI reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /6

BLCI reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /6

98 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 99
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all other bits to 0 and
writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all zeros.

This instruction has two operands:

BLCIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCIC instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of incrementing the source operand by 1, and stores the result to the destination
register:

add tmp1, src, 1
not tmp2, src
and dest, tmp1,tmp2

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCIC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCIC Isolate Lowest Clear Bit and Complement

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /5

BLCIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /5

100 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 101
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all bits above that bit
to 0 and writes the result to the destination. If there is no zero bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLCMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCMSK instruction effectively performs a bit-wise logical xor of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmp1, src, 1
xor dest, tmp1,src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the xor pseudo-instruction.

If the input is all ones, the output is a value with all bits set to 1.

The BLCMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCMSK Mask From Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /1

BLCMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /1

102 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 103
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1 and writes the result to the
destination. If there is no zero bit in the source operand, the source is copied to the destination (and CF
in rFLAGS is set to 1).

This instruction has two operands:

BLCS dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCS instruction effectively performs a bit-wise logical or of the source operand and the result
of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGS is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLCS instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCS Set Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCS reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /3

BLCS reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /3

104 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 105
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant one bit in the source operand, sets all bits below that bit to 1 and writes the
result to the destination. If there is no one bit in the source operand, the destination is written with all
ones.

This instruction has two operands:

BLSFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSFILL instruction effectively performs a bit-wise logical or of the source operand and the
result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSFILL Fill From Lowest Set Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLSFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /2

BLSFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /2

106 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 107
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears all bits in the source operand except for the least significant bit that is set to 1 and writes the
result to the destination. If the source is all zeros, the destination is written with all zeros.

This instruction has two operands:

BLSI dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a bit memory operand.

This instruction implements the following operation:

neg tmp, src1
and dst, tmp, src1

The value of the carry flag is generated by the neg pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSI instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSI Isolate Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSI reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /3

BLSI reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /3

108 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 109
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant bit that is set to 1 in the source operand, clears that bit to 0, sets all other bits
to 1 and writes the result to the destination. If there is no one bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLSIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSIC instruction effectively performs a bit-wise logical or of the inverse of the source operand
and the result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGS is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSR instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSIC Isolate Lowest Set Bit and Complement

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLSIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /6

BLSIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /6

110 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 111
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Forms a mask with bits set to 1 from bit 0 up to and including the least significant bit position that is set
to 1 in the source operand and writes the mask to the destination. If the value of the source operand is
zero, the destination is written with all ones.

This instruction has two operands:

BLSMSK dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand and the destination
operand (dest) is a general purpose register.

This instruction implements the operation:

sub tmp, src1, 1
xor dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the xor pseudo-instruction.

If the input is zero, the output is a value with all bits set to 1. If this is considered a corner case input,
software may test the carry flag to detect the zero input value.

The BLSMSK instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSMSK Mask From Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSMSK reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /2

BLSMSK reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /2

112 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 113
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the least-significant bit that is set to 1 in the input operand and writes the modified operand to
the destination.

This instruction has two operands:

BLSR dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

This instruction implements the operation:

sub tmp, src1, 1
and dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSR instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSR Reset Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSR reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /1

BLSR reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /1

114 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 115
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Checks whether an array index (first operand) is within the bounds of an array (second operand). The
array index is a signed integer in the specified register. If the operand-size attribute is 16, the array
operand is a memory location containing a pair of signed word-integers; if the operand-size attribute is
32, the array operand is a pair of signed doubleword-integers. The first word or doubleword specifies
the lower bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or equal to the upper
bound. If the index is not within the specified bounds, the processor generates a BOUND range-
exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower and upper limits
of the array, usually reside in a data structure just before the array itself, making the limits addressable
through a constant offset from the beginning of the array. With the address of the array in a register,
this practice reduces the number of bus cycles required to determine the effective address of the array
bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

INT, INT3, INTO

rFLAGS Affected

None

Exceptions

BOUND Check Array Bound

Mnemonic Opcode Description

BOUND reg16, mem16&mem16 62 /r
Test whether a 16-bit array index is within the bounds
specified by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

BOUND reg32, mem32&mem32 62 /r
Test whether a 32-bit array index is within the bounds
specified by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Bound range, #BR X X X The bound range was exceeded.

Invalid opcode,
#UD

X X X The source operand was a register.

X Instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit

General protection,
#GP

X X X A memory address exceeded a data segment limit.

X A null data segment was used to reference memory.

116 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

General-Purpose 117
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Searches the value in a register or a memory location (second operand) for the least-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the least-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSR

rFLAGS Affected

Exceptions

BSF Bit Scan Forward

Mnemonic Opcode Description

BSF reg16, reg/mem16 0F BC /r Bit scan forward on the contents of reg/mem16.

BSF reg32, reg/mem32 0F BC /r Bit scan forward on the contents of reg/mem32.

BSF reg64, reg/mem64 0F BC /r Bit scan forward on the contents of reg/mem64

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

118 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Searches the value in a register or a memory location (second operand) for the most-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the most-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSF

rFLAGS Affected

Exceptions

BSR Bit Scan Reverse

Mnemonic Opcode Description

BSR reg16, reg/mem16 0F BD /r Bit scan reverse on the contents of reg/mem16.

BSR reg32, reg/mem32 0F BD /r Bit scan reverse on the contents of reg/mem32.

BSR reg64, reg/mem64 0F BD /r Bit scan reverse on the contents of reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 119
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Reverses the byte order of the specified register. This action converts the contents of the register from
little endian to big endian or vice versa. In a doubleword, bits 7:0 are exchanged with bits 31:24, and
bits 15:8 are exchanged with bits 23:16. In a quadword, bits 7:0 are exchanged with bits 63:56, bits
15:8 with bits 55:48, bits 23:16 with bits 47:40, and bits 31:24 with bits 39:32. A subsequent use of the
BSWAP instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap the bytes of a
16-bit register, use the XCHG instruction and specify the respective byte halves of the 16-bit register
as the two operands. For example, to swap the bytes of AX, use XCHG AL, AH.

Related Instructions

XCHG

rFLAGS Affected

None

Exceptions

None

BSWAP Byte Swap

Mnemonic Opcode Description

BSWAP reg32 0F C8 +rd Reverse the byte order of reg32.

BSWAP reg64 0F C8 +rq Reverse the byte order of reg64.

120 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the
specified memory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula:

Effective Address + (NumBytesi * (BitOffset DIV NumBitsi*8))

When using this bit addressing mechanism, avoid referencing areas of memory close to address space
holes, such as references to memory-mapped I/O registers. Instead, use a MOV instruction to load a
register from such an address and use a register form of the BT instruction to manipulate the data.

Related Instructions

BTC, BTR, BTS

BT Bit Test

Mnemonic Opcode Description

BT reg/mem16, reg16 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem32, reg32 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem64, reg64 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem16, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem32, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem64, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

General-Purpose 121
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

122 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such an
application should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTR, BTS

BTC Bit Test and Complement

Mnemonic Opcode Description

BTC reg/mem16, reg16 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, reg32 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, reg64 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem16, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

General-Purpose 123
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

124 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTS

BTR Bit Test and Reset

Mnemonic Opcode Description

BTR reg/mem16, reg16 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, reg32 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, reg64 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem16, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

General-Purpose 125
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

126 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTR

BTS Bit Test and Set

Mnemonic Opcode Description

BTS reg/mem16, reg16 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, reg32 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, reg64 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem16, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

General-Purpose 127
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

128 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies bits, left to right, from the first source operand starting with the bit position specified by the
second source operand (index), writes these bits to the destination, and clears all the bits in positions
greater than or equal to index.

This instruction has three operands:

BZHI dest, src, index

In 64-bit mode, the operand size (op_size) is determined by the value of VEX.W. If VEX.W is 1, the
operand size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored.
16-bit operands are not supported.

The destination (dest) is a general purpose register. The first source operand (src) is either a general
purpose register or a memory operand. The second source operand is a general purpose register. Bits
[7:0] of this register, treated as an unsigned 8-bit integer, specify the index of the most-significant bit
of the first source operand to be copied to the corresponding bit of the destination. Bits [op_size-
1:index] of the destination are cleared.

If the value of index is greater than or equal to the operand size, index is set to (op_size-1). In this case,
the CF flag is set.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BZHI Zero High Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BZHI reg32, reg/mem32, reg32 C4 RXB.02 0.index.0.00 F5 /r

BZHI reg64, reg/mem64, reg64 C4 RXB.02 1.index.0.00 F5 /r

General-Purpose 129
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

130 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Pushes the offset of the next instruction onto the stack and branches to the target address, which
contains the first instruction of the called procedure. The target operand can specify a register, a
memory location, or a label. A procedure accessed by a near CALL is located in the same code
segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read
from the operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to the rIP (of the
following instruction), and the result is truncated to 16, 32, or 64 bits, depending on the operand size.
The signed displacement is 16 or 32 bits, depending on the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the size of the stack
push (16, 32, or 64 bits) depends on the operand size of the CALL instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode results in
RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in RIP = 64-bit offset from
register or memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction following the
original CALL. When RET is executed, the rIP is popped off the stack, which returns control to the
instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

CALL (Near) Near Procedure Call

Mnemonic Opcode Description

CALL rel16off E8 iw Near call with the target specified by a 16-bit relative
displacement.

CALL rel32off E8 id Near call with the target specified by a 32-bit relative
displacement.

CALL reg/mem16 FF /2 Near call with the target specified by reg/mem16.

CALL reg/mem32 FF /2 Near call with the target specified by reg/mem32. (There
is no prefix for encoding this in 64-bit mode.)

CALL reg/mem64 FF /2 Near call with the target specified by reg/mem64.

General-Purpose 131
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Action

// For function ShadowStacksEnabled()
// see "Pseudocode Definition" on page 57

CALLN_START:

IF (OPCODE == calln abs [mem]) // CALLN, abs indirect
 temp_RIP = READ_MEM.z [mem]
ELSE // CALLN, rel/abs direct
 temp_RIP = z-sized instruction offset field, zero-extended to 64 bits

IF (OPCODE == calln rel) // if relative, add offset to rIP
 temp_RIP = temp_RIP + RIP.v

IF (stack is not large enough for a v-sized push)
 EXCEPTION[#SS(0)]

PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION[#GP(0)]

IF ((ShadowStacksEnabled(current CPL)) && (OPCODE != calln +0))
 {
 IF (v == 2) // operand size = 16
 {
 SSTK_WRITE_MEM.d [SSP-4] = IP
 SSP = SSP - 4
 }
 ELSEIF (v == 4) // operand size = 32
 {
 SSTK_WRITE_MEM.d [SSP-4] = EIP
 SSP = SSP - 4
 }
 ELSE // (v == 8) // operand size = 64
 {
 SSTK_WRITE_MEM.q [SSP-8] = RIP
 SSP = SSP - 8
 }
 } // end shadow stacks enabled

RIP = temp_RIP

EXIT

Related Instructions

CALL(Far), RET(Near), RET(Far)

132 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Alignment Check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Page Fault, #PF X X A page fault resulted from the execution of the instruction.

General-Purpose 133
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pushes procedure linking information onto the stack and branches to the target address, which contains
the first instruction of the called procedure. The operand specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the immediate and
displacement fields of the instruction, or indirectly, by referencing a far pointer in memory. In 64-bit
mode, only indirect far calls are allowed; executing a direct far call (opcode 9A) generates an
undefined opcode exception. For both direct and indirect far calls, if the CALL (Far) operand-size is
16 bits, the instruction's operand is a 16-bit offset followed by a 16-bit selector. If the operand-size is
32 or 64 bits, the operand is a 32-bit offset followed by a 16-bit selector.

The target selector used by the instruction can be a code selector in all modes. Additionally, the target
selector can reference a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code selector—The CS:rIP of the next instruction is pushed to the stack, using operand-
size stack pushes. Then code is executed from the target CS:rIP. In this case, the target offset can
only be a 16- or 32-bit value, depending on operand-size, and is zero-extended to 64 bits. No CPL
change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same CPL as the
current code segment, the CS:rIP of the next instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an inner-level stack
pointer from the TSS. The CS:rIP of the next instruction is pushed to the new stack. If the mode is
legacy mode and the param-count field in the call gate is non-zero, then up to 31 operands are
copied from the caller's stack to the new stack. Finally, the caller's SS:rSP is pushed to the new
stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depending on the size of
the call gate. The size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows 64-
bit call gates that must point to 64-bit code segments.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs.
See “Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See CALL (Near) for information on near calls—calls to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

CALL (Far) Far Procedure Call

134 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Action
// For functions READ_DESCRIPTOR, READ_INNER_LEVEL_SP,
// ShadowStacksEnabled and SET_TOKEN_BUSY see "Pseudocode Definition"
// on page 57

CALLF_START:

IF (REAL_MODE)
 CALLF_REAL_OR_VIRTUAL // CALLF real mode
ELSEIF (PROTECTED_MODE)
 CALLF_PROTECTED // CALLF protected mode
ELSE // virtual mode
 CALLF_REAL_OR_VIRTUAL // CALLF virtual mode

CALLF_REAL_OR_VIRTUAL:

IF (OPCODE == callf [mem]) // CALLF real mode, indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
ELSE // CALLF real mode, direct
 {
 temp_RIP = z-sized instruction offset field, zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }
PUSH.v old_CS
PUSH.v next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT // end CALLF real or virtual

Mnemonic Opcode Description

CALL FAR pntr16:16 9A cd Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR pntr16:32 9A cp Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR mem16:16 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

CALL FAR mem16:32 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

General-Purpose 135
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

CALLF_PROTECTED:

IF (OPCODE == callf [mem]) // CALLF protected mode, indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
ELSE // CALLF protected mode, direct
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // CALLF direct is illegal in 64-bit mode.
 temp_offset = z-sized instruction offset field, zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)

IF (temp_desc.attr.type == ’available_tss’)
 TASK_SWITCH // Using temp_sel as the target TSS
ELSEIF (temp_desc.attr.type == ’taskgate’)
 TASK_SWITCH // Using the TSS selector in the task gate as the target TSS
ELSEIF (temp_desc.attr.type == ’callgate’)
 CALLF_CALLGATE // CALLF through callgate
ELSE // (temp_desc.attr.type == ’code’)
 { // the selector refers to a code descriptor
 temp_RIP = temp_offset // the target RIP is the instruction offset field
 CS = temp_desc
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)] // temp_RIP can't be non-canonical because its' a
 // 16- or 32-bit offset, zero-extended to 64 bits
 RIP = temp_RIP

 IF ShadowStacksEnabled at current CPL
 {
 IF (v == 2)
 temp_LIP = CS.base + IP // operand size = 16
 ELSEIF (v == 4)
 temp_LIP = CS.base + EIP // operand size = 32
 ELSE // (v == 8)
 temp_LIP = RIP // operand size = 64

 IF EFER.LMA && (temp_desc.attr.L == 0) && (SSP[63:32] != 0)
 EXCEPTION [#GP(0)] // SSP must be <4 GB

 Align SSP to 8B boundary, storing 4B of 0 if needed
 old_SSP = SSP
 SSTK_WRITE_MEM.q [SSP-16] = old_CS // push CS, LIP, SSP

136 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 SSTK_WRITE_MEM.q [SSP-8] = temp_LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP] = old_SSP
 SSP = SSP - 24
 }

 EXIT
 } // end CALLF selector=code segment

CALLF_CALLGATE:

IF (LONG_MODE) // the gate size controls the size of the stack pushes
 v=8-byte // Long mode only uses 64-bit call gates, force 8-byte opsize
ELSEIF (temp_desc.attr.type == 'callgate32')
 v=4-byte // Legacy mode, using a 32-bit call-gate, force 4-byte
ELSE // (temp_desc.attr.type == 'callgate16')
 v=2-byte // Legacy mode, using a 16-bit call-gate, force 2-byte opsize

// the target CS and RIP both come from the call gate.
temp_RIP = temp_desc.offset

IF (LONG_MODE)
 { // read 2nd half of 16-byte call-gate
 temp_upper = READ_MEM.q [temp_sel+8] // to get upper 32 bits of target RIP
 IF (temp_upper's extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)]
 temp_RIP = tempRIP + (temp_upper SHL 32) // Concatenate both halves of RIP
 }

CS = READ_DESCRIPTOR (temp_desc.segment, callgate_check)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION[#GP(0)]

IF (CS.attr.conforming == 1)
 temp_CPL = CPL
ELSE
 temp_CPL = CS.attr.dpl

IF (CPL == temp_CPL) // CALLF through gate, to same privilege
 {
 PUSH.v old_CS
 PUSH.v next_RIP
 RIP = temp_RIP

 IF (ShadowStacksEnabled at current CPL)
 {
 IF (v == 2)
 temp_LIP = CS.base + IP // operand size = 16
 ELSEIF (v == 4)

General-Purpose 137
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 temp_LIP = CS.base + EIP // operand size = 32
 ELSE // (v == 8)
 temp_LIP = RIP // operand size = 64

 IF ((EFER.LMA && (temp_desc.attr.L == 0)) && (SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4 GB
 Align SSP to next 8B boundary, storing 4B of 0 if needed
 old_SSP = SSP
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = temp_LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled
 EXIT // end CALLF through gate, to same privilege
 }
ELSE // CALLF through gate, to more privilege
 {
 old_CPL = CPL
 CPL = temp_CPL
 temp_ist = 0 // CALLF doesn't use IST pointers.
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL,temp_ist)
 RSP.q = temp_RSP
 SS = temp_SS_desc

 PUSH.v old_SS // #SS on this or next pushes use SS.sel as error code
 PUSH.v old_RSP

 IF (LEGACY_MODE) // Legacy-mode call gates have a param_count field
 temp_PARAM_COUNT = temp_desc.attr.param_count
 FOR (I=temp_PARAM_COUNT; I>0; I--)
 {
 temp_DATA = READ_MEM.v [old_SS:(old_RSP+I*V)]
 PUSH.v temp_DATA
 }

 PUSH.v old_CS
 PUSH.v next_RIP
 RIP = temp_RIP

 IF ((ShadowStacksEnabled at CPL=3) && (old_CPL == 3))
 PL3_SSP = SSP

 IF (ShadowStacksEnabled at new CPL)
 {
 old_SSP = SSP
 SSP = PLn_SSP // where n=new CPL

 SET_SSTK_TOKEN_BUSY(SSP) // check for valid token and set busy bit

 IF old_CPL != 3
 {

138 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 // push CS,LIP,SSP onto sstk
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS
 SSTK_WRITE_MEM.q [SSP-16] = temp_LIP // LIP and
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP // SSP to the shadow stack
 SSP = SSP - 24
 }
 } // end shadow stacks enabled at new CPL
 EXIT
 } // end CALLF to more priv

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The far CALL indirect opcode (FF /3) had a register operand.

X The far CALL direct opcode (9A) was executed in 64-bit mode.

Invalid TSS, #TS
(selector)

X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X As part of a stack switch, the target stack selector’s TI bit was
set, but LDT selector was a null selector.

X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

General-Purpose 139
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Stack, #SS
(selector)

X After a stack switch, a memory access exceeded the stack
segment limit or was non-canonical.

X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set but the LDT selector was a
null selector.

X

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL, or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified by the call gate
was greater than the CPL.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

140 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The effect of this
instruction is to convert a signed byte, word, or doubleword in the AL or eAX register into a signed
word, doubleword, or quadword in the rAX register. This action helps avoid overflow problems in
signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Related Instructions

CWD, CDQ, CQO

rFLAGS Affected

None

Exceptions

None

CBW
CWDE
CDQE

Convert to Sign-Extended

Mnemonic Opcode Description

CBW 98 Sign-extend AL into AX.

CWDE 98 Sign-extend AX into EAX.

CDQE 98 Sign-extend EAX into RAX.

General-Purpose 141
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this instruction is to
convert a signed word, doubleword, or quadword in the rAX register into a signed doubleword,
quadword, or double-quadword in the rDX:rAX registers. This action helps avoid overflow problems
in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Related Instructions

CBW, CWDE, CDQE

rFLAGS Affected

None

Exceptions

None

CWD
CDQ
CQO

Convert to Sign-Extended

Mnemonic Opcode Description

CWD 99 Sign-extend AX into DX:AX.

CDQ 99 Sign-extend EAX into EDX:EAX.

CQO 99 Sign-extend RAX into RDX:RAX.

142 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the carry flag (CF) in the rFLAGS register to zero.

Related Instructions

STC, CMC

rFLAGS Affected

Exceptions

None

CLC Clear Carry Flag

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 143
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each iteration of a
string instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

Exceptions

None

CLD Clear Direction Flag

Mnemonic Opcode Description

CLD FC Clear the direction flag (DF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

144 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and invalidates the cache line in every cache
in which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor’s write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSH instruction.

On p roces so r s t ha t do no t suppo r t t h e CLFLUSHOPT in s t ruc t i on , (CPUID Fn
0000_0007_EBX_x0[CLFLOPT]=0), the CLFLUSH instruction is weakly ordered with respect to
other instructions that operate on memory. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around a CLFLUSH instruction. Such
reordering can invalidate a speculatively prefetched cache line, unintentionally defeating the prefetch
operation. The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSH
instruction to force strong-ordering of the CLFLUSH instruction with respect to subsequent memory
operations. The CLFLUSH instruction may also take effect on a cache line while stores from previous
store instructions are still pending in the store buffer. To ensure that such stores are included in the
cache line that is flushed, use an MFENCE instruction ahead of the CLFLUSH instruction. Such stores
would otherwise cause the line to be re-cached and modified after the CLFLUSH completed. The
LFENCE, SFENCE, and serializing instructions are not ordered with respect to CLFLUSH.

On processors that support CLFLUSHOPT, (CPUID Fn 0000_0007_EBX_x0[CLFLOPT]=1),
CLFLUSH is ordered with respect to locked operations, fence instructions, and CLFLUSHOPT,
CLFLUSH and write instructions that touch the same cache line. CLFLUSH is not ordered with
CLFLUSHOPT, CLFLUSH and write instructions to other cache lines.

The CLFLUSH instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the segmentation
and paging checks that a 1-byte read would perform, except that it also allows references to execute-
only segments.

The CLFLUSH instruction is supported if the feature flag CPUID Fn0000_0001_EDX[CLFSH] is set.
The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in quadwords.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

CLFLUSH Cache Line Flush

General-Purpose 145
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INVD, WBINVD, CLFLUSHOPT, CLZERO

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

CLFLUSH mem8 0F AE /7 flush cache line containing mem8.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X CLFLUSH instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CLFSH] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

146 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy-internal caches and external caches-and invalidates the cache line in every cache in
which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor's write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSHOPT instruction.

The CLFLUSHOPT instruction is ordered with respect to fence instructions and locked operations.
CLFLUSHOPT is also ordered with writes, CLFLUSH, and CLFLUSHOPT instructions that
reference the same cache line as the CLFLUSHOPT. CLFLUSHOPT is not ordered with writes,
CLFLUSH, and CLFLUSHOPT to other cache lines. To enforce ordering in that situation, a SFENCE
instruction or stronger should be used.

Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around a CLFLUSHOPT instruction. Such reordering can invalidate a speculatively
prefetched cache line, unintentionally defeating the prefetch operation.

The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSHOPT
instruction to force strong ordering of the CLFLUSHOPT instruction with respect to subsequent
memory operations.

The CLFLUSHOPT instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSHOPT instruction executes at any privilege level. CLFLUSHOPT performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also allows references
to execute-only segments.

The CLFLUSHOPT in s t ruc t i on i s su p p o r t e d i f t h e f e a t u r e f l a g C P U I D
Fn0000_0007_EBX_x0[CLFLOPT]is set. The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush]
returns the size of the cacheline in quadwords.

CLFLUSHOPT Optimized Cache Line Flush

Mnemonic Opcode Description

CLFLUSHOPT mem8 66 0F AE /7 Flush cache line containing mem8

General-Purpose 147
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Related Instructions

CLFLUSH

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X CLFLUSH instruction is not supported, as indicated by

CPUID Fn0000_0001_EDX[CLFSH] = 0.

X X X Instruction not supported by CPUID
Fn0000_0007_EBX_x0[CLFLUSHOPT] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

148 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and causes the cache line, if dirty, to be written
to memory. The cache line may be retained in the cache where found in a non-dirty state.

The CLWB instruction is weakly ordered with respect to other instructions that operate on memory.
Speculative loads initiated by the processor, or specified explicitly using cache prefetch instructions,
can be reordered around a CLWB instruction. CLWB is ordered naturally with older stores to the same
address on the same logical processor. To create strict ordering of CLWB use a store-ordering
instruction such as SFENCE.

The CLWB instruction behaves like a load instruction with respect to setting the page table accessed
and dirty bits. That is, it sets the page table accessed bit to 1, but does not set the page table dirty bit.

The CLWB instruction executes at any privilege level. CLWB performs all the segmentation and
paging checks that a 1-byte read would perform, except that it also allows references to execute only
segments.

The CLWB instruction is supported if the feature flag CPUID Fn0000_0007-EBX[24]=1.

The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in quadwords.

Related Instructions

CLFLUSH, CLFLUSHOPT, WBINVD, WBNOINVD

CLWB Cache Line Write Back and Retain

Mnemonic Opcode Description

CLWB 66 0F AE /6 Cache line write-back.

General-Purpose 149
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
Fn0000_0007_EBX[24] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

150 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the cache line specified by the logical address in rAX by writing a zero to every byte in the line.
The instruction uses an implied non temporal memory type, similar to a streaming store, and uses the
write combining protocol to minimize cache pollution.

CLZERO is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or stronger to enforce memory ordering of CLZERO with respect to other
store instructions.

The CLZERO instruction executes at any privilege level. CLZERO performs all the segmentation and
paging checks that a store of the specified cache line would perform.

The CLZERO instruction is supported if the feature flag CPUID Fn8000_0008_EBX[CLZERO] is
set. The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in
quadwords.

rFLAGS Affected

None

Exceptions

CLZERO Zero Cache Line

Mnemonic Opcode Description

CLZERO rAX 0F 01 FC Clears cache line containing rAX

Related Instructions

CLFLUSH

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
Fn8000_0008_EBX[CLZERO] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

General-Purpose 151
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Complements (toggles) the carry flag (CF) bit of the rFLAGS register.

Related Instructions

CLC, STC

rFLAGS Affected

Exceptions

None

CMC Complement Carry Flag

Mnemonic Opcode Description

CMC F5 Complement the carry flag (CF).

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

152 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose register (second
operand) into a register (first operand), depending upon the settings of condition flags in the rFLAGS
register. If the condition is not satisfied, the destination register is not modified. For the memory-based
forms of CMOVcc, memory-related exceptions may be reported even if the condition is false. In 64-bit
mode, CMOVcc with a 32-bit operand size will clear the upper 32 bits of the destination register even
if the condition is false.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied. Most assemblers
provide instruction mnemonics with A (above) and B (below) tags to supply the semantics for
manipulating unsigned integers. Those with G (greater than) and L (less than) tags deal with signed
integers. Many opcodes may be represented by synonymous mnemonics. For example, the CMOVL
instruction is synonymous with the CMOVNGE instruction and denote the instruction with the opcode
0F 4C.

The feature flag CPUID Fn0000_0001_EDX[CMOV] or CPUID Fn8000_0001_EDX[CMOV] =1
indicates support for CMOVcc instructions on a particular processor implementation.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

CMOVcc Conditional Move

Mnemonic Opcode Description

CMOVO reg16, reg/mem16
CMOVO reg32, reg/mem32
CMOVO reg64, reg/mem64

0F 40 /r Move if overflow (OF = 1).

CMOVNO reg16, reg/mem16
CMOVNO reg32, reg/mem32
CMOVNO reg64, reg/mem64

0F 41 /r Move if not overflow (OF = 0).

CMOVB reg16, reg/mem16
CMOVB reg32, reg/mem32
CMOVB reg64, reg/mem64

0F 42 /r Move if below (CF = 1).

CMOVC reg16, reg/mem16
CMOVC reg32, reg/mem32
CMOVC reg64, reg/mem64

0F 42 /r Move if carry (CF = 1).

CMOVNAE reg16, reg/mem16
CMOVNAE reg32, reg/mem32
CMOVNAE reg64, reg/mem64

0F 42 /r Move if not above or equal (CF = 1).

CMOVNB reg16,reg/mem16
CMOVNB reg32,reg/mem32
CMOVNB reg64,reg/mem64

0F 43 /r Move if not below (CF = 0).

CMOVNC reg16,reg/mem16
CMOVNC reg32,reg/mem32
CMOVNC reg64,reg/mem64

0F 43 /r Move if not carry (CF = 0).

General-Purpose 153
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

CMOVAE reg16, reg/mem16
CMOVAE reg32, reg/mem32
CMOVAE reg64, reg/mem64

0F 43 /r Move if above or equal (CF = 0).

CMOVZ reg16, reg/mem16
CMOVZ reg32, reg/mem32
CMOVZ reg64, reg/mem64

0F 44 /r Move if zero (ZF = 1).

CMOVE reg16, reg/mem16
CMOVE reg32, reg/mem32
CMOVE reg64, reg/mem64

0F 44 /r Move if equal (ZF =1).

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32
CMOVNZ reg64, reg/mem64

0F 45 /r Move if not zero (ZF = 0).

CMOVNE reg16, reg/mem16
CMOVNE reg32, reg/mem32
CMOVNE reg64, reg/mem64

0F 45 /r Move if not equal (ZF = 0).

CMOVBE reg16, reg/mem16
CMOVBE reg32, reg/mem32
CMOVBE reg64, reg/mem64

0F 46 /r Move if below or equal (CF = 1 or ZF = 1).

CMOVNA reg16, reg/mem16
CMOVNA reg32, reg/mem32
CMOVNA reg64, reg/mem64

0F 46 /r Move if not above (CF = 1 or ZF = 1).

CMOVNBE reg16, reg/mem16
CMOVNBE reg32,reg/mem32
CMOVNBE reg64,reg/mem64

0F 47 /r Move if not below or equal (CF = 0 and ZF = 0).

CMOVA reg16, reg/mem16
CMOVA reg32, reg/mem32
CMOVA reg64, reg/mem64

0F 47 /r Move if above (CF = 0 and ZF = 0).

CMOVS reg16, reg/mem16
CMOVS reg32, reg/mem32
CMOVS reg64, reg/mem64

0F 48 /r Move if sign (SF =1).

CMOVNS reg16, reg/mem16
CMOVNS reg32, reg/mem32
CMOVNS reg64, reg/mem64

0F 49 /r Move if not sign (SF = 0).

CMOVP reg16, reg/mem16
CMOVP reg32, reg/mem32
CMOVP reg64, reg/mem64

0F 4A /r Move if parity (PF = 1).

CMOVPE reg16, reg/mem16
CMOVPE reg32, reg/mem32
CMOVPE reg64, reg/mem64

0F 4A /r Move if parity even (PF = 1).

CMOVNP reg16, reg/mem16
CMOVNP reg32, reg/mem32
CMOVNP reg64, reg/mem64

0F 4B /r Move if not parity (PF = 0).

CMOVPO reg16, reg/mem16
CMOVPO reg32, reg/mem32
CMOVPO reg64, reg/mem64

0F 4B /r Move if parity odd (PF = 0).

Mnemonic Opcode Description

154 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

CMOVL reg16, reg/mem16
CMOVL reg32, reg/mem32
CMOVL reg64, reg/mem64

0F 4C /r Move if less (SF <> OF).

CMOVNGE reg16, reg/mem16
CMOVNGE reg32, reg/mem32
CMOVNGE reg64, reg/mem64

0F 4C /r Move if not greater or equal (SF <> OF).

CMOVNL reg16, reg/mem16
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

0F 4D /r Move if not less (SF = OF).

CMOVGE reg16, reg/mem16
CMOVGE reg32, reg/mem32
CMOVGE reg64, reg/mem64

0F 4D /r Move if greater or equal (SF = OF).

CMOVLE reg16, reg/mem16
CMOVLE reg32, reg/mem32
CMOVLE reg64, reg/mem64

0F 4E /r Move if less or equal (ZF = 1 or SF <> OF).

CMOVNG reg16, reg/mem16
CMOVNG reg32, reg/mem32
CMOVNG reg64, reg/mem64

0F 4E /r Move if not greater (ZF = 1 or SF <> OF).

CMOVNLE reg16, reg/mem16
CMOVNLE reg32, reg/mem32
CMOVNLE reg64, reg/mem64

0F 4F /r Move if not less or equal (ZF = 0 and SF = OF).

CMOVG reg16, reg/mem16
CMOVG reg32, reg/mem32
CMOVG reg64, reg/mem64

0F 4F /r Move if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

CMOVcc instruction is not supported, as indicated by CPUID
Fn0000_0001_EDX[CMOV] or Fn8000_0001_EDX[CMOV] =
0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Mnemonic Opcode Description

General-Purpose 155
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

156 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Compares the contents of a register or memory location (first operand) with an immediate value or the
contents of a register or memory location (second operand), and sets or clears the status flags in the
rFLAGS register to reflect the results. To perform the comparison, the instruction subtracts the second
operand from the first operand and sets the status flags in the same manner as the SUB instruction, but
does not alter the first operand. If the second operand is an immediate value, the instruction sign-
extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump (Jcc),
conditional move (CMOVcc), or conditional SETcc instruction. Appendix F, “Instruction Effects on
RFLAGS” shows how instructions affect the rFLAGS status flags.
.

CMP Compare

Mnemonic Opcode Description

CMP AL, imm8 3C ib Compare an 8-bit immediate value with the contents of
the AL register.

CMP AX, imm16 3D iw Compare a 16-bit immediate value with the contents of
the AX register.

CMP EAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the EAX register.

CMP RAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the RAX register.

CMP reg/mem8, imm8 80 /7 ib Compare an 8-bit immediate value with the contents of
an 8-bit register or memory operand.

CMP reg/mem16, imm16 81 /7 iw Compare a 16-bit immediate value with the contents of a
16-bit register or memory operand.

CMP reg/mem32, imm32 81 /7 id Compare a 32-bit immediate value with the contents of a
32-bit register or memory operand.

CMP reg/mem64, imm32 81 /7 id Compare a 32-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem16, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 16-bit register or memory operand.

CMP reg/mem32, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 32-bit register or memory operand.

CMP reg/mem64, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem8, reg8 38 /r Compare the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

CMP reg/mem16, reg16 39 /r Compare the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

CMP reg/mem32, reg32 39 /r Compare the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

CMP reg/mem64, reg64 39 /r Compare the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

General-Purpose 157
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

When interpreting operands as unsigned, flag settings are as follows:

When interpreting operands as signed, flag settings are as follows:

Related Instructions

SUB, CMPSx, SCASx

CMP reg8, reg/mem8 3A /r Compare the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

CMP reg16, reg/mem16 3B /r Compare the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

CMP reg32, reg/mem32 3B /r Compare the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

CMP reg64, reg/mem64 3B /r Compare the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

Operands CF ZF

dest > source 0 0

dest = source 0 1

dest < source 1 0

Operands OF ZF

dest > source SF 0

dest = source 0 1

dest < source NOT SF 0

Mnemonic Opcode Description

158 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 159
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI registers, sets or
clears the status flags of the rFLAGS register to reflect the results, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register. To perform the
comparison, the instruction subtracts the second operand from the first operand and sets the status
flags in the same manner as the SUB instruction, but does not alter the first operand. The two operands
must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the pointers. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI]. ES may not be overridden. The explicit operands serve
only to specify the type (size) of the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the values
to be compared. The mnemonic determines the size of the operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. If a conditional jump instruction like JL follows a CMPSx
instruction, the jump occurs if the value of the seg:[rSI] operand is less than the ES:[rDI] operand. This
action allows lexicographical comparisons of string or array elements. A CMPSx instruction can also
operate inside a loop controlled by the LOOPcc instruction.

CMPS
CMPSB
CMPSW
CMPSD
CMPSQ

Compare Strings

Mnemonic Opcode Description

CMPS mem8, mem8 A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem16, mem16 A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem32, mem32 A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPS mem64, mem64 A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

160 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

CMP, SCASx

rFLAGS Affected

Exceptions

CMPSB A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPSW A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPSD A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPSQ A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 161
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or a memory
location (first operand). If the two values are equal, the instruction copies the value in the second
operand to the first operand and sets the ZF flag in the rFLAGS register to 1. Otherwise, it copies the
value in the first operand to the AL, AX, EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

When the first operand is a memory operand, CMPXCHG always does a read-modify-write on the
memory operand. If the compared operands were unequal, CMPXCHG writes the same value to the
memory operand that was read.

The forms of the CMPXCHG instruction that write to memory support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

CMPXCHG8B, CMPXCHG16B

CMPXCHG Compare and Exchange

Mnemonic Opcode Description

CMPXCHG reg/mem8, reg8 0F B0 /r
Compare AL register with an 8-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AL.

CMPXCHG reg/mem16, reg16 0F B1 /r
Compare AX register with a 16-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AX.

CMPXCHG reg/mem32, reg32 0F B1 /r
Compare EAX register with a 32-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to EAX.

CMPXCHG reg/mem64, reg64 0F B1 /r
Compare RAX register with a 64-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to RAX.

162 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 163
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the specified memory
location. If the values are equal, the instruction copies the value in the rCX:rBX registers to the
memory location and sets the zero flag (ZF) of the rFLAGS register to 1. Otherwise, it copies the value
in memory to the rDX:rAX registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHG8B instruction is used. This instruction
uses the EDX:EAX and ECX:EBX register operands and a 64-bit memory operand. If the effective
operand size is 64-bit, the CMPXCHG16B instruction is used; this instruction uses RDX:RAX register
operands and a 128-bit memory operand.

The CMPXCHG8B and CMPXCHG16B instructions always do a read-modify-write on the memory
operand. If the compared operands were unequal, the instructions write the same value to the memory
operand that was read.

The CMPXCHG8B and CMPXCHG16B instructions support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Support for the CMPXCHG8B and CMPXCHG16B instructions is implementation dependent.
Suppo r t f o r t he CMPXCHG8B in s t ruc t i o n i s i n d i c a t e d b y C P U I D
Fn0000_0001_EDX[CMPXCHG8B] or Fn8000_0001_EDX[CMPXCHG8B] = 1. Support for the
CMPXCHG16B instruction is indicated by CPUID Fn0000_0001_ECX[CMPXCHG16B] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a general-protection
exception is generated.

Related Instructions

CMPXCHG

CMPXCHG8B
CMPXCHG16B

Compare and Exchange Eight Bytes
Compare and Exchange Sixteen Bytes

Mnemonic Opcode Description

CMPXCHG8B mem64 0F C7 /1 m64

Compare EDX:EAX register to 64-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
ECX:EBX register to the memory location. Otherwise,
copy the memory location to EDX:EAX and clear the
zero flag.

CMPXCHG16B mem128 0F C7 /1
m128

Compare RDX:RAX register to 128-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
RCX:RBX register to the memory location. Otherwise,
copy the memory location to RDX:RAX and clear the
zero flag.

164 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X
CMPXCHG8B instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CMPXCHG8B] or
Fn8000_0001_EDX[CMPXCHG8B] = 0.

X CMPXCHG16B instruction is not supported, as indicated by
CPUID Fn0000_0001_ECX[CMPXCHG16B] = 0.

X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

X The memory operand for CMPXCHG16B was not aligned on a
16-byte boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 165
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Provides information about the processor and its capabilities through a number of different functions.
Software should load the number of the CPUID function to execute into the EAX register before
executing the CPUID instruction. The processor returns information in the EAX, EBX, ECX, and
EDX registers; the contents and format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended functions. The
standard functions have numbers in the 0000_xxxxh series (for example, standard function 1). To
determine the largest standard function number that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000_xxxxh series (for example, extended
function 8000_0001h). To determine the largest extended function number that a processor supports,
execute CPUID extended function 8000_0000h. If the value returned in EAX is greater than
8000_0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect this
information. In 64-bit mode, this instruction works the same as in legacy mode except that it zero-
extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that do not support
the CPUID instruction, software must first test to determine if the CPUID instruction is supported.
Support for the CPUID instruction is indicated by the ability to write the ID bit in the rFLAGS register.
Normally, 32-bit software uses the PUSHFD and POPFD instructions in an attempt to write
rFLAGS.ID. After reading the updated rFLAGS.ID bit, a comparison determines if the operation
changed its value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor does not support
the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID instruction using 32-bit
code.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS

CPUID Processor Identification

Mnemonic Opcode Description

CPUID 0F A2
Returns information about the processor and its
capabilities. EAX specifies the function number, and the
data is returned in EAX, EBX, ECX, EDX.

166 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

Standard Function 0 and Extended Function 8000_0000h

CPUID standard function 0 loads the EAX register with the largest CPUID standard function number
supported by the processor implementation; similarly, CPUID extended function 8000_0000h loads
the EAX register with the largest extended function number supported.

Standard function 0 and extended function 8000_0000h both load a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the string is
AuthenticAMD. This string informs software that it should follow the AMD CPUID definition for
subsequent CPUID function calls. If the function returns another vendor’s string, software must use
that vendor’s CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-2 shows the contents of the EBX, EDX, and ECX registers after executing function 0 on an
AMD processor.

For a description of all feature flags related to instruction subset support, see Appendix D, “Instruction
Subsets and CPUID Feature Flags,” on page 591. For a description of all defined feature numbers and
return values, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction,” on
page 597.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

Table 3-2. Processor Vendor Return Values

Register Return Value ASCII Characters

EBX 6874_7541h “h t u A”

EDX 6974_6E65h “i t n e”

ECX 444D_4163h “D M A c”

General-Purpose 167
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs one step of a 32-bit cyclic redundancy check.

The first source, which is also the destination, is a doubleword value in either a 32-bit or 64-bit GPR
depending on the presence of a REX prefix and the value of the REX.W bit. The second source is a
GPR or memory location of width 8, 16, or 32 bits. A vector of width 40, 48, or 64 bits is derived from
the two operands as follows:

1. The low-order 32 bits of the first operand is bit-wise inverted and shifted left by the width of the
second operand.

2. The second operand is bit-wise inverted and shifted left by 32 bits

3. The results of steps 1 and 2 are xored.

This vector is interpreted as a polynomial of degree 40, 48, or 64 over the field of two elements (i.e., bit
i is interpreted as the coefficient of Xi). This polynomial is divided by the polynomial of degree 32 that
is similarly represented by the vector 11EDC6F41h. (The division admits an efficient iterative
implementation based on the xor operation.) The remainder is encoded as a 32-bit vector, which is
bit-wise inverted and written to the destination. In the case of a 64-bit destination, the upper 32 bits are
cleared.

In an application of the CRC algorithm, a data block is partitioned into byte, word, or doubleword
segments and CRC32 is executed iteratively, once for each segment.

CRC32 is a SSE4.2 instruction. Support for SSE4.2 instructions is indicated by CPUID
Fn0000_0001_ECX[SSE42] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

CRC32 CRC32 Cyclical Redundancy Check

Mnemonic Encoding Notes

CRC32 reg32, reg/mem8 F2 0F 38 F0 /r Perform CRC32 operation on 8-bit values

CRC32 reg32, reg/mem8 F2 REX 0F 38 F0 /r Encoding using REX prefix allows access to
GPR8–15

CRC32 reg32, reg/mem16 F2 0F 38 F1 /r Effective operand size determines size of second
operand.CRC32 reg32, reg/mem32 F2 0F 38 F1 /r

CRC32 reg64, reg/mem8 F2 REX.W 0F 38 F0 /r REX.W = 1.

CRC32 reg64, reg/mem64 F2 REX.W 0F 38 F1 /r REX.W = 1.

168 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

Exception

Mode

Cause of Exception

Real
Virtual
8086 Protected

Invalid opcode,
#UD

X X X Lock prefix used

X X X SSE42 instructions are not supported as indicated by CPUID
Fn0000_0001_ECX[SSE42] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 169
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the binary addition of
one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is greater than 9 or if
AF = 1. Then 60h is added to AL if the original AL was greater than 99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified. SF, ZF, and PF
are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

rFLAGS Affected

Exceptions

DAA Decimal Adjust after Addition

Mnemonic Opcode Description

DAA 27 Decimal adjust AL.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

170 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal borrow.

Use this instruction to adjust the result of a byte SUB instruction that performed a binary subtraction of
one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower nibble is greater than
9 or if AF = 1. Then 60h is subtracted from AL if the original AL was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not modified.
If the adjustment results in a borrow for either nibble of AL, the CF flag is set to 1; otherwise CF is not
modified. The SF, ZF, and PF flags are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Related Instructions

DAA

rFLAGS Affected

Exceptions

DAS Decimal Adjust after Subtraction

Mnemonic Opcode Description

DAS 2F Decimal adjusts AL after subtraction.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

General-Purpose 171
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Subtracts 1 from the specified register or memory location. The CF flag is not affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate
operand of 1.

Related Instructions

INC, SUB

rFLAGS Affected

DEC Decrement by 1

Mnemonic Opcode Description

DEC reg/mem8 FE /1 Decrement the contents of an 8-bit register or memory
location by 1.

DEC reg/mem16 FF /1 Decrement the contents of a 16-bit register or memory
location by 1.

DEC reg/mem32 FF /1 Decrement the contents of a 32-bit register or memory
location by 1.

DEC reg/mem64 FF /1 Decrement the contents of a 64-bit register or memory
location by 1.

DEC reg16 48 +rw
Decrement the contents of a 16-bit register by 1.
(See “REX Prefix” on page 14.)

DEC reg32 48 +rd
Decrement the contents of a 32-bit register by 1.
(See “REX Prefix” on page 14.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

172 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 173
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Divides the unsigned value in a register by the unsigned value in the specified register or memory
location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0 and the remainder is always less than the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Related Instructions

MUL

DIV Unsigned Divide

Division Size Dividend Divisor Quotient Remainder Maximum Quotient

Word/byte AX reg/mem8 AL AH 255

Doubleword/word DX:AX reg/mem16 AX DX 65,535

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX 2 32 – 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX 264 – 1

Mnemonic Opcode Description

DIV reg/mem8 F6 /6
Perform unsigned division of AX by the contents of an 8-
bit register or memory location and store the quotient in
AL and the remainder in AH.

DIV reg/mem16 F7 /6
Perform unsigned division of DX:AX by the contents of a
16-bit register or memory operand store the quotient in
AX and the remainder in DX.

DIV reg/mem32 F7 /6
Perform unsigned division of EDX:EAX by the contents
of a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

DIV reg/mem64 F7 /6
Perform unsigned division of RDX:RAX by the contents
of a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

174 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.

X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 175
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Creates a stack frame for a procedure.

The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically masked to 5 bits).
For nesting levels of 1 or greater, the processor copies earlier stack frame pointers before adjusting the
stack pointer. This action provides a called procedure with access points to other nested stack frames.

The 32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following 32-bit
instruction sequence:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages. The LEAVE
instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Action
// See “Pseudocode Definition” on page 57.

ENTER_START:

 temp_ALLOC_SPACE = word-sized immediate specified in the instruction
 (first operand), zero-extended to 64 bits
 temp_LEVEL = byte-sized immediate specified in the instruction
 (second operand), zero-extended to 64 bits

 temp_LEVEL = temp_LEVEL AND 0x1f
 // only keep 5 bits of level count

 PUSH.v old_RBP

 temp_RBP = RSP // This value of RSP will eventually be loaded
 // into RBP.
 IF (temp_LEVEL>0) // Push "temp_LEVEL" parameters to the stack.
 {
 FOR (I=1; I<temp_LEVEL; I++)

ENTER Create Procedure Stack Frame

Mnemonic Opcode Description

ENTER imm16, 0 C8 iw 00 Create a procedure stack frame.

ENTER imm16, 1 C8 iw 01 Create a nested stack frame for a procedure.

ENTER imm16, imm8 C8 iw ib Create a nested stack frame for a procedure.

176 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 // All but one of the parameters are copied
 // from higher up on the stack.
 {
 temp_DATA = READ_MEM.v [SS:old_RBP-I*V]
 PUSH.v temp_DATA
 }
 PUSH.v temp_RBP // The last parameter is the offset of the old
 // value of RSP on the stack.
 }
 RSP.s = RSP - temp_ALLOC_SPACE // Leave "temp_ALLOC_SPACE" free bytes on
 // the stack

 WRITE_MEM.v [SS:RSP.s] = temp_unused // ENTER finishes with a memory
write

 // check on the final stack pointer,
 // but no write actually occurs.

 RBP.v = temp_RBP
 EXIT

Related Instructions

LEAVE

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack-segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 177
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Divides the signed value in a register by the signed value in the specified register or memory location.
The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0. The sign of the remainder is always the same
as the sign of the dividend, and the absolute value of the remainder is less than the absolute value of the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO instruction to
sign-extend the dividend.

IDIV Signed Divide

Division Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX reg/mem8 AL AH –128 to +127

Doubleword/word DX:AX reg/mem16 AX DX –32,768 to +32,767

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX –2 31 to 2 31– 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX –2 63 to 263– 1

Mnemonic Opcode Description

IDIV reg/mem8 F6 /7
Perform signed division of AX by the contents of an 8-bit
register or memory location and store the quotient in AL
and the remainder in AH.

IDIV reg/mem16 F7 /7
Perform signed division of DX:AX by the contents of a
16-bit register or memory location and store the quotient
in AX and the remainder in DX.

IDIV reg/mem32 F7 /7
Perform signed division of EDX:EAX by the contents of
a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

IDIV reg/mem64 F7 /7
Perform signed division of RDX:RAX by the contents of
a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

178 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IMUL

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.

X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 179
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Multiplies two signed operands. The number of operands determines the form of the instruction.

If a single operand is specified, the instruction multiplies the value in the specified general-purpose
register or memory location by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and stores the product in AX, DX:AX, EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-purpose register (first
operand) by an immediate value or the value in a general-purpose register or memory location (second
operand) and stores the product in the first operand location.

If three operands are specified, the instruction multiplies the value in a general-purpose register or
memory location (second operand), by an immediate value (third operand) and stores the product in a
register (first operand).

The IMUL instruction sign-extends an immediate operand to the length of the other register/memory
operand.

The CF and OF flags are set if, due to integer overflow, the double-width multiplication result cannot
be represented in the half-width destination register. Otherwise the CF and OF flags are cleared.

IMUL Signed Multiply

Mnemonic Opcode Description

IMUL reg/mem8 F6 /5
Multiply the contents of AL by the contents of an 8-bit
memory or register operand and put the signed result in
AX.

IMUL reg/mem16 F7 /5
Multiply the contents of AX by the contents of a 16-bit
memory or register operand and put the signed result in
DX:AX.

IMUL reg/mem32 F7 /5
Multiply the contents of EAX by the contents of a 32-bit
memory or register operand and put the signed result in
EDX:EAX.

IMUL reg/mem64 F7 /5
Multiply the contents of RAX by the contents of a 64-bit
memory or register operand and put the signed result in
RDX:RAX.

IMUL reg16, reg/mem16 0F AF /r
Multiply the contents of a 16-bit destination register by
the contents of a 16-bit register or memory operand and
put the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32 0F AF /r
Multiply the contents of a 32-bit destination register by
the contents of a 32-bit register or memory operand and
put the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64 0F AF /r
Multiply the contents of a 64-bit destination register by
the contents of a 64-bit register or memory operand and
put the signed result in the 64-bit destination register.

IMUL reg16, reg/mem16, imm8 6B /r ib
Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 16-bit destination register.

180 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IDIV

rFLAGS Affected

Exceptions

IMUL reg32, reg/mem32, imm8 6B /r ib
Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 32-bit destination register.

IMUL reg64, reg/mem64, imm8 6B /r ib
Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 64-bit destination register.

IMUL reg16, reg/mem16,
imm16 69 /r iw

Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate word and put
the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32,
imm32 69 /r id

Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64,
imm32 69 /r id

Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 181
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers a byte, word, or doubleword from an I/O port to the AL, AX, or EAX register. The port
address is specified either by an 8-bit immediate value (00h to FFh) encoded in the instruction or a 16-
bit value contained in the DX register (0000h to FFFFh). The processor’s I/O address space is distinct
from system memory addressing.

For two opcodes (E4h and ECh), the data size of the port is fixed at 8 bits. For the other opcodes (E5h
and EDh), the effective operand-size determines the port size. If the effective operand size is 64 bits,
IN reads only 32 bits from the I/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the I/O permission bitmap in
the TSS before allowing access to the I/O port. (See Volume 2 for details on the TSS I/O permission
bitmap.)

Related Instructions

INSx, OUT, OUTSx

rFLAGS Affected

None

IN Input from Port

Mnemonic Opcode Description

IN AL, imm8 E4 ib Input a byte from the port at the address specified by
imm8 and put it into the AL register.

IN AX, imm8 E5 ib Input a word from the port at the address specified by
imm8 and put it into the AX register.

IN EAX, imm8 E5 ib Input a doubleword from the port at the address
specified by imm8 and put it into the EAX register.

IN AL, DX EC Input a byte from the port at the address specified by the
DX register and put it into the AL register.

IN AX, DX ED Input a word from the port at the address specified by
the DX register and put it into the AX register.

IN EAX, DX ED
Input a doubleword from the port at the address
specified by the DX register and put it into the EAX
register.

182 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

General-Purpose 183
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds 1 to the specified register or memory location. The CF flag is not affected, even if the operand is
incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform an increment operation that updates the CF flag, use an ADD instruction with an
immediate operand of 1.

Related Instructions

ADD, DEC

INC Increment by 1

Mnemonic Opcode Description

INC reg/mem8 FE /0 Increment the contents of an 8-bit register or memory
location by 1.

INC reg/mem16 FF /0 Increment the contents of a 16-bit register or memory
location by 1.

INC reg/mem32 FF /0 Increment the contents of a 32-bit register or memory
location by 1.

INC reg/mem64 FF /0 Increment the contents of a 64-bit register or memory
location by 1.

INC reg16 40 +rw
Increment the contents of a 16-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

INC reg32 40 +rd
Increment the contents of a 32-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

184 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 185
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers data from the I/O port specified in the DX register to an input buffer specified in the rDI
register and increments or decrements the rDI register according to the setting of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the number of bytes read.
If the DF flag is 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The ES segment
cannot be overridden with a segment override prefix. In 64-bit mode, INS always uses the
unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine the size of the I/O
port, but always use ES:[rDI] for the location of the input buffer. The explicit register operand (second
operand) specifies the I/O port address and must always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data, respectively, from
the I/O port (0000h to FFFFh) specified in the DX register to the input buffer specified in the ES:rDI
registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. (See volume 2 for details on the TSS I/O permission
bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or doublewords.
For details about the REP prefix, see “Repeat Prefixes” on page 12.

INS
INSB
INSW
INSD

Input String

Mnemonic Opcode Description

INS mem8, DX 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem16, DX 6D
Input a word from the port specified by DX register, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem32, DX 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INSB 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

186 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IN, OUT, OUTSx

rFLAGS Affected

None

Exceptions

INSW 6D
Input a word from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INSD 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 187
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate value. This value
is an interrupt vector number (00h to FFh), which the processor uses as an index into the interrupt-
descriptor table (IDT).

For detailed descriptions of the steps performed by INTn instructions, see the following:

• Legacy-Mode Interrupts: “Virtual-8086 Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 367 and the INTO instruction on page 189.

Action
// For functions READ_IDT, READ_DESCRIPTOR, READ_INNER_LEVEL_SP,
// ShadowStacksEnabled and SET_TOKEN_BUSY see "Pseudocode Definition"
// on page 57

INT_N_START:

IF (REAL_MODE)
 INT_N_REAL // INTn real mode
ELSEIF (PROTECTED_MODE)
 INT_N_PROTECTED // INTn protected mode
ELSE // (VIRTUAL_MODE)
 INT_N_VIRTUAL // INTn virtual mode

INT_N_REAL:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits

// read target CS:RIP from the real-mode IDT
temp_RIP = READ_MEM.w [idt:temp_int_n_vector*4]
temp_CS = READ_MEM.w [idt:temp_int_n_vector*4+2]

PUSH.w old_RFLAGS
PUSH.w old_CS
PUSH.w next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

INT Interrupt to Vector

Mnemonic Opcode Description

INT imm8 CD ib Call interrupt service routine specified by interrupt
vector imm8.

188 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

RFLAGS.AC,TF,IF,RF cleared
RIP = temp_RIP

EXIT

INT_N_PROTECTED:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits
temp_idt_desc = READ_IDT (temp_int_n_vector)

IF (temp_idt_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using TSS selector in the task gate as the target TSS

// The size of the gate controls the size of the stack pushes
IF (LONG_MODE)
 v = 8-byte // Long mode only uses 64-bit gates
ELSEIF ((temp_idt_desc.attr.type == ’intgate32’) ||
 (temp_idt_desc.attr.type == ’trapgate32’))
 v = 4-byte // Legacy mode, using a 32-bit gate
ELSE
 v = 2-byte // Legacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset

IF (LONG_MODE) // In long mode, read 2nd half of 16-byte interrupt-gate
 { // from the IDT to get the upper 32 bits of target RIP
 temp_upper = READ_MEM.q [idt:temp_int_n_vector*16+8]
 temp_RIP = temp_RIP + (temp_upper SHL 32) // form 64-bit target RIP
 }

CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

IF (CS.attr.conforming == 1)
 temp_CPL = CPL
ELSE
 temp_CPL = CS.attr.dpl

IF (CPL == temp_CPL) // no privilege-level change
 {
 temp_CheckToken = FALSE
 IF (LONG_MODE)
 {
 IF (temp_idt_desc.ist != 0)
 {
 // IDT gate IST is non-zero, do stack switch
 RSP = READ_MEM.q [tss:ist_index*8+28] // fetch new RSP
 RSP = RSP AND 0xFFFFFFFFFFFFFFF0 // ensure 16-byte alignment

 // fetch SSP from ISST if sstk enabled at current privilege

General-Purpose 189
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF (ShadowStacksEnabled(current CPL))
 {
 temp_isst_addr = INTERRUPT_SSP_TABLE_ADDR + (temp_idt_desc.ist*8)
 SSP = READ_MEM.q [tss:temp_isst_addr]
 IF (SSP[2:0] != 0)
 EXCEPTION [#GP(0)] // new SSP must be 8-byte aligned
 temp_CheckToken = TRUE
 }
 }
 PUSH.q old_SS // in long mode, save old SS:RSP to stack
 PUSH.q old_RSP
 } // end long mode

 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF (ShadowStacksEnabled(current CPL))
 {
 IF (temp_CheckToken == TRUE)
 SET_SSTK_TOKEN_BUSY(SSP) // vaidate token, set busy
 Align SSP to next 8B boundary, storing 4B of 0 if needed
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS,LIP,SSP to shadow stack
 SSTK_WRITE_MEM.q [SSP-16] = (CS.base + old_RIP)
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled @ CPL

 IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]
 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate
 RIP = temp_RIP
 EXIT
 } // end of INTn to same privilege level

ELSE // INTn to more privileged level
 {
 // (CPL > temp_CPL), changing privilege so get inner level SS:RSP
 CPL = temp_CPL
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL, temp_idt_desc.ist)

 IF (LONG_MODE)
 temp_RSP = temp_RSP AND 0xFFFFFFFFFFFFFFF0 // force 16-byte alignment
 RSP = temp_RSP
 SS = temp_SS_desc

 IF (ShadowStacksEnabled(new CPL))
 {
 old_SSP = SSP

190 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((temp_idt_desc.ist == 0) || (!LONG_MODE))
 SSP = PLn_SSP // where n=new CPL
 ELSEIF ((temp_idt_desc.ist = 0) && (LONG_MODE))
 {
 temp_isst_addr = INTERRUPT_SSP_TABLE_ADDR + (temp_idt_desc.ist*8)
 SSP = READ_MEM.q [tss:temp_isst_addr]
 }
 IF (SSP[2:0] != 0) // new SSP must be 8-byte aligned
 EXCEPTION [#GP(0)]
 }

 // Any #SS from the following pushes uses SS.sel as error code
 PUSH.v old_SS
 PUSH.v old_RSP
 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((ShadowStacksEnabled(CPL 3) && (old_CPL == 3))
 PL3_SSP = SSP

 IF (ShadowStacksEnabled(new CPL))
 {
 old_SSP = SSP
 SSP = PLn_SSP // where n=new CPL
 SET_SSTK_TOKEN_BUSY(SSP) // validate token, set busy
 IF (old_CPL != 3)
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled at new CPL

 IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate
 RIP = temp_RIP
 EXIT
 } end INTn to more privileged level

INT_N_VIRTUAL:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits

IF (CR4.VME == 0) // VME isn’t enabled
 IF (RFLAGS.IOPL == 3)

General-Purpose 191
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]

temp_IRB_BASE = READ_MEM.w [tss:102] - 32

// Check the VME Interrupt Redirection Bitmap (IRB) to
// see if we should redirect to a virtual-mode handler
temp_VME_REDIRECTION = READ_BIT_ARRAY ([tss:temp_IRB_BASE], temp_int_n_vector)
IF (temp_VME_REDIRECTION == 1)
 { // continue with transition to protected mode
 IF (RFLAGS.IOPL==3)
 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 { // INTn stays in virtual mode
 // redirect interrupt through virtual-mode IDT
 temp_RIP = READ_MEM.w [0:temp_int_n_vector*4]
 // read target CS:RIP from the virtual-mode IDT at linear address 0
 temp_CS = READ_MEM.w [0:temp_int_n_vector*4+2]
 IF (RFLAGS.IOPL < 3)
 old_RFLAGS = old_RFLAGS with VIF bit shifted into IF bit, and IOPL = 3
 PUSH.w old_RFLAGS
 PUSH.w old_CS
 PUSH.w next_RIP
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RFLAGS.TF,RF = 0
 IF (RFLAGS.IOPL == 3)
 RFLAGS.IF = 0
 ELSE
 RFLAGS.VIF = 0
 RIP = temp_RIP
 EXIT
 }

INT_N_VIRTUAL_TO_PROTECTED:

temp_idt_desc = READ_IDT (temp_int_n_vector)
IF (temp_idt_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using tss selector in the task gate as the target tss

// The size of the gate controls the size of the stack pushes
IF ((temp_idt_desc.attr.type == ’intgate32’) ||
 (temp_idt_desc.attr.type == ’trapgate32’))
 v = 4-byte // legacy mode, using a 32-bit gate
ELSE // gate is intgate16 or trapgate16
 v = 2-byte // legacy mode, using a 16-bit gate

192 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

temp_RIP = temp_idt_desc.offset
old_CPL = CPL
CS = READ_DESCRIPTOR(temp_idt_desc.segment, intcs_chk)

IF (CS.attr.dpl !=0) // Handler must run at CPL 0.
 EXCEPTION [#GP(CS.sel)]

CPL = 0
temp_ist = 0 // Legacy mode doesn’t use IST pointers
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL, temp_ist)
RSP = temp_RSP
SS = temp_SS_desc

// Any #SS from the following pushes uses SS.sel as error code
PUSH.v old_GS
PUSH.v old_FS
PUSH.v old_DS
PUSH.v old_ES
PUSH.v old_SS
PUSH.v old_RSP
PUSH.v old_RFLAGS // Pushed with RF = 0
PUSH.v old_CS
PUSH.v next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

DS = NULL // can’t use virtual-mode selectors in protected mode
ES = NULL // can’t use virtual-mode selectors in protected mode
FS = NULL // can’t use virtual-mode selectors in protected mode
GS = NULL // can’t use virtual-mode selectors in protected mode
RFLAGS.VM,NT,TF,RF cleared
RFLAGS.IF cleared if interrupt gate
RIP = temp_RIP

IF (ShadowStacksEnabled(CPL 0))
 {
 old_SSP = SSP
 SSP = PL0_SSP // fetch new SSP
 SET_SSTK_TOKEN_BUSY(SSP) // vaidate token, set busy
 IF (old_CPL) != 3
 {
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 }
 }

EXIT // end INTn VIRTUAL_TO_PROTECTED

General-Purpose 193
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INT 3, INTO, BOUND

rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

Stack, #SS
(selector)

X X After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

194 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X The IOPL was less than 3 and CR4.VME was 0.

X
IOPL was less than 3, CR4.VME was 1, and the
corresponding bit in the VME interrupt redirection bitmap was
1.

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

General-Purpose 195
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception (#OF) handler
if the OF flag is set to 1. This instruction has no effect if the OF flag is cleared to 0. The INTO
instruction detects overflow in signed number addition. See AMD64 Architecture Programmer’s
Manual Volume 1: Application Programming for more information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

For detailed descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action
IF (64BIT_MODE)
 EXCEPTION[#UD]
IF (RFLAGS.OF == 1) // #OF is a trap, and pushes the rIP of the instruction
 EXCEPTION [#OF] // following INTO.
EXIT

Related Instructions

INT, INT 3, BOUND

rFLAGS Affected

None.

Exceptions

INTO Interrupt to Overflow Vector

Mnemonic Opcode Description

INTO CE Call overflow exception if the overflow flag is set.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Overflow, #OF X X X The INTO instruction was executed with 0F set to 1.

Invalid opcode,
#UD X Instruction was executed in 64-bit mode.

196 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified by the
condition code in the mnemonic (cc), jumps to the target instruction located at the specified relative
offset. Otherwise, execution continues with the instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—short and
near conditional jumps. Different opcodes correspond to different forms of one instruction. For
example, the JO instruction (jump if overflow) has opcode 0Fh 80h for its near form and 70h for its
short form, but the mnemonic is the same for both forms. The only difference is that the near form has
a 16- or 32-bit relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and unsigned
numbers. Instructions tagged A (above) and B (below) are intended for use in unsigned integer code;
those tagged G (greater) and L (less) are intended for use in signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit or 32-bit
displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-conditional-
jump code sequence corresponding to a high-level language statement like:

IF A == B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before an unconditional far jump. Such a code sequence might look like:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far FarLabel ; far jump if operands are equal

NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Jcc Jump on Condition

Mnemonic Opcode Description

JO rel8off
JO rel16off
JO rel32off

70 cb
0F 80 cw
0F 80 cd

Jump if overflow (OF = 1).

JNO rel8off
JNO rel16off
JNO rel32off

71 cb
0F 81 cw
0F 81 cd

Jump if not overflow (OF = 0).

JB rel8off
JB rel16off
JB rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if below (CF = 1).

General-Purpose 197
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

JC rel8off
JC rel16off
JC rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if carry (CF = 1).

JNAE rel8off
JNAE rel16off
JNAE rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if not above or equal (CF = 1).

JNB rel8off
JNB rel16off
JNB rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not below (CF = 0).

JNC rel8off
JNC rel16off
JNC rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not carry (CF = 0).

JAE rel8off
JAE rel16off
JAE rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if above or equal (CF = 0).

JZ rel8off
JZ rel16off
JZ rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if zero (ZF = 1).

JE rel8off
JE rel16off
JE rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if equal (ZF = 1).

JNZ rel8off
JNZ rel16off
JNZ rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not zero (ZF = 0).

JNE rel8off
JNE rel16off
JNE rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not equal (ZF = 0).

JBE rel8off
JBE rel16off
JBE rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if below or equal (CF = 1 or ZF = 1).

JNA rel8off
JNA rel16off
JNA rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if not above (CF = 1 or ZF = 1).

JNBE rel8off
JNBE rel16off
JNBE rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if not below or equal (CF = 0 and ZF = 0).

JA rel8off
JA rel16off
JA rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if above (CF = 0 and ZF = 0).

JS rel8off
JS rel16off
JS rel32off

78 cb
0F 88 cw
0F 88 cd

Jump if sign (SF = 1).

JNS rel8off
JNS rel16off
JNS rel32off

79 cb
0F 89 cw
0F 89 cd

Jump if not sign (SF = 0).

Mnemonic Opcode Description

198 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

JMP (Near), JMP (Far), JrCXZ

rFLAGS Affected

None

JP rel8off
JP rel16off
JP rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity (PF = 1).

JPE rel8off
JPE rel16off
JPE rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity even (PF = 1).

JNP rel8off
JNP rel16off
JNP rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if not parity (PF = 0).

JPO rel8off
JPO rel16off
JPO rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if parity odd (PF = 0).

JL rel8off
JL rel16off
JL rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if less (SF <> OF).

JNGE rel8off
JNGE rel16off
JNGE rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if not greater or equal (SF <> OF).

JNL rel8off
JNL rel16off
JNL rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if not less (SF = OF).

JGE rel8off
JGE rel16off
JGE rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if greater or equal (SF = OF).

JLE rel8off
JLE rel16off
JLE rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if less or equal (ZF = 1 or SF <> OF).

JNG rel8off
JNG rel16off
JNG rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if not greater (ZF = 1 or SF <> OF).

JNLE rel8off
JNLE rel16off
JNLE rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if not less or equal (ZF = 0 and SF = OF).

JG rel8off
JG rel16off
JG rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if greater (ZF = 0 and SF = OF).

Mnemonic Opcode Description

General-Purpose 199
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

200 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the contents of the count register (rCX) and, if 0, jumps to the target instruction located at the
specified 8-bit relative offset. Otherwise, execution continues with the instruction following the
JrCXZ instruction.

The size of the count register (CX, ECX, or RCX) depends on the address-size attribute of the JrCXZ
instruction. Therefore, JRCXZ can only be executed in 64-bit mode and JCXZ cannot be executed in
64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit displacement
value to 64 bits before adding it to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Related Instructions

Jcc, JMP (Near), JMP (Far)

rFLAGS Affected

None

Exceptions

JCXZ
JECXZ
JRCXZ

Jump if rCX Zero

Mnemonic Opcode Description

JCXZ rel8off E3 cb Jump short if the 16-bit count register (CX) is zero.

JECXZ rel8off E3 cb Jump short if the 32-bit count register (ECX) is zero.

JRCXZ rel8off E3 cb Jump short if the 64-bit count register (RCX) is zero.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical

General-Purpose 201
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Unconditionally transfers control to a new address without saving the current rIP value. This form of
the instruction jumps to an address in the current code segment and is called a near jump. The target
operand can specify a register, a memory location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit rIP is read from
the operand, depending on operand size. This rIP is zero-extended to 64 bits.

If the JMP target is specified by a displacement in the instruction, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits depending on
operand size. The signed displacement can be 8 bits, 16 bits, or 32 bits, depending on the opcode and
the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode results in RIP = RIP
+ 32-bit signed displacement, and the FF /4 opcode results in RIP = 64-bit offset from register or
memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

JMP (Far), Jcc, JrCX

rFLAGS Affected

None.

JMP (Near) Near Jump

Mnemonic Opcode Description

JMP rel8off EB cb Short jump with the target specified by an 8-bit signed
displacement.

JMP rel16off E9 cw Near jump with the target specified by a 16-bit signed
displacement.

JMP rel32off E9 cd Near jump with the target specified by a 32-bit signed
displacement.

JMP reg/mem16 FF /4 Near jump with the target specified reg/mem16.

JMP reg/mem32 FF /4
Near jump with the target specified reg/mem32.
(No prefix for encoding in 64-bit mode.)

JMP reg/mem64 FF /4 Near jump with the target specified reg/mem64.

202 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 203
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Unconditionally transfers control to a new address without saving the current CS:rIP values. This form
of the instruction jumps to an address outside the current code segment and is called a far jump. The
operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far pointer in the jmp
far opcode itself, or indirectly, by referencing a far pointer in memory. In 64-bit mode, only indirect far
jumps are allowed, executing a direct far jmp (opcode EA) will generate an undefined opcode
exception. For both direct and indirect far jumps, if the JMP (Far) operand-size is 16 bits, the
instruction's operand is a 16-bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits,
the operand is a 16-bit selector followed by a 32-bit offset.

In all modes, the target selector used by the instruction can be a code selector. Additionally, the target
selector can also be a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code segment—Control is transferred to the target CS:rIP. In this case, the target offset
can only be a 16 or 32 bit value, depending on operand-size, and is zero-extended to 64 bits; 64-bit
offsets are only available via call gates. No CPL change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset, and control
is transferred to the target CS:rIP. When jumping through a call gate, the size of the target rIP is 16,
32, or 64 bits, depending on the size of the call gate. If the target rIP is less than 64 bits, it's zero-
extended to 64 bits. In long mode, only 64-bit call gates are allowed, and they must point to 64-bit
code segments. No CPL change is allowed.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs. See
“Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

JMP (Far) Far Jump

Mnemonic Opcode Description

JMP FAR pntr16:16 EA cd Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR pntr16:32 EA cp Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR mem16:16 FF /5 Far jump indirect, with the target specified by a far
pointer in memory (16-bit operand size).

JMP FAR mem16:32 FF /5 Far jump indirect, with the target specified by a far
pointer in memory (32- and 64-bit operand size).

204 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Action
// Far jumps (JMPF)
// See “Pseudocode Definition” on page 57.

JMPF_START:

IF (REAL_MODE)
 JMPF_REAL_OR_VIRTUAL
ELSIF (PROTECTED_MODE)
 JMPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 JMPF_REAL_OR_VIRTUAL

JMPF_REAL_OR_VIRTUAL:

 IF (OPCODE == jmpf [mem]) //JMPF Indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE == jmpf direct)
 {
 temp_RIP = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }

 IF (temp_RIP>CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RIP = temp_RIP
 EXIT

JMPF_PROTECTED:
 IF (OPCODE == jmpf [mem]) // JMPF Indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE == jmpf direct)
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // ’jmpf direct’ is illegal in 64-bit mode

 temp_offset = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

General-Purpose 205
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)
 // read descriptor, perform protection and type checks

 IF (temp_desc.attr.type == ’available_tss’)
 TASK_SWITCH // using temp_sel as the target tss selector
 ELSIF (temp_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using the tss selector in the task gate as the
 // target tss
 ELSIF (temp_desc.attr.type == ’code’)
 // if the selector refers to a code descriptor, then
 // the offset we read is the target RIP
 {
 temp_RIP = temp_offset
 CS = temp_desc
 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 // temp_RIP can’t be non-canonical because
 // it’s a 16- or 32-bit offset, zero-extended to 64 bits
 {
 EXCEPTION [#GP(0)]
 }
 RIP = temp_RIP
 EXIT
 }
 ELSE
 {
 // (temp_desc.attr.type == ’callgate’)
 // if the selector refers to a call gate, then
 // the target CS and RIP both come from the call gate
 temp_RIP = temp_desc.offset

 IF (LONG_MODE)
 {
 // in long mode, we need to read the 2nd half of a 16-byte call-gate
 // from the gdt/ldt to get the upper 32 bits of the target RIP
 temp_upper = READ_MEM.q [temp_sel+8]
 IF (temp_upper’s extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)] // Make sure the extended
 // attribute bits are all zero.

 temp_RIP = tempRIP + (temp_upper SHL 32)
 // concatenate both halves of RIP
 }
 CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)
 // set up new CS base, attr, limits
 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]
 RIP = temp_RIP
 EXIT
 }

206 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

JMP (Near), Jcc, JrCX

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The far JUMP indirect opcode (FF /5) had a register operand.

X The far JUMP direct opcode (EA) was executed in 64-bit
mode.

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General-Purpose 207
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set, but the LDT selector was
a null selector.

X

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified the call gate was
greater than the CPL and it is a conforming segment.

X The DPL of the segment descriptor specified by the callgate
was not equal to the CPL and it is a non-conforming segment.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

208 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the lower 8 bits of the rFLAGS register, including sign flag (SF), zero flag (ZF), auxiliary carry
flag (AF), parity flag (PF), and carry flag (CF), into the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0, respectively, in
the AH register.

The LAHF instruction is available in 64-bit mode if CPUID Fn8000_0001_ECX[LahfSahf] = 1. It is
always available in the other operating modes (including compatibility mode)

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

SAHF

rFLAGS Affected

None.

Exceptions

LAHF Load Status Flags into AH Register

Mnemonic Opcode Description

LAHF 9F Load the SF, ZF, AF, PF, and CF flags into the AH
register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X The LAHF instruction is not supported in 64-bit mode, as

indicated by CPUID Fn8000_0001_ECX[LahfSahf] = 0.

General-Purpose 209
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads a far pointer from a memory location (second operand) into a segment register (mnemonic) and
general-purpose register (first operand). The instruction stores the 16-bit segment selector of the
pointer into the segment register and the 16-bit or 32-bit offset portion into the general-purpose
register. The operand-size attribute determines whether the pointer loaded is 32 or 48 bits in length. A
64-bit operand is not supported.

These instructions load associated segment-descriptor information into the hidden portion of the
specified segment register.

Related Instructions

None

rFLAGS Affected

None

LDS
LES
LFS
LGS
LSS

Load Far Pointer

Mnemonic Opcode Description

LDS reg16, mem16:16 C5 /r Load DS:reg16 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

LDS reg32, mem16:32 C5 /r Load DS:reg32 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

LES reg16, mem16:16 C4 /r Load ES:reg16 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

LES reg32, mem16:32 C4 /r Load ES:reg32 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

LFS reg16, mem16:16 0F B4 /r Load FS:reg16 with a 32-bit far pointer from memory.

LFS reg32, mem16:32 0F B4 /r Load FS:reg32 with a 48-bit far pointer from memory.

LGS reg16, mem16:16 0F B5 /r Load GS:reg16 with a 32-bit far pointer from memory.

LGS reg32, mem16:32 0F B5 /r Load GS:reg32 with a 48-bit far pointer from memory.

LSS reg16, mem16:16 0F B2 /r Load SS:reg16 with a 32-bit far pointer from memory.

LSS reg32, mem16:32 0F B2 /r Load SS:reg32 with a 48-bit far pointer from memory.

210 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The source operand was a register.

X LDS or LES was executed in 64-bit mode and not subject to
interpretation as a VEX prefix.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 211
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Computes the effective address of a memory location (second operand) and stores it in a general-
purpose register (first operand).

The address size of the memory location and the size of the register determine the specific action taken
by the instruction, as follows:

• If the address size and the register size are the same, the instruction stores the effective address as
computed.

• If the address size is longer than the register size, the instruction truncates the effective address to
the size of the register.

• If the address size is shorter than the register size, the instruction zero-extends the effective address
to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a memory location to a
register, but LEA takes the address of the source operand, whereas MOV takes the contents of the
memory location specified by the source operand. In the simplest cases, LEA can be replaced with
MOV. For example:

lea eax, [ebx]

has the same effect as:

mov eax, ebx

However, LEA allows software to use any valid ModRM and SIB addressing mode for the source
operand. For example:

lea eax, [ebx+edi]

loads the sum of the EBX and EDI registers into the EAX register. This could not be accomplished by
a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in general-purpose
registers using scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible values of
multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to initialize an index
register (rSI or rDI) before performing string instructions such as MOVSx. It is also used to initialize
the rBX register before performing the XLAT instruction in programs that perform character
translations. In data structures, the LEA instruction can calculate addresses of operands stored in
memory, and in particular, addresses of array or string elements.

LEA Load Effective Address

212 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

LEA reg16, mem 8D /r Store effective address in a 16-bit register.

LEA reg32, mem 8D /r Store effective address in a 32-bit register.

LEA reg64, mem 8D /r Store effective address in a 64-bit register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The source operand was a register.

General-Purpose 213
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Releases a stack frame created by a previous ENTER instruction. To release the frame, it copies the
frame pointer (in the rBP register) to the stack pointer register (rSP), and then pops the old frame
pointer from the stack into the rBP register, thus restoring the stack frame of the calling procedure.

The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:

MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after the LEAVE
instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Related Instructions

ENTER

rFLAGS Affected

None

Exceptions

LEAVE Delete Procedure Stack Frame

Mnemonic Opcode Description

LEAVE C9 Set the stack pointer register SP to the value in the BP
register and pop BP.

LEAVE C9
Set the stack pointer register ESP to the value in the
EBP register and pop EBP.
(No prefix for encoding this in 64-bit mode.)

LEAVE C9 Set the stack pointer register RSP to the value in the
RBP register and pop RBP.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

214 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between load instructions preceding
the LFENCE and load instructions that follow the LFENCE. Loads from differing memory types may
be performed out of order, in particular between WC/WC+ and other memory types. The LFENCE
instruction assures that the system completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data and instruction
prefetches, and the SFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with respect to other
LFENCE instructions, as well as MFENCE and other serializing instructions. Further details on the
use of MFENCE to order accesses among differing memory types may be found in AMD64
Architecture Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on
page 172.

LFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

In some systems, LFENCE may be configured to be dispatch serializing. In systems where CPUID
Fn8000_0021_EAX[LFenceAlwaysSerializing](bit 2) = 1, LFENCE is always dispatch serializing.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MFENCE, SFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

LFENCE Load Fence

Mnemonic Opcode Description

LFENCE 0F AE E8 Force strong ordering of (serialize) load operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

General-Purpose 215
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

See Volume 2, Chapter 13, for an overview of the lightweight profiling facility.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

The LWPCB address in the register is truncated to 32 bits if the operand size is 32.

Action

1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes
a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
description of the SLWPCB instruction on page 332 for details on saving the active LWP state.

If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

4. The LWPCB address is non-zero. LLWPCB validates it as follows:

- If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes
a #GP exception.

- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB
causes a #GP exception.

- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF
exception.

If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value

LLWPCB Load Lightweight Profiling Control Block
Address

216 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes

If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer allow
access the LWPCB or the ring buffer. However, a #GP fault will occur if the application uses XRSTOR
to restore LWP state saved by XSAVE. Programs should avoid using XSAVE/XRSTOR on LWP state
if DS has changed. This only applies when the CPL != 0; kernel mode operation of XRSTOR is
unaffected by changes to DS. See instruction listing for XSAVE in Volume 4 for details.

Operating system and hypervisor code that runs when CPL ≠ 3 should use XSAVE and XRSTOR to
control LWP rather than using LLWPCB. Use WRMSR to write 0 to the LWP_CBADDR MSR to
immediately stop LWP without saving its current state.

It is possible to execute LLWPCB when the CPL != 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

LLWPCB is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

General-Purpose 217
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. ModRM.r/m (augmented by XOP.R)
specifies the register containing the effective address of the LWPCB. ModRM.mod is 11b.

Related Instructions

SLWPCB, LWPVAL, LWPINS

rFLAGS Affected

None

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LLWPCB reg32 8F RXB.09 0.1111.0.00 12 /0

LLWPCB reg64 8F RXB.09 1.1111.0.00 12 /0

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

General protection,
#GP

X
Any part of the LWPCB or the event ring buffer is beyond the
DS segment limit.

X Any restrictions on the contents of the LWPCB are violated

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X
LWP was already enabled and a page fault resulted from
reading or writing the old LWPCB.

X
LWP was already enabled and a page fault resulted from
flushing an event to the old ring buffer.

218 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the byte, word, doubleword, or quadword in the memory location pointed to by the DS:rSI
registers to the AL, AX, EAX, or RAX register, depending on the size of the operand, and then
increments or decrements the rSI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being loaded.

The forms of the LODS instruction with an explicit operand address the operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. The explicit
operand serves only to specify the type (size) of the value being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to the value to be
copied (they do not allow a segment prefix). The mnemonic determines the size of the operand and the
specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. More often, software uses the LODSx instruction inside a loop controlled by a
LOOPcc instruction as a more efficient replacement for instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

LODS
LODSB
LODSW
LODSD
LODSQ

Load String

Mnemonic Opcode Description

LODS mem8 AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODS mem16 AD Load word at DS:rSI into AX and then increment or
decrement rSI.

LODS mem32 AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODS mem64 AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

LODSB AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODSW AD Load the word at DS:rSI into AX and then increment or
decrement rSI.

General-Purpose 219
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOVSx, STOSx

rFLAGS Affected

None

Exceptions

LODSD AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODSQ AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

220 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets the condition
specified by the mnemonic, it jumps to the target instruction specified by the signed 8-bit relative
offset. Otherwise, it continues with the next instruction after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size attribute of the
LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flag is set to 1. In other words,
the instruction exits the loop (falls through to the next instruction) if rCX becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to 0. In other
words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop contains a
compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix, and the
processor sign-extends the 8-bit offset before adding it to the RIP.

Related Instructions

None

LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

Loop

Mnemonic Opcode Description

LOOP rel8off E2 cb Decrement rCX, then jump short if rCX is not 0.

LOOPE rel8off E1 cb Decrement rCX, then jump short if rCX is not 0 and ZF is
1.

LOOPNE rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPNZ rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPZ rel8off E1 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 1.

General-Purpose 221
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

222 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Inserts programmed event record into the LWP event ring buffer in memory and advances the ring
buffer pointer.

Refer to the description of the programmed event record in Volume 2, Chapter 13. The record has an
EventId of 255. The value in the register specified by vvvv (first operand) is stored in the Data2 field at
bytes 23–16 (zero extended if the operand size is 32). The value in a register or memory location
(second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third operand) is
truncated to 16 bits and stored in the Flags field at bytes 3–2.

If the ring buffer is not full, or if LWP is running in Continuous Mode, the head pointer is advanced
and the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled,
an interrupt is signaled. If LWP is in Continuous Mode and the new head pointer equals the tail pointer,
the MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

LWPINS is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

LWPINS Lightweight Profiling Insert Record

General-Purpose 223
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. The {mod, r/m} field of the ModRM
byte (augmented by XOP.R) encodes the second operand. A 4-byte immediate field follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPVAL

rFLAGS Affected

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LWPINS reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /0 /imm32

LWPINS reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /0 /imm32

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

224 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the event counter associated with the programmed value sample event (see “Programmed
Value Sample” in Volume 2, Chapter 13). If the resulting counter value is negative, inserts an event
record into the LWP event ring buffer in memory and advances the ring buffer pointer.

Refer to the description of the programmed value sample record in Volume 2, Chapter 13. The event
record has an EventId of 1. The value in the register specified by vvvv (first operand) is stored in the
Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or memory
location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2.

If the programmed value sample record is not written to the event ring buffer, the memory location of
the second operand (assuming it is memory-based) is not accessed.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
Continuous Mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

LWPVAL Lightweight Profiling Insert Value

General-Purpose 225
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Note

When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to
become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different EventId values).

LWPVAL is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. The {mod, r/m} field of the
ModRM byte (augmented by XOP.R) encodes the second operand. A four-byte immediate field
follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPINS

rFLAGS Affected

None

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LWPVAL reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /1 /imm32

LWPVAL reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /1 /imm32

226 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

General-Purpose 227
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Counts the number of leading zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts downward from the most significant bit and stops when the highest bit
having a value of 1 is encountered or when the least significant bit is encountered. The count is written
to the destination register.

This instruction has two operands:

LZCNT dest, src

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the most significant bit is a one, the ZF flag is set to 1, zero is written to the destination register.
Otherwise, ZF is cleared.

LZCNT is an Advanced Bit Manipulation (ABM) instruction. Support for the LZCNT instruction is
indicated by CPUID Fn8000_0001_ECX[ABM] = 1. If the LZCNT instruction is not available, the
encoding is interpreted as the BSR instruction. Software MUST check the CPUID bit once per
program or library initialization before using the LZCNT instruction, or inconsistent behavior may
result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, POPCNT, T1MSKC, TZCNT, TZMSK

LZCNT Count Leading Zeros

Mnemonic Opcode Description

LZCNT reg16, reg/mem16 F3 0F BD /r Count the number of leading zeros in reg/mem16.

LZCNT reg32, reg/mem32 F3 0F BD /r Count the number of leading zeros in reg/mem32.

LZCNT reg64, reg/mem64 F3 0F BD /r Count the number of leading zeros in reg/mem64.

228 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 229
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

MCOMMIT provides a fencing and error detection capability for stores to system memory
components that have delayed error reporting. Execution of MCOMMIT ensures that any preceding
stores in the thread to such memory components have completed (target locations written, unless
inhibited by an error condition) and that any errors encountered by those stores have been signaled to
associated error logging resources. If any such errors are present, MCOMMIT will clear rFLAGS.CF
to zero, otherwise it will set rFLAGS.CF to one.

These errors are specific to the design of the platform and are reported only via MCOMMIT and in
associated error logging registers on the platform; they are not visible to the Machine Check
Architecture. Execution of MCOMMIT does not change any state in the error logging resources. Any
error indications will need to be cleared by privileged software before MCOMMIT can return an error-
free indication. Details on the error logging mechanisms may be found in the Processor Programming
Reference manual for any product that supports this technology and the MCOMMIT instruction.

The MCOMMIT instruction is supported if the feature flag CPUID Fn8000_0008_EBX[MCOMMIT]
=1 (bit 8). The MCOMMIT instruction must be explicitly enabled by the OS by setting
EFER.MCOMMIT=1 (EFER bit 17), otherwise attempted execution of MCOMMIT will result in a
#UD exception.

MCOMMIT uses the same ordering rules as the SFENCE instruction. It may be executed at any
privilege level.

Instruction Encoding

Related Instructions

LFENCE, SFENCE, MFENCE

rFLAGS Affected

MCOMMIT Commit Stores to Memory

Mnemonic Opcode Description

MCOMMIT F3 0F 01 FA Commit stores to memory

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

230 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between load and store instructions
preceding the MFENCE, and load and store instructions that follow the MFENCE. The processor may
perform loads out of program order with respect to non-conflicting stores for certain memory types.
The MFENCE instruction ensures that the system completes all previous memory accesses before
executing subsequent accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction prefetches.
Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered with respect to
other MFENCE instructions, LFENCE instructions, SFENCE instructions, serializing instructions,
and CLFLUSH instructions. Further details on the use of MFENCE to order accesses among differing
memory types may be found in AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, section 7.4 “Memory Types” on page 172.

The MFENCE instruction is a serializing instruction.

MFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

LFENCE, SFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

MFENCE Memory Fence

Mnemonic Opcode Description

MFENCE 0F AE F0 Force strong ordering of (serialized) load and store
operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

General-Purpose 231
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT and MWAITX instructions use the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITORX on an address range
for a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITORX instruction
can be determined by CPUID function 0000_0005h.

The rAX register provides the effective address. The DS segment is the default segment used to create
the linear address. Segment overrides may be used with the MONITORX instruction.

The ECX register specifies optional extensions for the MONITORX instruction. There are currently
no extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITORX instruction. There are currently no
hints defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITORX in s t ruc t i on can be execu t ed a t any p r i v i l ege l eve l and MSR
C001_0015h[MonMwaitUserEn] has no effect on MONITORX.

MONITORX performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITORX instruction is indicated by CPUID Fn8000_0001_ECX[MONITORX]
(bit 29) = 1.

Software must check the CPUID bit once per program or library initialization before using the
MONITORX instruction, or inconsistent behavior may result.

The following pseudo-code shows typical usage of a MONITORX/MWAITX pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints
while (!matching_store_done){
 MONITORX EAX, ECX, EDX
IF (!matching_store_done) {
 MWAITX EAX, ECX
 }
}

MONITORX Setup Monitor Address

232 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MWAITX, MONITOR, MWAIT

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MONITORX 0F 01 FA Establishes a range to be monitored

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X MONITORX/MWAITX instructions are not supported, as

indicated by CPUID Fn8000_0001_ECX[MONITORX] =0

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical

X X X ECX was non-zero

X A null data segment was used to reference memory

Page Fault, #PF X X A page fault resulted from the execution of the instruction

General-Purpose 233
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies an immediate value or the value in a general-purpose register, segment register, or memory
location (second operand) to a general-purpose register, segment register, or memory location. The
source and destination must be the same size (byte, word, doubleword, or quadword) and cannot both
be memory locations.

In opcodes A0 through A3, the memory offsets (called moffsets) are address sized. In 64-bit mode,
memory offsets default to 64 bits. Opcodes A0–A3, in 64-bit mode, are the only cases that support a
64-bit offset value. (In all other cases, offsets and displacements are a maximum of 32 bits.) The B8
through BF (B8 +rq) opcodes, in 64-bit mode, are the only cases that support a 64-bit immediate value
(in all other cases, immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends the 16-bit
selector results to 32 bits. When reading segment-registers with a 64-bit operand size, the processor
zero-extends the 16-bit selector to 64 bits. If the destination operand specifies a segment register (DS,
ES, FS, GS, or SS), the source operand must be a valid segment selector.

It is possible to move a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” in Volume 2.

When the MOV instruction is used to load the SS register, the processor blocks external interrupts until
after the execution of the following instruction. This action allows the following instruction to be a
MOV instruction to load a stack pointer into the ESP register (MOV ESP,val) before an interrupt
occurs. However, the LSS instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid opcode exception
(#UD). Use the far JMP, CALL, or RET instructions to load the CS register.

To initialize a register to 0, rather than using a MOV instruction, it may be more efficient to use the
XOR instruction with identical destination and source operands.

MOV Move

Mnemonic Opcode Description

MOV reg/mem8, reg8 88 /r Move the contents of an 8-bit register to an 8-bit
destination register or memory operand.

MOV reg/mem16, reg16 89 /r Move the contents of a 16-bit register to a 16-bit
destination register or memory operand.

MOV reg/mem32, reg32 89 /r Move the contents of a 32-bit register to a 32-bit
destination register or memory operand.

MOV reg/mem64, reg64 89 /r Move the contents of a 64-bit register to a 64-bit
destination register or memory operand.

MOV reg8, reg/mem8 8A /r Move the contents of an 8-bit register or memory
operand to an 8-bit destination register.

234 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

MOV reg16, reg/mem16 8B /r Move the contents of a 16-bit register or memory
operand to a 16-bit destination register.

MOV reg32, reg/mem32 8B /r Move the contents of a 32-bit register or memory
operand to a 32-bit destination register.

MOV reg64, reg/mem64 8B /r Move the contents of a 64-bit register or memory
operand to a 64-bit destination register.

MOV reg16/32/64/mem16,
segReg 8C /r

Move the contents of a segment register to a 16-bit, 32-
bit, or 64-bit destination register or to a 16-bit memory
operand.

MOV segReg, reg/mem16 8E /r Move the contents of a 16-bit register or memory
operand to a segment register.

MOV AL, moffset8 A0 Move 8-bit data at a specified memory offset to the AL
register.

MOV AX, moffset16 A1 Move 16-bit data at a specified memory offset to the AX
register.

MOV EAX, moffset32 A1 Move 32-bit data at a specified memory offset to the
EAX register.

MOV RAX, moffset64 A1 Move 64-bit data at a specified memory offset to the
RAX register.

MOV moffset8, AL A2 Move the contents of the AL register to an 8-bit memory
offset.

MOV moffset16, AX A3 Move the contents of the AX register to a 16-bit memory
offset.

MOV moffset32, EAX A3 Move the contents of the EAX register to a 32-bit
memory offset.

MOV moffset64, RAX A3 Move the contents of the RAX register to a 64-bit
memory offset.

MOV reg8, imm8 B0 +rb ib Move an 8-bit immediate value into an 8-bit register.

MOV reg16, imm16 B8 +rw iw Move a 16-bit immediate value into a 16-bit register.

MOV reg32, imm32 B8 +rd id Move an 32-bit immediate value into a 32-bit register.

MOV reg64, imm64 B8 +rq iq Move an 64-bit immediate value into a 64-bit register.

MOV reg/mem8, imm8 C6 /0 ib Move an 8-bit immediate value to an 8-bit register or
memory operand.

MOV reg/mem16, imm16 C7 /0 iw Move a 16-bit immediate value to a 16-bit register or
memory operand.

MOV reg/mem32, imm32 C7 /0 id Move a 32-bit immediate value to a 32-bit register or
memory operand.

MOV reg/mem64, imm32 C7 /0 id Move a 32-bit signed immediate value to a 64-bit
register or memory operand.

Mnemonic Opcode Description

General-Purpose 235
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOV CRn, MOV DRn, MOVD, MOVSX, MOVZX, MOVSXD, MOVSx

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X An attempt was made to load the CS register.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector,

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

236 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads or stores a general purpose register while swapping the byte order. Operates on 16-bit, 32-bit, or
64-bit values. Converts big-endian formatted memory data to little-endian format when loading a
register and reverses the conversion when storing a GPR to memory.

The load form reads a 16-, 32-, or 64-bit value from memory, swaps the byte order, and places the
reordered value in a general-purpose register. When the operand size is 16 bits, the upper word of the
destination register remains unchanged. In 64-bit mode, when the operand size is 32 bits, the upper
doubleword of the destination register is cleared.

The store form takes a 16-, 32-, or 64-bit value from a general-purpose register, swaps the byte order,
and stores the reordered value in the specified memory location. The contents of the source GPR
remains unchanged.

In the 16-bit swap, the upper and lower bytes are exchanged. In the doubleword swap operation, bits
7:0 are exchanged with bits 31:24 and bits 15:8 are exchanged with bits 23:16. In the quadword swap
operation, bits 7:0 are exchanged with bits 63:56, bits 15:8 with bits 55:48, bits 23:16 with bits 47:40,
and bits 31:24 with bits 39:32.

Support for the MOVBE instruction is indicated by CPUID Fn0000_0001_ECX[MOVBE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instruction

BSWAP

MOVBE Move Big Endian

Mnemonic Opcode Description

MOVBE reg16, mem16 0F 38 F0 /r Load the low word of a general-purpose register from a
16-bit memory location while swapping the bytes.

MOVBE reg32, mem32 0F 38 F0 /r Load the low doubleword of a general-purpose register
from a 32-bit memory location while swapping the bytes.

MOVBE reg64, mem64 0F 38 F0 /r Load a 64-bit register from a 64-bit memory location
while swapping the bytes.

MOVBE mem16, reg16 0F 38 F1 /r Store the low word of a general-purpose register to a
16-bit memory location while swapping the bytes.

MOVBE mem32, reg32 0F 38 F1 /r Store the low doubleword of a general-purpose register
to a 32-bit memory location while swapping the bytes.

MOVBE mem64, reg64 0F 38 F1 /r Store the contents of a 64-bit general-purpose register
to a 64-bit memory location while swapping the bytes.

General-Purpose 237
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported as indicated by CPUID

Fn0000_0001_ECX[MOVBE] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while alignment

checking was enabled.

238 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location

Figure 3-1 on page 233 illustrates the operation of the MOVD instruction.

The MOVD instruction form that moves data to or from MMX registers is part of the MMX instruction
subset. Support for MMX instructions is indicated by CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 1.

The MOVD instruction form that moves data to or from XMM registers is part of the SSE2 instruction
subset. Support for SSE2 instructions is indicated by CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

MOVD Move Doubleword or Quadword

General-Purpose 239
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 3-1. MOVD Instruction Operation

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

240 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Instruction Encoding

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

MOVD xmm, reg/mem32 66 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an XMM register.

MOVD1 xmm, reg/mem64 66 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an XMM register.

MOVD reg/mem32, xmm 66 0F 7E /r Move 32-bit value from an XMM register to a 32-bit
general-purpose register or memory location.

MOVD1 reg/mem64, xmm 66 0F 7E /r Move 64-bit value from an XMM register to a 64-bit
general-purpose register or memory location.

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit
general-purpose register or memory location.

Note: 1. Also known as MOVQ in some developer tools.

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
MMX instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 0.

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

General-Purpose 241
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP X X X A memory address exceeded a data segment limit or

was non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An x87 floating-point exception was pending and the
instruction referenced an MMX register.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Description

242 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves the sign bits of two packed double-precision floating-point values in an XMM register (second
operand) to the two low-order bits of a general-purpose register (first operand) with zero-extension.

The function of the MOVMSKPD instruction is illustrated by the diagram below:

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

MOVMSKPS, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPD Extract Packed Double-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPD reg32, xmm 66 0F 50 /r Move sign bits 127 and 63 in an XMM register to a 32-bit
general-purpose register.

movmskpd.eps

reg32 xmm

copy sign
copy sign

127 63 00

0

131

General-Purpose 243
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

244 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves the sign bits of four packed single-precision floating-point values in an XMM register (second
operand) to the four low-order bits of a general-purpose register (first operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MOVMSKPD, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPS Extract Packed Single-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPS reg32, xmm 0F 50 /r Move sign bits 127, 95, 63, 31 in an XMM register to a
32-bit general-purpose register.

movmskps.eps

03 127 63 095 31

reg32 xmm

copy signcopy signcopy signcopy sign

0

31

General-Purpose 245
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

246 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a memory location
(first operand). This instruction indicates to the processor that the data is non-temporal and is unlikely
to be used again soon. The processor treats the store as a write-combining (WC) memory write, which
minimizes cache pollution. The exact method by which cache pollution is minimized depends on the
hardware implementation of the instruction. For further information, see “Memory Optimization” in
Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that operate on memory.
Software should use an SFENCE instruction to force strong memory ordering of MOVNTI with
respect to other stores.

The MOVNTI instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected

None

Exceptions

MOVNTI Move Non-Temporal Doubleword or
Quadword

Mnemonic Opcode Description

MOVNTI mem32, reg32 0F C3 /r Stores a 32-bit general-purpose register value into a 32-
bit memory location, minimizing cache pollution.

MOVNTI mem64, reg64 0F C3 /r Stores a 64-bit general-purpose register value into a 64-
bit memory location, minimizing cache pollution.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General-Purpose 247
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

248 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves a byte, word, doubleword, or quadword from the memory location pointed to by DS:rSI to the
memory location pointed to by ES:rDI, and then increments or decrements the rSI and rDI registers
according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements them. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the MOVSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but can be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI] (ES may not be overridden). The explicit operands
serve only to specify the type (size) of the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the value
to be moved (they do not allow a segment prefix). The mnemonic determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12.

MOVS
MOVSB
MOVSW
MOVSD
MOVSQ

Move String

Mnemonic Opcode Description

MOVS mem8, mem8 A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem16, mem16 A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem32, mem32 A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVS mem64, mem64 A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

MOVSB A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVSW A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

General-Purpose 249
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOV, LODSx, STOSx

rFLAGS Affected

None

Exceptions

MOVSD A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVSQ A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

250 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the value in a register or memory location (second operand) into a register (first operand),
extending the most significant bit of an 8-bit or 16-bit value into all higher bits in a 16-bit, 32-bit, or
64-bit register.

Related Instructions

MOVSXD, MOVZX

rFLAGS Affected

None

Exceptions

MOVSX Move with Sign-Extension

Mnemonic Opcode Description

MOVSX reg16, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 16-bit register with sign extension.

MOVSX reg32, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 64-bit register with sign extension.

MOVSX reg32, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 64-bit register with sign extension.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 251
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit register (first
operand), extending the most significant bit of the 32-bit value into all higher bits of the 64-bit register.

This instruction requires the REX prefix 64-bit operand size bit (REX.W) to be set to 1 to sign-extend
a 32-bit source operand to a 64-bit result. Without the REX operand-size prefix, the operand size will
be 32 bits, the default for 64-bit mode, and the source is zero-extended into a 64-bit register. With a 16-
bit operand size, only 16 bits are copied, without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this opcode is
interpreted as ARPL.

Related Instructions

MOVSX, MOVZX

rFLAGS Affected

None

Exceptions

MOVSXD Move with Sign-Extend Doubleword

Mnemonic Opcode Description

MOVSXD reg64, reg/mem32 63 /r Move the contents of a 32-bit register or memory
operand to a 64-bit register with sign extension.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X A memory address was non-canonical.

General protection,
#GP X A memory address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

252 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the value in a register or memory location (second operand) into a register (first operand), zero-
extending the value to fit in the destination register. The operand-size attribute determines the size of
the zero-extended value.

Related Instructions

MOVSXD, MOVSX

rFLAGS Affected

None

Exceptions

MOVZX Move with Zero-Extension

Mnemonic Opcode Description

MOVZX reg16, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 16-bit register with zero-extension.

MOVZX reg32, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 64-bit register with zero-extension.

MOVZX reg32, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 64-bit register with zero-extension.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 253
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified register or
memory location by the value in AL, AX, EAX, or RAX and stores the result in AX, DX:AX,
EDX:EAX, or RDX:RAX (depending on the operand size). It puts the high-order bits of the product in
AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and overflow flag
(OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic flags (SF, ZF, AF, PF) are
undefined.

Related Instructions

DIV

rFLAGS Affected

MUL Unsigned Multiply

Mnemonic Opcode Description

MUL reg/mem8 F6 /4
Multiplies an 8-bit register or memory operand by the
contents of the AL register and stores the result in the
AX register.

MUL reg/mem16 F7 /4
Multiplies a 16-bit register or memory operand by the
contents of the AX register and stores the result in the
DX:AX register.

MUL reg/mem32 F7 /4
Multiplies a 32-bit register or memory operand by the
contents of the EAX register and stores the result in the
EDX:EAX register.

MUL reg/mem64 F7 /4
Multiplies a 64-bit register or memory operand by the
contents of the RAX register and stores the result in the
RDX:RAX register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

254 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

General-Purpose 255
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Computes the unsigned product of the specified source operand and the implicit source operand rDX.
Writes the upper half of the product to the first destination and the lower half to the second. Does not
affect the arithmetic flags.

This instruction has three operands:

MULX dest1, dest2, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The first and second operands (dest1 and dest2) are general purpose registers. The specified source
operand (src) is either a general purpose register or a memory operand. If the first and second operands
specify the same register, the register receives the upper half of the product.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

rFLAGS Affected

None.

Exceptions

MULX Multiply Unsigned

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

MULX reg32, reg32, reg/mem32 C4 RXB.02 0.dest2.0.11 F6 /r

MULX reg64, reg64, reg/mem64 C4 RXB.02 1.dest2.0.11 F6 /r

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

256 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Exception
Real

Virtual
8086 Protected

Cause of Exception

General-Purpose 257
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Used in conjunction with the MONITORX instruction to cause a processor to wait until a store occurs
to a specific linear address range from another processor or the timer expires. The previously executed
MONITORX instruction causes the processor to enter the monitor event pending state. The MWAITX
instruction may enter an implementation dependent power state until the monitor event pending state
is exited. The MWAITX instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

• A store from another processor matches the address range established by the MONITORX
instruction.

• The timer expires.

• Any unmasked interrupt, including INTR, NMI, SMI, INIT.

• RESET.

• Any far control transfer that occurs between the MONITORX and the MWAITX.

EAX specifies optional hints for the MWAITX instruction. Optimized C-state request is
communicated through EAX[7:4]. The processor C-state is EAX[7:4]+1, so to request C0 is to place
the value F in EAX[7:4] and to request C1 is to place the value 0 in EAX[7:4]. All other components of
EAX should be zero when making the C1 request. Setting a reserved bit in EAX is ignored by the
processor. This is implicitly a 32-bit operand.

ECX specifies optional extensions for the MWAITX instruction. The extensions currently defined for
ECX are:

• Bit 0: When set, allows interrupts to wake MWAITX, even when eFLAGS.IF = 0. Support for this
extension is indicated by a feature flag returned by the CPUID instruction.

• Bit 1: When set, EBX contains the maximum wait time expressed in Software P0 clocks, the same
clocks counted by the TSC. Setting bit 1 but passing in a value of zero on EBX is equivalent to
setting bit 1 to a zero. The timer will not be an exit condition.

• Bit 31-2: When non-zero, results in a #GP(0) exception.

This is implicitly a 32-bit operand.

CPUID Function 0000_0005h indicates support for extended features of MONITORX/MWAITX as
well as MONITOR/MWAIT:

• CPUID Fn0000_0005_ECX[EMX] = 1 indicates support for enumeration of
MONITOR/MWAIT/MONITORX/MWAITX extensions.

• CPUID Fn0000_0005_ECX[IBE] = 1 indicates that MWAIT/MWAITX can set ECX[0] to allow
interrupts to cause an exit from the monitor event pending state even when eFLAGS.IF = 0.

The MWAITX in s t ruc t i on can be execu te d a t a n y p r i v i l e g e l e v e l a n d M S R
C001_0015h[MonMwaitUserEn] has no effect on MWAITX.

MWAITX Monitor Wait with Timeout

258 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Support for the MWAITX instruction is indicated by CPUID Fn8000_0001_ECX[MONITORX] (bit
29)= 1.

Software must check the CPUID bit once per program or library initialization before using the
MWAITX instruction, or inconsistent behavior may result.

The use of the MWAITX instruction is contingent upon the satisfaction of the following coding
requirements:

• MONITORX must precede the MWAITX and occur in the same loop.

• MWAITX must be conditionally executed only if the awaited store has not already occurred. (This
prevents a race condition between the MONITORX instruction arming the monitoring hardware
and the store intended to trigger the monitoring hardware.)

There is no indication after exiting MWAITX of why the processor exited or if the timer expired. It is
up to software to check whether the awaiting store has occurred, and if not, determining how much
time has elapsed if it wants to re-establish the MONITORX with a new timer value.

Related Instructions

MONITORX, MONITOR, MWAIT

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MWAITX 0F 01 FB

Causes the processor to stop
instruction execution and enter
an implementation-dependent
optimized state until occurrence
of a class of events

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X MONITORX/MWAITX instructions are not supported, as

indicated by CPUID Fn8000_0001_ECX[MONITORX] =0

General protection,
#GP X X X Unsupported extension bits in ECX

General-Purpose 259
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

260 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs the two’s complement negation of the value in the specified register or memory location by
subtracting the value from 0. Use this instruction only on signed integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The OF, SF, ZF, AF,
and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NOT, OR, XOR

rFLAGS Affected

NEG Two’s Complement Negation

Mnemonic Opcode Description

NEG reg/mem8 F6 /3 Performs a two’s complement negation on an 8-bit
register or memory operand.

NEG reg/mem16 F7 /3 Performs a two’s complement negation on a 16-bit
register or memory operand.

NEG reg/mem32 F7 /3 Performs a two’s complement negation on a 32-bit
register or memory operand.

NEG reg/mem64 F7 /3 Performs a two’s complement negation on a 64-bit
register or memory operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 261
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand is in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

262 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Does nothing. This instruction increments the rIP to point to next instruction, but does not affect the
machine state in any other way.

The single-byte variant is an alias for XCHG rAX,rAX.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

NOP No Operation

Mnemonic Opcode Description

NOP 90 Performs no operation.

NOP reg/mem16 0F 1F /0 Performs no operation on a 16-bit register or memory
operand.

NOP reg/mem32 0F 1F /0 Performs no operation on a 32-bit register or memory
operand.

NOP reg/mem64 0F 1F /0 Performs no operation on a 64-bit register or memory
operand.

General-Purpose 263
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs the one’s complement negation of the value in the specified register or memory location by
inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NEG, OR, XOR

rFLAGS Affected

None

Exceptions

NOT One’s Complement Negation

Mnemonic Opcode Description

NOT reg/mem8 F6 /2 Complements the bits in an 8-bit register or memory
operand.

NOT reg/mem16 F7 /2 Complements the bits in a 16-bit register or memory
operand.

NOT reg/mem32 F7 /2 Complements the bits in a 32-bit register or memory
operand.

NOT reg/mem64 F7 /2 Compliments the bits in a 64-bit register or memory
operand.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

264 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs a logical or on the bits in a register, memory location, or immediate value (second operand)
and a register or memory location (first operand) and stores the result in the first operand location. The
two operands cannot both be memory locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the corresponding
result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

OR Logical OR

Mnemonic Opcode Description

OR AL, imm8 0C ib or the contents of AL with an immediate 8-bit value.

OR AX, imm16 0D iw or the contents of AX with an immediate 16-bit value.

OR EAX, imm32 0D id or the contents of EAX with an immediate 32-bit value.

OR RAX, imm32 0D id or the contents of RAX with a sign-extended immediate
32-bit value.

OR reg/mem8, imm8 80 /1 ib or the contents of an 8-bit register or memory operand
and an immediate 8-bit value.

OR reg/mem16, imm16 81 /1 iw or the contents of a 16-bit register or memory operand
and an immediate 16-bit value.

OR reg/mem32, imm32 81 /1 id or the contents of a 32-bit register or memory operand
and an immediate 32-bit value.

OR reg/mem64, imm32 81 /1 id or the contents of a 64-bit register or memory operand
and sign-extended immediate 32-bit value.

OR reg/mem16, imm8 83 /1 ib or the contents of a 16-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem32, imm8 83 /1 ib or the contents of a 32-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem64, imm8 83 /1 ib or the contents of a 64-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem8, reg8 08 /r or the contents of an 8-bit register or memory operand
with the contents of an 8-bit register.

OR reg/mem16, reg16 09 /r or the contents of a 16-bit register or memory operand
with the contents of a 16-bit register.

OR reg/mem32, reg32 09 /r or the contents of a 32-bit register or memory operand
with the contents of a 32-bit register.

OR reg/mem64, reg64 09 /r or the contents of a 64-bit register or memory operand
with the contents of a 64-bit register.

General-Purpose 265
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

The following chart summarizes the effect of this instruction:

Related Instructions

AND, NEG, NOT, XOR

rFLAGS Affected

Exceptions

OR reg8, reg/mem8 0A /r or the contents of an 8-bit register with the contents of
an 8-bit register or memory operand.

OR reg16, reg/mem16 0B /r or the contents of a 16-bit register with the contents of
a 16-bit register or memory operand.

OR reg32, reg/mem32 0B /r or the contents of a 32-bit register with the contents of
a 32-bit register or memory operand.

OR reg64, reg/mem64 0B /r or the contents of a 64-bit register with the contents of
a 64-bit register or memory operand.

X Y X or Y

0 0 0

0 1 1

1 0 1

1 1 1

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Mnemonic Opcode Description

266 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

General-Purpose 267
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port (first operand).
The port address can be a byte-immediate value (00h to FFh) or the value in the DX register (0000h to
FFFFh). The source register used determines the size of the port (8, 16, or 32 bits).

If the operand size is 64 bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O permission
bitmap.

Related Instructions

IN, INSx, OUTSx

rFLAGS Affected

None

Exceptions

OUT Output to Port

Mnemonic Opcode Description

OUT imm8, AL E6 ib Output the byte in the AL register to the port specified by
an 8-bit immediate value.

OUT imm8, AX E7 ib Output the word in the AX register to the port specified
by an 8-bit immediate value.

OUT imm8, EAX E7 ib Output the doubleword in the EAX register to the port
specified by an 8-bit immediate value.

OUT DX, AL EE Output byte in AL to the output port specified in DX.

OUT DX, AX EF Output word in AX to the output port specified in DX.

OUT DX, EAX EF Output doubleword in EAX to the output port specified in
DX.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault (#PF) X X A page fault resulted from the execution of the instruction.

268 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies data from the memory location pointed to by DS:rSI to the I/O port address (0000h to FFFFh)
specified in the DX register, and then increments or decrements the rSI register according to the setting
of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements the pointer by 1, 2, or 4, depending on the size of the value being copied.

The OUTS DX mnemonic uses an explicit memory operand (second operand) to determine the type
(size) of the value being copied, but always uses DS:rSI for the location of the value to copy. The
explicit register operand (first operand) specifies the I/O port address and must always be DX.

The no-operands forms of the mnemonic use the DS:rSI register pair to point to the memory data to be
copied and the contents of the DX register as the destination I/O port address. The mnemonic specifies
the size of the I/O port and the type (size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see “Repeat
Prefixes” on page 12.

If the effective operand size is 64-bits, the instruction behaves as if the operand size were 32 bits.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O permission
bitmap in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O
permission bitmap.

OUTS
OUTSB
OUTSW
OUTSD

Output String

Mnemonic Opcode Description

OUTS DX, mem8 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem16 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem32 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

OUTSB 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSW 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSD 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

General-Purpose 269
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

IN, INSx, OUT

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

270 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Improves the performance of spin loops, by providing a hint to the processor that the current code is in
a spin loop. The processor may use this to optimize power consumption while in the spin loop.

Architecturally, this instruction behaves like a NOP instruction.

Processors that do not support PAUSE treat this opcode as a NOP instruction.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

PAUSE Pause

Mnemonic Opcode Description

PAUSE F3 90 Provides a hint to processor that a spin loop is being
executed.

General-Purpose 271
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Scatters consecutive bits of the first source operand, starting at the least significant bit, to bit positions
in the destination as specified by 1 bits in the second source operand (mask). Bit positions in the
destination corresponding to 0 bits in the mask are cleared.

This instruction has three operands:

PDEP dest, src, mask

The following diagram illustrates the operation of this instruction.

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) is either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PDEP Parallel Deposit Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PDEP reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.11 F5 /r

PDEP reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.11 F5 /r

src

dest

b
n-1

b
n-2 b0b1b2b3b4b5b6b7b8b9b10

b0b1b2b3b4b5b6 000000000

1111111 000000000 mask

d
n-1

m
n-1

v3_PDEP_instruct.eps

272 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

rFLAGS Affected

None.

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 273
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies bits from the source operand, based on a mask, and packs them into the low-order bits of the
destination. Clears all bits in the destination to the left of the most-significant bit copied.

This instruction has three operands:

PEXT dest, src, mask

The following diagram illustrates the operation of this instruction.

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) is either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PEXT Parallel Extract Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PEXT reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.10 F5 /r

PEXT reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.10 F5 /r

src

dest

b
n-1 b0b1b2b3b4b5b6

b6

b7b8

b8

b9

b9

b10b11b12

b12

b13

b13

b14

b14

b15

0000

1111111 000000000 maskm
n-1

v3_PEXT_instruct.eps

0 b200000
0123456789101112131415n-1

274 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

rFLAGS Affected

None.

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose 275
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or memory location
and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop, or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is incremented (2, 4 or 8
bytes). The stack-size attribute determines whether SP, ESP, or RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS, POP GS, POP
SS), the source operand must be a valid segment selector. When a segment selector is popped into a
segment register, the processor also loads all associated descriptor information into the hidden part of
the register and validates it.

It is possible to pop a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see "Segment Selectors
and Registers" in Volume 2: System Programming.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix available to encode a 32-
bit operand size. Using POP DS, POP ES, or POP SS instruction in 64-bit mode generates an invalid-
opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction performs this
function.

POP Pop Stack

Mnemonic Opcode Description

POP reg/mem16 8F /0 Pop the top of the stack into a 16-bit register or memory
location.

POP reg/mem32 8F /0
Pop the top of the stack into a 32-bit register or memory
location.
(No prefix for encoding this in 64-bit mode.)

POP reg/mem64 8F /0 Pop the top of the stack into a 64-bit register or memory
location.

POP reg16 58 +rw Pop the top of the stack into a 16-bit register.

POP reg32 58 +rd Pop the top of the stack into a 32-bit register.
(No prefix for encoding this in 64-bit mode.)

POP reg64 58 +rq Pop the top of the stack into a 64-bit register.

POP DS 1F Pop the top of the stack into the DS register.
(Invalid in 64-bit mode.)

POP ES 07 Pop the top of the stack into the ES register.
(Invalid in 64-bit mode.)

POP SS 17 Pop the top of the stack into the SS register.
(Invalid in 64-bit mode.)

276 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

PUSH

rFLAGS Affected

None

Exceptions

POP FS 0F A1 Pop the top of the stack into the FS register.

POP GS 0F A9 Pop the top of the stack into the GS register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X POP DS, POP ES, or POP SS was executed in 64-bit mode.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded and the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or the CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 277
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pops words or doublewords from the stack into the general-purpose registers in the following order:
eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX, and eAX. The instruction
increments the stack pointer by 16 or 32, depending on the operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode exception.

Related Instructions

PUSHA, PUSHAD

rFLAGS Affected

None

Exceptions

POPA
POPAD

 POP All GPRs

Mnemonic Opcode Description

POPA 61 Pop the DI, SI, BP, SP, BX, DX, CX, and AX registers.
(Invalid in 64-bit mode.)

POPAD 61
Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX
registers.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode
(#UD) X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

278 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Counts the number of bits having a value of 1 in the source operand and places the result in the
destination register. The source operand is a 16-, 32-, or 64-bit general purpose register or memory
operand; the destination operand is a general purpose register of the same size as the source operand
register.

If the input operand is zero, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, the ZF flag is cleared. The other flags are cleared.

Support for the POPCNT instruction is indicated by CPUID Fn0000_0001_ECX[POPCNT] = 1.
Software MUST check the CPUID bit once per program or library initialization before using the
POPCNT instruction, or inconsistent behavior may result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BSF, BSR, LZCNT

rFLAGS Affected

POPCNT Bit Population Count

Mnemonic Opcode Description

POPCNT reg16, reg/mem16 F3 0F B8 /r Count the 1s in reg/mem16.

POPCNT reg32, reg/mem32 F3 0F B8 /r Count the 1s in reg/mem32.

POPCNT reg64, reg/mem64 F3 0F B8 /r Count the 1s in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 279
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The POPCNT instruction is not supported, as indicated by

CPUID Fn0000_0001_ECX[POPCNT].

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

280 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Pops a word, doubleword, or quadword from the stack into the rFLAGS register and then increments
the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be modified, except
the VIP, VIF, and VM flags, which are unchanged. In protected mode, at a privilege level greater than
0 the IOPL is also unchanged. The instruction alters the interrupt flag (IF) only when the CPL is less
than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or PUSHFx
instruction while VME is not enabled, or the operand size is not 16-bit, generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix available to encode
a 32-bit operand size.

Action
// See “Pseudocode Definition” on page 57.

POPF_START:

IF (REAL_MODE)
 POPF_REAL
ELSIF (PROTECTED_MODE)
 POPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 POPF_VIRTUAL

POPF_REAL:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // RF cleared
 EXIT

POPF
POPFD
POPFQ

 POP to rFLAGS

Mnemonic Opcode Description

POPF 9D Pop a word from the stack into the FLAGS register.

POPFD 9D Pop a double word from the stack into the EFLAGS
register. (No prefix for encoding this in 64-bit mode.)

POPFQ 9D Pop a quadword from the stack to the RFLAGS register.

General-Purpose 281
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

POPF_PROTECTED:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // IOPL changed only if (CPL==0)
 // IF changed only if (CPL<=old_RFLAGS.IOPL)
 // RF cleared
 EXIT

POPF_VIRTUAL:

 IF (RFLAGS.IOPL==3)
 {
 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
 // RF cleared
 EXIT
 }
 ELSIF ((CR4.VME==1) && (OPERAND_SIZE==16))
 {
 POP.w temp_RFLAGS
 IF (((temp_RFLAGS.IF==1) && (RFLAGS.VIP==1)) || (temp_RFLAGS.TF==1))
 EXCEPTION [#GP(0)]
 // notify the virtual-mode-manager to

deliver
 // the task’s pending interrupts
 RFLAGS.w = temp_RFLAGS // IF,IOPL unchanged
 // RFLAGS.VIF=temp_RFLAGS.IF
 // RF cleared
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME==0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

PUSHF, PUSHFD, PUSHFQ

rFLAGS Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

282 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X

The I/O privilege level was less than 3 and one of the following
conditions was true:
• CR4.VME was 0.

• The effective operand size was 32-bit.

• Both the original EFLAGS.VIP and the new EFLAGS.IF bits
were set.

• The new EFLAGS.TF bit was set.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose 283
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the entire 64-byte aligned memory sequence containing the specified memory address into the
L1 data cache. The position of the specified memory address within the 64-byte cache line is
irrelevant. If a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state to Modified, in
anticipation of subsequent data writes to the line. The PREFETCH instruction, by contrast, typically
sets the cache-line state to Exclusive (depending on the hardware implementation).

The opcodes for the PREFETCH/PREFETCHW instructions include the ModRM byte; however, only
the memory form of ModRM is valid. The register form of ModRM causes an invalid-opcode
exception. Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and 001b define the
PREFETCH and PREFETCHW instructions, respectively. All other bit patterns are reserved for future
use.

The reserved PREFETCH types do not result in an invalid-opcode exception if executed. Instead, for
forward compatibility with future processors that may implement additional forms of the PREFETCH
instruction, all reserved PREFETCH types are implemented as synonyms of the basic PREFETCH
type (the PREFETCH instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor implementation can
ignore or change these instructions. The size of the cache line also depends on the implementation,
with a minimum size of 32 bytes. For details on the use of this instruction, see the processor data sheets
or other software-optimization documentation relating to particular hardware implementations.

When paging is enabled and PREFETCHW performs a prefetch from a writable page, it may set the
PTE Dirty bit to 1.

Support for the PREFETCH and PREFETCHW instruct ions is indicated by CPUID
Fn8000_0001_ECX[3DNowPre fe t ch] O R F n 8 0 0 0 _ 0 0 0 1 _ E D X [L M] O R
Fn8000_0001_EDX[3DNow] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PREFETCH
PREFETCHW

 Prefetch L1 Data-Cache Line

Mnemonic Opcode Description

PREFETCH mem8 0F 0D /0 Prefetch processor cache line into L1 data cache.

PREFETCHW mem8 0F 0D /1 Prefetch processor cache line into L1 data cache and
mark it modified.

284 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

PREFETCHlevel

rFLAGS Affected

None

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

PREFETCH and PREFETCHW instructions are not
supported, as indicated by CPUID
Fn8000_0001_ECX[3DNowPrefetch] AND
Fn8000_0001_EDX[LM] AND
Fn8000_0001_EDX[3DNow] = 0.

X X X The operand was a register.

General-Purpose 285
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads a cache line from the specified memory address into the data-cache level specified by the
locality reference bits 5:3 of the ModRM byte. Table 3-3 on page 279 lists the locality reference
options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the start of the line. If
the cache line is already contained in a cache level that is lower than the specified locality reference, or
if a memory fault is detected, a bus cycle is not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor implementation can
ignore or change this instruction. The size of the cache line also depends on the implementation, with a
minimum size of 32 bytes. AMD processors alias PREFETCH1 and PREFETCH2 to PREFETCH0.
For details on the use of this instruction, see the software-optimization documentation relating to
particular hardware implementations.

Related Instructions

PREFETCH, PREFETCHW

PREFETCHlevel Prefetch Data to Cache Level level

Mnemonic Opcode Description

PREFETCHNTA mem8 0F 18 /0 Move data closer to the processor using the NTA
reference.

PREFETCHT0 mem8 0F 18 /1 Move data closer to the processor using the T0
reference.

PREFETCHT1 mem8 0F 18 /2 Move data closer to the processor using the T1
reference.

PREFETCHT2 mem8 0F 18 /3 Move data closer to the processor using the T2
reference.

Table 3-3. Locality References for the Prefetch Instructions

Locality
Reference Description

NTA

Non-Temporal Access—Move the specified data into the processor with
minimum cache pollution. This is intended for data that will be used only
once, rather than repeatedly. The specific technique for minimizing cache
pollution is implementation-dependent and may include such techniques
as allocating space in a software-invisible buffer, allocating a cache line in
only a single way, etc. For details, see the software-optimization
documentation for a particular hardware implementation.

T0 All Cache Levels—Move the specified data into all cache levels.

T1 Level 2 and Higher—Move the specified data into all cache levels except
0th level (L1) cache.

T2 Level 3 and Higher—Move the specified data into all cache levels except
0th level (L1) and 1st level (L2) caches.

286 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

None

General-Purpose 287
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Decrements the stack pointer and then copies the specified immediate value or the value in the
specified register or memory location to the top of the stack (the memory location pointed to by
SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The stack-size attribute
determines whether SP, ESP, or RSP is the stack pointer. The address-size attribute is used only to
locate the memory operand when pushing a memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is that of rSP before
execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far) instruction pops a value
from the top of stack into the CS register as part of its operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there is no prefix
available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS, PUSH ES, or PUSH SS
instructions in 64-bit mode generates an invalid-opcode exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32 results in a
misaligned stack pointer.

PUSH Push onto Stack

Mnemonic Opcode Description

PUSH reg/mem16 FF /6 Push the contents of a 16-bit register or memory
operand onto the stack.

PUSH reg/mem32 FF /6
Push the contents of a 32-bit register or memory
operand onto the stack. (No prefix for encoding this in
64-bit mode.)

PUSH reg/mem64 FF /6 Push the contents of a 64-bit register or memory
operand onto the stack.

PUSH reg16 50 +rw Push the contents of a 16-bit register onto the stack.

PUSH reg32 50 +rd Push the contents of a 32-bit register onto the stack. (No
prefix for encoding this in 64-bit mode.)

PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.

PUSH imm8 6A ib Push an 8-bit immediate value (sign-extended to 16, 32,
or 64 bits) onto the stack.

PUSH imm16 68 iw Push a 16-bit immediate value onto the stack.

PUSH imm32 68 id Push a 32-bit immediate value onto the stack. (No prefix
for encoding this in 64-bit mode.)

PUSH imm64 68 id Push a sign-extended 32-bit immediate value onto the
stack.

PUSH CS 0E Push the CS selector onto the stack. (Invalid in 64-bit
mode.)

288 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

POP

rFLAGS Affected

None

Exceptions

PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit
mode.)

PUSH FS 0F A0 Push the FS selector onto the stack.

PUSH GS 0F A8 Push the GS selector onto the stack.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed

in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

General-Purpose 289
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and eDI general-
purpose registers onto the stack in that order. This instruction decrements the stack pointer by 16 or 32
depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

POPA, POPAD

rFLAGS Affected

None

Exceptions

PUSHA
PUSHAD

 Push All GPRs onto Stack

Mnemonic Opcode Description

PUSHA 60
Push the contents of the AX, CX, DX, BX, original SP,
BP, SI, and DI registers onto the stack.
(Invalid in 64-bit mode.)

PUSHAD 60
Push the contents of the EAX, ECX, EDX, EBX, original
ESP, EBP, ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

290 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the rSP register and copies the rFLAGS register (except for the VM and RF flags) onto the
stack. The instruction clears the VM and RF flags in the rFLAGS image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix available to
encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a general-
protection exception occurs if application software attempts to execute PUSHFx or POPFx while
VME is not enabled or the operand size is not 16-bit.

Action
// See “Pseudocode Definition” on page 57.

PUSHF_START:
IF (REAL_MODE)
 PUSHF_REAL
ELSIF (PROTECTED_MODE)
 PUSHF_PROTECTED
ELSE // (VIRTUAL_MODE)
 PUSHF_VIRTUAL

PUSHF_REAL:
 PUSH.v old_RFLAGS // Pushed with RF and VM cleared.

 EXIT

PUSHF_PROTECTED:
 PUSH.v old_RFLAGS // Pushed with RF cleared.
 EXIT

PUSHF_VIRTUAL:
 IF (RFLAGS.IOPL==3)
 {
 PUSH.v old_RFLAGS // Pushed with RF,VM cleared.
 EXIT
 }

PUSHF
PUSHFD
PUSHFQ

 Push rFLAGS onto Stack

Mnemonic Opcode Description

PUSHF 9C Push the FLAGS word onto the stack.

PUSHFD 9C Push the EFLAGS doubleword onto stack. (No prefix
encoding this in 64-bit mode.)

PUSHFQ 9C Push the RFLAGS quadword onto stack.

General-Purpose 291
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 ELSIF ((CR4.VME==1) && (OPERAND_SIZE==16))
 {
 PUSH.v old_RFLAGS // Pushed with VIF in the IF position.
 // Pushed with IOPL=3.
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME==0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

POPF, POPFD, POPFQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X The I/O privilege level was less than 3 and either VME was not

enabled or the operand size was not 16-bit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

292 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the left (more significant bit
positions) and through the carry flag by the number of bit positions in an unsigned immediate value or
the CL register (second operand). The bits rotated through the carry flag are rotated back in at the right
end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the CF bit (after the rotate) and
the most significant bit of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

RCL Rotate Through Carry Left

Mnemonic Opcode Description

RCL reg/mem8,1 D0 /2 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left 1 bit.

RCL reg/mem8, CL D2 /2
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem8, imm8 C0 /2 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem16, 1 D1 /2 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left 1 bit.

RCL reg/mem16, CL D3 /2
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem16, imm8 C1 /2 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem32, 1 D1 /2 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left 1 bit.

RCL reg/mem32, CL D3 /2
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem32, imm8 C1 /2 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem64, 1 D1 /2 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left 1 bit.

General-Purpose 293
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

RCR, ROL, ROR

rFLAGS Affected

Exceptions

RCL reg/mem64, CL D3 /2
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem64, imm8 C1 /2 ib
Rotates the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

294 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) and through the carry flag by the number of bit positions in an unsigned immediate value
or the CL register (second operand). The bits rotated through the carry flag are rotated back in at the
left end (msb) of the first operand location.

The processor masks the upper three bits in the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the two most significant bits of
the result. When the rotate count is greater than 1, the OF flag is undefined. When the rotate count is 0,
no flags are affected.

RCR Rotate Through Carry Right

Mnemonic Opcode Description

RCR reg/mem8, 1 D0 /3 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right 1 bit.

RCR reg/mem8,CL D2 /3
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem8,imm8 C0 /3 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem16,1 D1 /3 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right 1 bit.

RCR reg/mem16,CL D3 /3
Rotate the17 bits consisting of the carry flag and a 16-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem16, imm8 C1 /3 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem32,1 D1 /3 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right 1 bit.

RCR reg/mem32,CL D3 /3
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem32, imm8 C1 /3 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem64,1 D1 /3 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right 1 bit.

General-Purpose 295
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

RCL, ROR, ROL

rFLAGS Affected

Exceptions

RCR reg/mem64,CL D3 /3
Rotate 65 bits consisting of the carry flag and a 64-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem64, imm8 C1 /3 ib
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

296 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the base field of the FS or GS segment descriptor to the specified register. When supported and
enabled, these instructions can be executed at any processor privilege level. The RDFSBASE and
RDGSBASE instructions are only defined in 64-bit mode.

System software must set the FSGSBASE bit (bit 16) of CR4 to enable the RDFSBASE and
RDGSBASE instructions.

Support for this instruction is indicated by CPUID Fn0000_0007_EBX_x0[FSGSBASE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

WRFSBASE, WRGSBASE

rFLAGS Affected

None.

Exceptions

RDFSBASE
RDGSBASE

Read FS.base
Read GS.base

Mnemonic Opcode Description

RDFSBASE reg32 F3 0F AE /0 Copy the lower 32 bits of FS.base to the specified
general-purpose register.

RDFSBASE reg64 F3 0F AE /0 Copy the entire 64-bit contents of FS.base to the
specified general-purpose register.

RDGSBASE reg32 F3 0F AE /1 Copy the lower 32 bits of GS.base to the specified
general-purpose register.

RDGSBASE reg64 F3 0F AE /1 Copy the entire 64-bit contents of GS.base to the
specified general-purpose register.

Exception Legacy
Compat-

ibility 64-bit Cause of Exception

#UD

X X Instruction is not valid in compatibility or legacy
modes.

X
Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[FSGSBASE] = 0 or, if
supported, not enabled in CR4.

General-Purpose 297
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

RDPID reads the value of TSC_AUX MSR used by the RDTSCP instruction into the specified
destination register. Normal operand size prefixes do not apply and the update is either 32 bit or 64 bit
based on the current mode.

The RDPID instruction can be used to access the TSC_AUX value at CPL > 0 in cases where the
operating system has disabled unprivileged execution of the RDTSCP instruction.

The content of the TSC_AUX MSR, including how and even whether it actually indicates a processor
ID, is a matter of operating system convention.

The RDPID instruction is supported if the feature flag CPUID Fn0000_0007_X0_ECX[22]=1.

Related Instructions

RDTSCP

rFLAGS Affected

rNone

Exceptions

RDPID Read Processor ID

Mnemonic Opcode Description

RDPID F3 0F C7/7 Read TSC_AUX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported by CPUID Fn0000_0007_ECX[22] =

0.

298 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

RDPRU instruction is used to give access to some processor registers that are typically only accessible
when the privilege level is zero. ECX is used as the implicit register to specify which register to read.
RDPRU places the specified register’s value into EDX:EAX.

The RDPRU instruction normally can be executed at any privilege level. When CR4.TSD=1, RDPRU
can only be used when the privilege level is zero. When the CPL>0 with CR4.TSD=1, the RDPRU
instruction will generate a #UD fault.

The RDPRU instruction is supported if the feature flag CPUID Fn8000_0008 EBX[4]=1. The 16-bit
field in CPUID Fn8000_0008-EDX[31:16] returns the largest ECX value that returns a valid register.
Any unsupported ECX values return zero. Registers currently supported by ECX values are:

• ECX Value 0 = Register MPERF

• ECX Value 1 = Register APERF

rFLAGS Affected

Exceptions

RDPRU Read Processor Register

Mnemonic Opcode Description

RDPRU 0F 01 FD Copy register specified by ECX into EDX:EAX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

Instruction not supported by
CPUID Fn8000_0008_EBX[RDPRU] = 0 or CPL>0 and
CR4.TSD=1.

General-Purpose 299
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the destination register with a hardware-generated random value.

The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid. Software must test the state of the CF
flag prior to using the value returned in the destination register to determine if the value is valid. If the
returned value is invalid, software must execute the instruction again. Software should implement a
retry limit to ensure forward progress of code.

The execution of RDRAND clears the OF, SF, ZF, AF, and PF flags.

Support for the RDRAND instruction is optional. On processors that support the instruction, CPUID
Fn0000_0001_ECX[RDRAND] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

rFLAGS Affected

Exceptions

RDRAND Read Random

Mnemonic Opcode Description

RDRAND reg16 0F C7 /6 Load the destination register with a 16-bit random
number.

RDRAND reg32 0F C7 /6 Load the destination register with a 32-bit random
number.

RDRAND reg64 0F C7 /6 Load the destination register with a 64-bit random
number.

Related Instructions

RDSEED

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported as indicated by

CPUID Fn0000_0001_ECX[RDRAND] = 0.

300 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the destination register with a hardware-generated random “seed” value.

The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid and will be returned as zero. Software
must test the state of the CF flag prior to using the value returned in the destination register to
determine if the value is valid. If the returned value is invalid, software must execute the instruction
again. Software should implement a retry limit to ensure forward progress of code.

The execution of RDSEED clears the OF, SF, ZF, AF, and PF flags.

rFLAGS Affected

Exceptions

RDSEED Read Random Seed

Mnemonic Opcode Description

RDSEED reg16 0F C7 /7 Read 16-bit random seed

RDSEED reg32 0F C7 /7 Read 32-bit random seed

RDSEED reg64 0F C7 /7 Read 64-bit random seed

Related Instructions

RDRAND

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[RDSEED] = 0

General-Purpose 301
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Returns from a procedure previously entered by a CALL near instruction. This form of the RET
instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by the operand size.
The new rIP is then zero-extended to 64 bits. The RET instruction can accept an immediate value
operand that it adds to the rSP after it pops the target rIP. This action skips over any parameters
previously passed back to the subroutine that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a REX prefix. No
prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside of the current
code segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Action

RETN_START:

IF (OPCODE == retn imm16)
 temp_IMM = 16 bit immediate from the instruction, zero-extended to 64 bits
ELSE // (OPCODE == retn)
 temp_IMM = 0

IF (stack is not large enough for a v-sized pop)
 EXCEPTION[#SS(0)]

POP.v temp_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

IF (ShadowStacksEnabled at current CPL)
 {
 IF (v == 2) // operand size = 16
 {
 temp_sstk_RIP = SSTK_READ_MEM.d [SSP]
 SSP = SSP + 4

RET (Near) Near Return from Called Procedure

Mnemonic Opcode Description

RET C3 Near return to the calling procedure.

RET imm16 C2 iw Near return to the calling procedure then pop the
specified number of bytes from the stack.

302 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 }
 ELSEIF (v == 4) // operand size = 32
 {
 temp_sstk_RIP = SSTK_READ_MEM.d [SSP]
 SSP = SSP + 4
 }
 ELSE // (v == 8) // operand size = 64
 {
 temp_sstk_RIP = SSTK_READ_MEM.q [SSP]
 SSP = SSP + 8
 }
 IF (temp_RIP != temp_sstk_RIP)
 EXCEPTION [#CP(RETN)]
 } end shadow stacks enabled

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT // end RETN

Related Instructions

CALL (Near), CALL (Far), RET (Far)

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X The return address on the program stack did not match the

address on the shadow stack.

General-Purpose 303
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Returns from a procedure previously entered by a CALL Far instruction. This form of the RET
instruction returns to a calling procedure in a different segment than the current code segment. It can
return to the same CPL or to a less privileged CPL.

RET Far pops a target CS and rIP from the stack. If the new code segment is less privileged than the
current code segment, the stack pointer is incremented by the number of bytes indicated by the
immediate operand, if present; then a new SS and rSP are also popped from the stack.

The final value of rSP is incremented by the number of bytes indicated by the immediate operand, if
present. This action skips over the parameters (previously passed to the subroutine) that are no longer
needed.

All stack pops are determined by the operand size. If necessary, the target rIP is zero-extended to 64
bits before assuming program control.

If the CPL changes, the data segment selectors are set to NULL for any of the data segments (DS, ES,
FS, GS) not accessible at the new CPL.

See RET (Near) for information on near returns—returns to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Action
// For functions READ_DESCRIPTOR, ShadowStacksEnabled
// see "Pseudocode Definition" on page 57

RETF_START:

IF (PROTECTED_MODE)
 RETF_PROTECTED
ELSE // (REAL_MODE or VIRTUAL_MODE)
 RETF_REAL_OR_VIRTUAL

RETF_REAL_OR_VIRTUAL:

IF (OPCODE == retf imm16)
 temp_IMM = 16 bit immediate operand, zero-extended to 64 bits
ELSE // (OPCODE == retf)
 temp_IMM = 0

RET (Far) Far Return from Called Procedure

Mnemonic Opcode Description

RETF CB Far return to the calling procedure.

RETF imm16 CA iw Far return to the calling procedure, then pop the
specified number of bytes from the stack.

304 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

POP.v temp_RIP
POP.v temp_CS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT // end RETF real or virtual modes

RETF_PROTECTED:

IF (OPCODE == retf imm16)
 temp_IMM = 16 bit immediate operand, zero-extended to 64 bits
ELSE // (OPCODE == retf)
 temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS
temp_CPL = temp_CS.rpl

IF (CPL == temp_CPL) // not changing privilege level
 RETF_PROTECTED_TO_SAME_PRIV
ELSE
 RETF_PROTECTED_TO_OUTER_PRIV

RETF_PROTECTED_TO_SAME_PRIV:
 // CPL = temp_CS.rpl (RETF to same privilege level)
CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

RIP = temp_RIP
RSP.s = RSP + temp_IMM

IF (ShadowStacksEnabled(current CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_sstk_prevSSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP + 24

General-Purpose 305
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_sstk_prevSSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 SSP = temp_sstk_prevSSP
 } // end shadow stacks enabled at current CPL

EXIT // end RETF to same privilege level

RETF_PROTECTED_TO_OUTER_PRIV:
 // CPL != temp_CS.rpl (RETF changing privilege level)
POP.v temp_RSP
POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)
temp_oldCPL = CPL

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

CPL = temp_CPL
SS = READ_DESCRIPTOR (temp_SS, ss_chk)

RIP = temp_RIP
RSP.s = temp_RSP + temp_IMM

IF (ShadowStacksEnabled(old CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 }
temp_oldSSP = SSP
IF (ShadowStacksEnabled(new CPL))
 {

306 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((ShadowStacksEnabled(CPL 3) && (old_CPL == 3))
 temp_SSP = PL3_SSP
 IF ((COMPATIBILITY_MODE) && (temp_SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4GB in compat mode
 SSP = temp_SSP
 }

IF (ShadowStacksEnabled(old CPL))
 { // check shadow stack token and clear busy
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must = old SSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // if valid clear token busy bit
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled

FOR (seg = ES, DS, FS, GS)
 IF ((seg.sel == NULL) || ((seg.attr.dpl < CPL) &&
 ((seg.attr.type == ’data’) ||
 (seg.attr.type == ’non-conforming-code’))))
 seg = NULL // can’t use lower DPL data segment at higher CPL
 // also clears RPL of any null selectors

Related Instructions

CALL (Near), CALL (Far), RET (Near)

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The return stack segment was marked not present.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

General-Purpose 307
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned-memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X

The return address on the program stack did not match the
address on the shadow stack, or the previous SSP is not 4
byte aligned.

Exception Real
Virtual
8086 Protected Cause of Exception

308 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the left (toward the more significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out left are rotated back in at the right end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, it masks the upper two bits of the count,
providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the lsb of the
result). For 1-bit rotates, the instruction sets the OF flag to the logical xor of the CF bit (after the
rotate) and the most significant bit of the result. When the rotate count is greater than 1, the OF flag is
undefined. When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROR

ROL Rotate Left

Mnemonic Opcode Description

ROL reg/mem8, 1 D0 /0 Rotate an 8-bit register or memory operand left 1 bit.

ROL reg/mem8, CL D2 /0 Rotate an 8-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem8, imm8 C0 /0 ib Rotate an 8-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem16, 1 D1 /0 Rotate a 16-bit register or memory operand left 1 bit.

ROL reg/mem16, CL D3 /0 Rotate a 16-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem16, imm8 C1 /0 ib Rotate a 16-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem32, 1 D1 /0 Rotate a 32-bit register or memory operand left 1 bit.

ROL reg/mem32, CL D3 /0 Rotate a 32-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem32, imm8 C1 /0 ib Rotate a 32-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem64, 1 D1 /0 Rotate a 64-bit register or memory operand left 1 bit.

ROL reg/mem64, CL D3 /0 Rotate a 64-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem64, imm8 C1 /0 ib Rotate a 64-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

General-Purpose 309
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

310 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out right are rotated back in at the left end (the most significant bit) of the
first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the most
significant bit of the result). For 1-bit rotates, the instruction sets the OF flag to the logical xor of the
two most significant bits of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROL

ROR Rotate Right

Mnemonic Opcode Description

ROR reg/mem8, 1 D0 /1 Rotate an 8-bit register or memory location right 1 bit.

ROR reg/mem8, CL D2 /1 Rotate an 8-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem8, imm8 C0 /1 ib Rotate an 8-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem16, 1 D1 /1 Rotate a 16-bit register or memory location right 1 bit.

ROR reg/mem16, CL D3 /1 Rotate a 16-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem16, imm8 C1 /1 ib Rotate a 16-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem32, 1 D1 /1 Rotate a 32-bit register or memory location right 1 bit.

ROR reg/mem32, CL D3 /1 Rotate a 32-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem32, imm8 C1 /1 ib Rotate a 32-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem64, 1 D1 /1 Rotate a 64-bit register or memory location right 1 bit.

ROR reg/mem64, CL D3 /1 Rotate a 64-bit register or memory operand right the
number of bits specified in the CL register.

ROR reg/mem64, imm8 C1 /1 ib Rotate a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

General-Purpose 311
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

312 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of the source operand right (toward the least-significant bit) by the number of bit
positions specified in an immediate operand and writes the result to the destination. Does not affect the
arithmetic flags.

This instruction has three operands:

RORX dest, src, rot_cnt

On each right-shift, the bit shifted out of the least-significant bit position is copied to the most-
significant bit. This instruction performs a non-destructive operation; that is, the contents of the source
operand are unaffected by the operation, unless the destination and source are the same general-
purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the source (src) is either a general-purpose
register or a memory operand. The rotate count rot_cnt is encoded in an immediate byte. When the
operand size is 32, bits [7:5] of the immediate byte are ignored; when the operand size is 64, bits [7:6]
of the immediate byte are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

SARX, SHLX, SHRX

rFLAGS Affected

None.

RORX Rotate Right Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

RORX reg32, reg/mem32, imm8 C4 RXB.03 0.1111.0.11 F0 /r ib

RORX reg64, reg/mem64, imm8 C4 RXB.03 1.1111.0.11 F0 /r ib

General-Purpose 313
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

314 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding
bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The instruction ignores bits 1, 3, and 5 of
register AH; it sets those bits in the EFLAGS register to 1, 0, and 0, respectively.

The SAHF instruction is available in 64-bit mode if CPUID Fn8000_0001_ECX[LahfSahf] = 1. It is
always available in the other operating modes (including compatibility mode)

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

LAHF

rFLAGS Affected

Exceptions

SAHF Store AH into Flags

Mnemonic Opcode Description

SAHF 9E
Loads the sign flag, the zero flag, the auxiliary flag, the
parity flag, and the carry flag from the AH register into
the lower 8 bits of the EFLAGS register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X The SAHF instruction is not supported in 64-bit mode, as

indicated by CPUID Fn8000_0001_ECX[LahfSahf] = 0.

General-Purpose 315
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the left through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. For each bit shift, the SAL instruction clears the
least-significant bit to 0. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

The effect of this instruction is multiplication by powers of two.

For 1-bit shifts, the instruction sets the OF flag to the logical xor of the CF bit (after the shift) and the
most significant bit of the result. When the shift count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHL is an alias to the SAL instruction.

SAL
SHL

Shift Left

Mnemonic Opcode Description

SAL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location left 1 bit.

SAL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SAL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SAL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SAL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

316 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

SAR, SHR, SHLD, SHRD

rFLAGS Affected

SHL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location by 1 bit.

SHL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SHL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SHL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SHL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Mnemonic Opcode Description

General-Purpose 317
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

318 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

The SAR instruction does not change the sign bit of the target operand. For each bit shift, it copies the
sign bit to the next bit, preserving the sign of the result.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction clears the OF flag to 0. When the shift count is greater than 1, the OF
flag is undefined.

If the shift count is 0, no flags are modified.

Although the SAR instruction effectively divides the operand by a power of 2, the behavior is different
from the IDIV instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (that is,
divide –11 by 4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction for dividing –11
by 4 gives a result of –2. This is because the IDIV instruction rounds off the quotient to zero, whereas
the SAR instruction rounds off the remainder to zero for positive dividends and to negative infinity for
negative dividends. So, for positive operands, SAR behaves like the corresponding IDIV instruction.
For negative operands, it gives the same result if and only if all the shifted-out bits are zeroes;
otherwise, the result is smaller by 1.

SAR Shift Arithmetic Right

Mnemonic Opcode Description

SAR reg/mem8, 1 D0 /7 Shift a signed 8-bit register or memory operand right 1
bit.

SAR reg/mem8, CL D2 /7 Shift a signed 8-bit register or memory operand right the
number of bits specified in the CL register.

SAR reg/mem8, imm8 C0 /7 ib Shift a signed 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SAR reg/mem16, 1 D1 /7 Shift a signed 16-bit register or memory operand right 1
bit.

SAR reg/mem16, CL D3 /7 Shift a signed 16-bit register or memory operand right
the number of bits specified in the CL register.

SAR reg/mem16, imm8 C1 /7 ib
Shift a signed 16-bit register or memory operand right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem32, 1 D1 /7 Shift a signed 32-bit register or memory location 1 bit.

SAR reg/mem32, CL D3 /7 Shift a signed 32-bit register or memory location right
the number of bits specified in the CL register.

General-Purpose 319
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SAL, SHL, SHR, SHLD, SHRD

rFLAGS Affected

Exceptions

SAR reg/mem32, imm8 C1 /7 ib
Shift a signed 32-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem64, 1 D1 /7 Shift a signed 64-bit register or memory location right 1
bit.

SAR reg/mem64, CL D3 /7 Shift a signed 64-bit register or memory location right
the number of bits specified in the CL register.

SAR reg/mem64, imm8 C1 /7 ib
Shift a signed 64-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

320 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand right (toward the least-significant bit) arithmetically by the
number of bit positions specified in the second source operand and writes the result to the destination.
Does not affect the arithmetic flags.

This instruction has three operands:

SARX dest, src, shft_cnt

On each right-shift, the most-significant bit (the sign bit) is replicated. This instruction performs a non-
destructive operation; that is, the contents of the source operand are unaffected by the operation, unless
the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SHLX, SHRX

rFLAGS Affected

None.

SARX Shift Right Arithmetic Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SARX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.10 F7 /r

SARX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.10 F7 /r

General-Purpose 321
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

322 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Subtracts an immediate value or the value in a register or a memory location (second operand) from a
register or a memory location (first operand), and stores the result in the first operand location. If the
carry flag (CF) is 1, the instruction subtracts 1 from the result. Otherwise, it operates like SUB.

The SBB instruction sign-extends immediate value operands to the length of the first operand size.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

This instruction is useful for multibyte (multiword) numbers because it takes into account the borrow
from a previous SUB instruction.

The forms of the SBB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SBB Subtract with Borrow

Mnemonic Opcode Description

SBB AL, imm8 1C ib Subtract an immediate 8-bit value from the AL register
with borrow.

SBB AX, imm16 1D iw Subtract an immediate 16-bit value from the AX register
with borrow.

SBB EAX, imm32 1D id Subtract an immediate 32-bit value from the EAX
register with borrow.

SBB RAX, imm32 1D id Subtract a sign-extended immediate 32-bit value from
the RAX register with borrow.

SBB reg/mem8, imm8 80 /3 ib Subtract an immediate 8-bit value from an 8-bit register
or memory location with borrow.

SBB reg/mem16, imm16 81 /3 iw Subtract an immediate 16-bit value from a 16-bit register
or memory location with borrow.

SBB reg/mem32, imm32 81 /3 id Subtract an immediate 32-bit value from a 32-bit register
or memory location with borrow.

SBB reg/mem64, imm32 81 /3 id Subtract a sign-extended immediate 32-bit value from a
64-bit register or memory location with borrow.

SBB reg/mem16, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
16-bit register or memory location with borrow.

SBB reg/mem32, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
32-bit register or memory location with borrow.

SBB reg/mem64, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
64-bit register or memory location with borrow.

SBB reg/mem8, reg8 18 /r Subtract the contents of an 8-bit register from an 8-bit
register or memory location with borrow.

SBB reg/mem16, reg16 19 /r Subtract the contents of a 16-bit register from a 16-bit
register or memory location with borrow.

General-Purpose 323
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SUB, ADD, ADC

rFLAGS Affected

Exceptions

SBB reg/mem32, reg32 19 /r Subtract the contents of a 32-bit register from a 32-bit
register or memory location with borrow.

SBB reg/mem64, reg64 19 /r Subtract the contents of a 64-bit register from a 64-bit
register or memory location with borrow.

SBB reg8, reg/mem8 1A /r
Subtract the contents of an 8-bit register or memory
location from the contents of an 8-bit register with
borrow.

SBB reg16, reg/mem16 1B /r
Subtract the contents of a 16-bit register or memory
location from the contents of a 16-bit register with
borrow.

SBB reg32, reg/mem32 1B /r
Subtract the contents of a 32-bit register or memory
location from the contents of a 32-bit register with
borrow.

SBB reg64, reg/mem64 1B /r
Subtract the contents of a 64-bit register or memory
location from the contents of a 64-bit register with
borrow.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

324 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or quadword pointed
to by ES:rDI, sets the status flags in the rFLAGS register according to the results, and then increments
or decrements the rDI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the rDI register; otherwise, it decrements it. The
instruction increments or decrements the rDI register by 1, 2, 4, or 8, depending on the size of the
operands.

The forms of the SCASx instruction with an explicit operand address the operand at ES:rDI. The
explicit operand serves only to specify the size of the values being compared.

The no-operands forms of the instruction use the ES:rDI registers to point to the value to be compared.
The mnemonic determines the size of the operands and the specific register containing the other
comparison value.

For block comparisons, the SCASx instructions support the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. A SCASx instruction can also operate inside a loop
controlled by the LOOPcc instruction.

SCAS
SCASB
SCASW
SCASD
SCASQ

Scan String

Mnemonic Opcode Description

SCAS mem8 AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCAS mem16 AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

SCAS mem32 AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCAS mem64 AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

SCASB AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCASW AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

General-Purpose 325
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

CMP, CMPSx

rFLAGS Affected

Exceptions

SCASD AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCASQ AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X A null ES segment was used to reference memory.

X X X A memory address exceeded the ES segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

326 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified in the
mnemonic (cc), sets the value in the specified 8-bit memory location or register to 1. If the flags do not
meet the specified condition, SETcc clears the memory location or register to 0.

Mnemonics with the A (above) and B (below) tags are intended for use when performing unsigned
integer comparisons; those with G (greater) and L (less) tags are intended for use with signed integer
comparisons.

Software typically uses the SETcc instructions to set logical indicators. Like the CMOVcc instructions
(page 147), the SETcc instructions can replace two instructions—a conditional jump and a move.
Replacing conditional jumps with conditional sets can help avoid branch-prediction penalties that may
result from conditional jumps.

If the logical value “true” (logical one) is represented in a high-level language as an integer with all
bits set to 1, software can accomplish such representation by first executing the opposite SETcc
instruction—for example, the opposite of SETZ is SETNZ—and then decrementing the result.

A ModR/M byte is used to identify the operand. The reg field in the ModR/M byte is unused.

SETcc Set Byte on Condition

Mnemonic Opcode Description

SETO reg/mem8 0F 90 /0 Set byte if overflow (OF = 1).

SETNO reg/mem8 0F 91 /0 Set byte if not overflow (OF = 0).

SETB reg/mem8
SETC reg/mem8
SETNAE reg/mem8

0F 92 /0
Set byte if below (CF = 1).
Set byte if carry (CF = 1).
Set byte if not above or equal (CF = 1).

SETNB reg/mem8
SETNC reg/mem8
SETAE reg/mem8

0F 93 /0
Set byte if not below (CF = 0).
Set byte if not carry (CF = 0).
Set byte if above or equal (CF = 0).

SETZ reg/mem8
SETE reg/mem8 0F 94 /0 Set byte if zero (ZF = 1).

Set byte if equal (ZF = 1).

SETNZ reg/mem8
SETNE reg/mem8 0F 95 /0 Set byte if not zero (ZF = 0).

Set byte if not equal (ZF = 0).

SETBE reg/mem8
SETNA reg/mem8 0F 96 /0 Set byte if below or equal (CF = 1 or ZF = 1).

Set byte if not above (CF = 1 or ZF = 1).

SETNBE reg/mem8
SETA reg/mem8 0F 97 /0 Set byte if not below or equal (CF = 0 and ZF = 0).

Set byte if above (CF = 0 and ZF = 0).

SETS reg/mem8 0F 98 /0 Set byte if sign (SF = 1).

SETNS reg/mem8 0F 99 /0 Set byte if not sign (SF = 0).

SETP reg/mem8
SETPE reg/mem8 0F 9A /0 Set byte if parity (PF = 1).

Set byte if parity even (PF = 1).

SETNP reg/mem8
SETPO reg/mem8 0F 9B /0 Set byte if not parity (PF = 0).

Set byte if parity odd (PF = 0).

General-Purpose 327
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

SETL reg/mem8
SETNGE reg/mem8 0F 9C /0 Set byte if less (SF <> OF).

Set byte if not greater or equal (SF <> OF).

SETNL reg/mem8
SETGE reg/mem8 0F 9D /0 Set byte if not less (SF = OF).

Set byte if greater or equal (SF = OF).

SETLE reg/mem8
SETNG reg/mem8 0F 9E /0 Set byte if less or equal (ZF = 1 or SF <> OF).

Set byte if not greater (ZF = 1 or SF <> OF).

SETNLE reg/mem8
SETG reg/mem8 0F 9F /0 Set byte if not less or equal (ZF = 0 and SF = OF).

Set byte if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Mnemonic Opcode Description

328 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between store instructions preceding
the SFENCE and store instructions that follow the SFENCE. Stores to differing memory types, or
within the WC memory type, may become visible out of program order; the SFENCE instruction
ensures that the system completes all previous stores in such a way that they are globally visible before
executing subsequent stores. This includes emptying the store buffer and all write-combining buffers.

The SFENCE instruction is weakly-ordered with respect to load instructions, data and instruction
prefetches, and the LFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an SFENCE.

In addition to store instructions, SFENCE is strongly ordered with respect to other SFENCE
instructions, MFENCE instructions, and serializing instructions. Further details on the use of
MFENCE to order accesses among differing memory types may be found in AMD64 Architecture
Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on page 172.

The SFENCE instruction is an SSE1 instruction. Support for SSE1 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

LFENCE, MFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

SFENCE Store Fence

Mnemonic Opcode Description

SFENCE 0F AE F8 Force strong ordering of (serialized) store operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Opcode,
#UD X X X

The SSE instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[25]=0; and the AMD extensions to
MMX are not supported, as indicated by CPUID
Fn8000_0001_EDX[22]=0.

General-Purpose 329
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

This instruction is synonymous with the SAL instruction. For information, see “SAL SHL” on
page 307.

SHL Shift Left

330 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the left by the number of bit positions
in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern (second
operand) from the right. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the operand being shifted changes, the instruction sets the OF flag to 1.
If the count is greater than 1, OF is undefined.

Related Instructions

SHRD, SAL, SAR, SHR, SHL

SHLD Shift Left Double

Mnemonic Opcode Description

SHLD reg/mem16, reg16, imm8 0F A4 /r ib

Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem16, reg16, CL 0F A5 /r
Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem32, reg32, imm8 0F A4 /r ib

Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem32, reg32, CL 0F A5 /r
Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem64, reg64, imm8 0F A4 /r ib

Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem64, reg64, CL 0F A5 /r
Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

General-Purpose 331
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

332 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand left (toward the most-significant bit) by the number of bit
positions specified in the second source operand and writes the result to the destination. Does not
affect the arithmetic flags.

This instruction has three operands:

SHLX dest, src, shft_cnt

On each left-shift, a zero is shifted into the least-significant bit position. This instruction performs a
non-destructive operation; that is, the contents of the source operand are unaffected by the operation,
unless the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SARX, SHRX

rFLAGS Affected

None.

SHLX Shift Left Logical Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SHLX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.01 F7 /r

SHLX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.01 F7 /r

General-Purpose 333
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

334 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

For each bit shift, the instruction clears the most-significant bit to 0.

The effect of this instruction is unsigned division by powers of two.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction sets the OF flag to the most-significant bit of the original value. If the
count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHR Shift Right

Mnemonic Opcode Description

SHR reg/mem8, 1 D0 /5 Shift an 8-bit register or memory operand right 1 bit.

SHR reg/mem8, CL D2 /5 Shift an 8-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem8, imm8 C0 /5 ib Shift an 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem16, 1 D1 /5 Shift a 16-bit register or memory operand right 1 bit.

SHR reg/mem16, CL D3 /5 Shift a 16-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem16, imm8 C1 /5 ib Shift a 16-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem32, 1 D1 /5 Shift a 32-bit register or memory operand right 1 bit.

SHR reg/mem32, CL D3 /5 Shift a 32-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem32, imm8 C1 /5 ib Shift a 32-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem64, 1 D1 /5 Shift a 64-bit register or memory operand right 1 bit.

SHR reg/mem64, CL D3 /5 Shift a 64-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem64, imm8 C1 /5 ib Shift a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

General-Purpose 335
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SHL, SAL, SAR, SHLD, SHRD

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

336 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right by the number of bit
positions in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern
(second operand) from the left. At the end of the shift operation, the CF flag contains the last bit shifted
out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the value being shifted changes, the instruction sets the OF flag to 1. If
the count is greater than 1, the OF flag is undefined.

Related Instructions

SHLD, SHR, SHL, SAR, SAL

SHRD Shift Right Double

Mnemonic Opcode Description

SHRD reg/mem16, reg16, imm8 0F AC /r ib

Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem16, reg16, CL 0F AD /r

Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem32, reg32, imm8 0F AC /r ib

Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem32, reg32, CL 0F AD /r

Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem64, reg64, imm8 0F AC /r ib

Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem64, reg64, CL 0F AD /r

Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

General-Purpose 337
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

338 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand right (toward the least-significant bit) by the number of bit
positions specified in the second source operand and writes the result to the destination. Does not
affect the arithmetic flags.

This instruction has three operands:

SHRX dest, src, shft_cnt

On each right-shift, a zero is shifted into the most-significant bit position. This instruction performs a
non-destructive operation; that is, the contents of the source operand are unaffected by the operation,
unless the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SARX, SHLX

rFLAGS Affected

None.

SHRX Shift Right Logical Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SHRX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.11 F7 /r

SHRX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.11 F7 /r

General-Purpose 339
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

340 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes Lightweight Profiling (LWP) state to memory and returns the current effective address of the
Lightweight Profiling Control Block (LWPCB) in the specified register. The LWPCB address returned
is truncated to 32 bits if the operand size is 32.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

The LWP_CBADDR MSR holds the linear address of the current LWPCB. If the contents of
LWP_CBADDR is not zero, the value returned in the specified register is an effective address that is
calculated by subtracting the current DS.Base address from the linear address kept in LWP_CBADDR.
Note that if DS has changed between the time LLWPCB was executed and the time SLWPCB is
executed, this might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL != 3 or when SMM is active, but if the LWPCB
pointer is not zero, system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

See the discussion of lightweight profiling in Volume 2, Chapter 13 for more information on the use of
the LLWPCB, SLWPCB, LWPINS, and LWPVAL instructions.

The SLWPCB instruction is implemented if LWP is supported on a processor. Support for LWP is
indicated by CPUID Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. ModRM.r/m (augmented by
XOP.R) specifies the register in which to put the LWPCB address. ModRM.mod must be 11b.

SLWPCB Store Lightweight Profiling Control Block
Address

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

SLWPCB reg32 8F RXB.09 0.1111.0.00 12 /1

SLWPCB reg64 8F RXB.09 1.1111.0.00 12 /1

General-Purpose 341
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

LLWPCB, LWPINS, LWPVAL

rFLAGS Affected

None

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
The SLWPCB instruction is not supported, as indicated by
CPUID Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

Page fault, #PF
X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from flushing an event to the ring buffer.

342 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the carry flag (CF) in the rFLAGS register to one.

Related Instructions

CLC, CMC

rFLAGS Affected

Exceptions

None

STC Set Carry Flag

Mnemonic Opcode Description

STC F9 Set the carry flag (CF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose Instruction Reference 343

24594—Rev. 3.32—March 2021 AMD64 Technology

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each iteration of a string
instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CLD, INSx, LODSx, MOVSx, OUTSx, SCASx, STOSx, CMPSx

rFLAGS Affected

Exceptions

None

STD Set Direction Flag

Mnemonic Opcode Description

STD FD Set the direction flag (DF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

344 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX registers to the
memory location pointed to by ES:rDI and increments or decrements the rDI register according to the
state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the pointer; otherwise, it decrements the pointer. It
increments or decrements the pointer by 1, 2, 4, or 8, depending on the size of the value being copied.

The forms of the STOSx instruction with an explicit operand use the operand only to specify the type
(size) of the value being copied.

The no-operands forms specify the type (size) of the value being copied with the mnemonic.

The STOSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. The STOSx instructions can also operate inside a LOOPcc instruction.

Related Instructions

LODSx, MOVSx

STOS
STOSB
STOSW
STOSD
STOSQ

Store String

Mnemonic Opcode Description

STOS mem8 AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOS mem16 AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOS mem32 AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOS mem64 AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

STOSB AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOSW AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOSD AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOSQ AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

General-Purpose Instruction Reference 345

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X X X A memory address exceeded the ES segment limit or was
non-canonical.

X The ES segment was a non-writable segment.

X A null ES segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

346 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Subtracts an immediate value or the value in a register or memory location (second operand) from a
register or a memory location (first operand) and stores the result in the first operand location. An
immediate value is sign-extended to the length of the first operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the SUB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SUB Subtract

Mnemonic Opcode Description

SUB AL, imm8 2C ib Subtract an immediate 8-bit value from the AL register
and store the result in AL.

SUB AX, imm16 2D iw Subtract an immediate 16-bit value from the AX register
and store the result in AX.

SUB EAX, imm32 2D id Subtract an immediate 32-bit value from the EAX
register and store the result in EAX.

SUB RAX, imm32 2D id Subtract a sign-extended immediate 32-bit value from
the RAX register and store the result in RAX.

SUB reg/mem8, imm8 80 /5 ib Subtract an immediate 8-bit value from an 8-bit
destination register or memory location.

SUB reg/mem16, imm16 81 /5 iw Subtract an immediate 16-bit value from a 16-bit
destination register or memory location.

SUB reg/mem32, imm32 81 /5 id Subtract an immediate 32-bit value from a 32-bit
destination register or memory location.

SUB reg/mem64, imm32 81 /5 id Subtract a sign-extended immediate 32-bit value from a
64-bit destination register or memory location.

SUB reg/mem16, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
16-bit register or memory location.

SUB reg/mem32, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
32-bit register or memory location.

SUB reg/mem64, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
64-bit register or memory location.

SUB reg/mem8, reg8 28 /r Subtract the contents of an 8-bit register from an 8-bit
destination register or memory location.

SUB reg/mem16, reg16 29 /r Subtract the contents of a 16-bit register from a 16-bit
destination register or memory location.

SUB reg/mem32, reg32 29 /r Subtract the contents of a 32-bit register from a 32-bit
destination register or memory location.

SUB reg/mem64, reg64 29 /r Subtract the contents of a 64-bit register from a 64-bit
destination register or memory location.

General-Purpose Instruction Reference 347

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

ADC, ADD, SBB

rFLAGS Affected

Exceptions

SUB reg8, reg/mem8 2A /r Subtract the contents of an 8-bit register or memory
operand from an 8-bit destination register.

SUB reg16, reg/mem16 2B /r Subtract the contents of a 16-bit register or memory
operand from a 16-bit destination register.

SUB reg32, reg/mem32 2B /r Subtract the contents of a 32-bit register or memory
operand from a 32-bit destination register.

SUB reg64, reg/mem64 2B /r Subtract the contents of a 64-bit register or memory
operand from a 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

348 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0, sets all other
bits to 1 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 0, the destination is written with all ones.

This instruction has two operands:

T1MSKC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The T1MSKC instruction effectively performs a bit-wise logical or of the inverse of the source
operand and the result of incrementing the source operand by 1 and stores the result to the destination
register:

add tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The T1MSKC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, TZMSK, TZCNT

T1MSKC Inverse Mask From Trailing Ones

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

T1MSKC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /7

T1MSKC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /7

General-Purpose Instruction Reference 349

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

350 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs a bit-wise logical and on the value in a register or memory location (first operand) with an
immediate value or the value in a register (second operand) and sets the flags in the rFLAGS register
based on the result.

This instruction has two operands:

TEST dest, src

While the AND instruction changes the contents of the destination and the flag bits, the TEST
instruction changes only the flag bits.

Related Instructions

AND, CMP

TEST Test Bits

Mnemonic Opcode Description

TEST AL, imm8 A8 ib and an immediate 8-bit value with the contents of the AL
register and set rFLAGS to reflect the result.

TEST AX, imm16 A9 iw and an immediate 16-bit value with the contents of the AX
register and set rFLAGS to reflect the result.

TEST EAX, imm32 A9 id and an immediate 32-bit value with the contents of the EAX
register and set rFLAGS to reflect the result.

TEST RAX, imm32 A9 id and a sign-extended immediate 32-bit value with the contents
of the RAX register and set rFLAGS to reflect the result.

TEST reg/mem8, imm8 F6 /0 ib and an immediate 8-bit value with the contents of an 8-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem16, imm16 F7 /0 iw and an immediate 16-bit value with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, imm32 F7 /0 id and an immediate 32-bit value with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, imm32 F7 /0 id
and a sign-extended immediate32-bit value with the contents of
a 64-bit register or memory operand and set rFLAGS to reflect
the result.

TEST reg/mem8, reg8 84 /r and the contents of an 8-bit register with the contents of an 8-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem16, reg16 85 /r and the contents of a 16-bit register with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, reg32 85 /r and the contents of a 32-bit register with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, reg64 85 /r and the contents of a 64-bit register with the contents of a 64-bit
register or memory operand and set rFLAGS to reflect the result.

General-Purpose Instruction Reference 351

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

352 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Counts the number of trailing zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts upward from the least significant bit and stops when the lowest bit
having a value of 1 is encountered or when the most significant bit is encountered. The count is written
to the destination register.

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the least significant bit is a one, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, ZF is cleared.

TZCNT is a BMI instruct ion. Support for BMI inst ruct ions is indicated by CPUID
Fn0000_0007_EBX_x0[BMI] = 1. If the TZCNT instruction is not available, the encoding is treated
as the BSF instruction. Software must check the CPUID bit once per program or library initialization
before using the TZCNT instruction or inconsistent behavior may result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZMSK

rFLAGS Affected

TZCNT Count Trailing Zeros

Mnemonic Opcode Description

TZCNT reg16, reg/mem16 F3 0F BC /r Count the number of trailing zeros in reg/mem16.

TZCNT reg32, reg/mem32 F3 0F BC /r Count the number of trailing zeros in reg/mem32.

TZCNT reg64, reg/mem64 F3 0F BC /r Count the number of trailing zeros in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose Instruction Reference 353

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

354 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Finds the least significant one bit in the source operand, sets all bits below that bit to 1, clears all other
bits to 0 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 1, the destination is written with all zeros.

This instruction has two operands:

TZMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The TZMSK instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of subtracting 1 from the source operand, and stores the result to the destination
register:

sub tmp1, src, 1
not tmp2, src
and dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the and pseudo-instruction.

The TZMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT

TZMSK Mask From Trailing Zeros

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

TZMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /4

TZMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /4

General-Purpose Instruction Reference 355

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

356 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

These opcodes generate an invalid opcode exception. Unlike other undefined opcodes that may be
defined as legal instructions in the future, these opcodes are intended to stay undefined. On some
AMD64 processor implementations, UD1 may report an invalid opcode exception regardless of
whether fetching the ModRM byte could trigger a paging or segmentation exception.

Related Instructions

None

rFLAGS Affected

None

Exceptions

UD0, UD1, UD2 Undefined Operation

Mnemonic Opcode Description

UD0 0F FF Raise an invalid opcode exception

UD1 0F B9 /r Raise an invalid opcode exception

UD2 0F 0B Raise an invalid opcode exception.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X This instruction is not recognized.

General-Purpose Instruction Reference 357

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes the base field of the FS or GS segment descriptor with the value contained in the register
operand. When supported and enabled, these instructions can be executed at any processor privilege
level. Instructions are only defined in 64-bit mode. The address written to the base field must be in
canonical form or a #GP fault will occur.

System software must set the FSGSBASE bit (bit 16) of CR4 to enable the WRFSBASE and
WRGSBASE instructions.

Support for this instruction is indicated by CPUID Fn0000_0007_EBX_x0[FSGSBASE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RDFSBASE, RDGSBASE

rFLAGS Affected

None.

Exceptions

WRFSBASE
WRGSBASE

Write FS.base
Write GS.base

Mnemonic Opcode Description

WRFSBASE reg32 F3 0F AE /2 Copy the contents of the specified 32-bit general-
purpose register to the lower 32 bits of FS.base.

WRFSBASE reg64 F3 0F AE /2 Copy the contents of the specified 64-bit general-
purpose register to FS.base.

WRGSBASE reg32 F3 0F AE /3 Copy the contents of the specified 32-bit general-
purpose register to the lower 32 bits of GS.base.

WRGSBASE reg64 F3 0F AE /3 Copy the contents of the specified 64-bit general-
purpose register to GS.base.

Exception Legacy Compatibility 64-bit Cause of Exception

#UD

X X Instruction is not valid in compatibility or legacy modes.

X
Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[FSGSBASE] = 0 or, if supported,
not enabled in CR4.

#GP X Attempt to write non-canonical address to segment base
address.

358 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exchanges the contents of a register (second operand) with the contents of a register or memory
location (first operand), computes the sum of the two values, and stores the result in the first operand
location.

The forms of the XADD instruction that write to memory support the LOCK prefix. For details about
the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

None

rFLAGS Affected

XADD Exchange and Add

Mnemonic Opcode Description

XADD reg/mem8, reg8 0F C0 /r
Exchange the contents of an 8-bit register with the
contents of an 8-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem16, reg16 0F C1 /r
Exchange the contents of a 16-bit register with the
contents of a 16-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem32, reg32 0F C1 /r
Exchange the contents of a 32-bit register with the
contents of a 32-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem64, reg64 0F C1 /r
Exchange the contents of a 64-bit register with the
contents of a 64-bit destination register or memory
operand and load their sum into the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose Instruction Reference 359

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

360 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exchanges the contents of the two operands. The operands can be two general-purpose registers or a
register and a memory location. If either operand references memory, the processor locks
automatically, whether or not the LOCK prefix is used and independently of the value of IOPL. For
details about the LOCK prefix, see “Lock Prefix” on page 11.

The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h) as a one-byte
NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if it would exchange rAX
with itself. Without this special handling, the instruction would zero-extend the upper 32 bits of RAX,
and thus it would not be a true no-operation. Opcode 90h can still be used to exchange rAX and r8 if
the appropriate REX prefix is used.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction.

XCHG Exchange

Mnemonic Opcode Description

XCHG AX, reg16 90 +rw Exchange the contents of the AX register with the
contents of a 16-bit register.

XCHG reg16, AX 90 +rw Exchange the contents of a 16-bit register with the
contents of the AX register.

XCHG EAX, reg32 90 +rd Exchange the contents of the EAX register with the
contents of a 32-bit register.

XCHG reg32, EAX 90 +rd Exchange the contents of a 32-bit register with the
contents of the EAX register.

XCHG RAX, reg64 90 +rq Exchange the contents of the RAX register with the
contents of a 64-bit register.

XCHG reg64, RAX 90 +rq Exchange the contents of a 64-bit register with the
contents of the RAX register.

XCHG reg/mem8, reg8 86 /r Exchange the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

XCHG reg8, reg/mem8 86 /r Exchange the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

XCHG reg/mem16, reg16 87 /r Exchange the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

XCHG reg16, reg/mem16 87 /r Exchange the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

XCHG reg/mem32, reg32 87 /r Exchange the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

XCHG reg32, reg/mem32 87 /r Exchange the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

XCHG reg/mem64, reg64 87 /r Exchange the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

XCHG reg64, reg/mem64 87 /r Exchange the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

General-Purpose Instruction Reference 361

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

BSWAP, XADD

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The source or destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

362 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Uses the unsigned integer in the AL register as an offset into a table and copies the contents of the table
entry at that location to the AL register.

The instruction uses seg:[rBX] as the base address of the table. The value of seg defaults to the DS
segment, but may be overridden by a segment prefix.

This instruction writes AL without changing RAX[63:8]. This instruction ignores operand size.

The single-operand form of the XLAT instruction uses the operand to document the segment and
address size attribute, but it uses the base address specified by the rBX register.

This instruction is often used to translate data from one format (such as ASCII) to another (such as
EBCDIC).

Related Instructions

None

rFLAGS Affected

None

Exceptions

XLAT
XLATB

Translate Table Index

Mnemonic Opcode Description

XLAT mem8 D7 Set AL to the contents of DS:[rBX + unsigned AL].

XLATB D7 Set AL to the contents of DS:[rBX + unsigned AL].

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

General-Purpose Instruction Reference 363

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical xor operation on both operands and stores the result in the first operand
location. The first operand can be a register or memory location. The second operand can be an
immediate value, a register, or a memory location. XOR-ing a register with itself clears the register.

The forms of the XOR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

The instruction performs the following operation for each bit:

XOR Logical Exclusive OR

X Y X xor Y

0 0 0

0 1 1

1 0 1

1 1 0

Mnemonic Opcode Description

XOR AL, imm8 34 ib xor the contents of AL with an immediate 8-bit
operand and store the result in AL.

XOR AX, imm16 35 iw xor the contents of AX with an immediate 16-bit
operand and store the result in AX.

XOR EAX, imm32 35 id xor the contents of EAX with an immediate 32-bit
operand and store the result in EAX.

XOR RAX, imm32 35 id xor the contents of RAX with a sign-extended
immediate 32-bit operand and store the result in RAX.

XOR reg/mem8, imm8 80 /6 ib
xor the contents of an 8-bit destination register or
memory operand with an 8-bit immediate value and
store the result in the destination.

XOR reg/mem16, imm16 81 /6 iw
xor the contents of a 16-bit destination register or
memory operand with a 16-bit immediate value and
store the result in the destination.

XOR reg/mem32, imm32 81 /6 id
xor the contents of a 32-bit destination register or
memory operand with a 32-bit immediate value and
store the result in the destination.

XOR reg/mem64, imm32 81 /6 id
xor the contents of a 64-bit destination register or
memory operand with a sign-extended 32-bit immediate
value and store the result in the destination.

XOR reg/mem16, imm8 83 /6 ib
xor the contents of a 16-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

364 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

OR, AND, NOT, NEG

rFLAGS Affected

XOR reg/mem32, imm8 83 /6 ib
xor the contents of a 32-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem64, imm8 83 /6 ib
xor the contents of a 64-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem8, reg8 30 /r
xor the contents of an 8-bit destination register or
memory operand with the contents of an 8-bit register
and store the result in the destination.

XOR reg/mem16, reg16 31 /r
xor the contents of a 16-bit destination register or
memory operand with the contents of a 16-bit register
and store the result in the destination.

XOR reg/mem32, reg32 31 /r
xor the contents of a 32-bit destination register or
memory operand with the contents of a 32-bit register
and store the result in the destination.

XOR reg/mem64, reg64 31 /r
xor the contents of a 64-bit destination register or
memory operand with the contents of a 64-bit register
and store the result in the destination.

XOR reg8, reg/mem8 32 /r
xor the contents of an 8-bit destination register with
the contents of an 8-bit register or memory operand and
store the results in the destination.

XOR reg16, reg/mem16 33 /r
xor the contents of a 16-bit destination register with
the contents of a 16-bit register or memory operand and
store the results in the destination.

XOR reg32, reg/mem32 33 /r
xor the contents of a 32-bit destination register with
the contents of a 32-bit register or memory operand and
store the results in the destination.

XOR reg64, reg/mem64 33 /r
xor the contents of a 64-bit destination register with
the contents of a 64-bit register or memory operand and
store the results in the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Mnemonic Opcode Description

General-Purpose Instruction Reference 365

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

366 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

General-Purpose Instruction Reference 367

24594—Rev. 3.32—March 2021 AMD64 Technology

368 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

System Instruction Reference 369

24594—Rev. 3.32—March 2021 AMD64 Technology

4 System Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the system instructions. System instructions are used to establish the
processor operating mode, access processor resources, handle program and system errors, manage
memory, and instantiate a virtual machine. Most of these instructions can only be executed by
privileged software, such as the operating system or a Virtual Machine Monitor (VMM), also known
as a hypervisor. Only system instructions can access certain processor resources, such as the control
registers, model-specific registers, and debug registers.

Most system instructions are supported in all hardware implementations of the AMD64 architecture.
The table below lists instructions that may not be supported on a given processor implementation.
System software must execute the CPUID instruction using the function number listed to determine
support prior to using these instructions.

There are also several other CPUID feature bits that indicate support for certain paging functions,
virtual-mode extensions, machine-check exceptions, advanced programmable interrupt control
(APIC), memory-type range registers (MTRRs), etc.

Table 4-1. System Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Feature Bit Register[Bit]

CET_SS 0000_0007_0 ECX[7]

CLAC, STAC 0000_0007_0 EBX[20]

Long Mode and Long Mode
instructions

8000_0001_EDX[LM] EDX[29]

INVPCID 0000_0007_0 EBX[10]

INVLPGB, TLBSYNC 8000_0008_EBX[INVLPGB] EBX[3]

MONITOR, MWAIT 0000_0001_ECX[MONITOR] ECX[3]

RDPKRU, WRPKRU 0000_0007_0 ECX[4]

PSMASH, PVALIDATE,
RMPADJUST, RMPUPDATE

8000_001F_EAX[SNP] EAX[4]

RDMSR, WRMSR 0000_0001_EDX[MSR] EDX[5]

RDTSCP 8000_0001_EDX[RDTSCP] EDX[27]

SKINIT, STGI 8000_0001_ECX[SKINIT] ECX[12]

SVM Architecture and
instructions

8000_0001_ECX[SVM] ECX[2]

SYSCALL, SYSRET 8000_0001_EDX[SysCallSysRet] EDX[11]

SYSENTER, SYSEXIT 0000_0001_EDX[SysEnterSysExit] EDX[11]

VMGEXIT 8000_001F[SEV-ES] EAX[3]

WBNOINVD 8000_0008_EBX[WBNOINVD] EBX[9]

370 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 160. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591. For a comprehensive list
of all defined CPUID feature numbers and return values, see Appendix E, “Obtaining Processor
Information Via the CPUID Instruction,” on page 597.

For further information about the system instructions and register resources, see:

• “System Instructions” in Volume 2.

• “Summary of Registers and Data Types” on page 38.

• “Notation” on page 52.

• “Instruction Prefixes” on page 5.

System Instruction Reference 371

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the requestor privilege level (RPL) fields of two segment selectors in the source and
destination operands of the instruction. If the RPL field of the destination operand is less than the RPL
field of the segment selector in the source register, then the zero flag is set and the RPL field of the
destination operand is increased to match that of the source operand. Otherwise, the destination
operand remains unchanged and the zero flag is cleared.

The destination operand can be either a 16-bit register or memory location; the source operand must be
a 16-bit register.

The ARPL instruction is intended for use by operating-system procedures to adjust the RPL of a
segment selector that has been passed to the operating system by an application program to match the
privilege level of the application program. The segment selector passed to the operating system is
placed in the destination operand and the segment selector for the code segment of the application
program is placed in the source operand. The RPL field in the source operand represents the privilege
level of the application program. The ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower than the privilege level of the application
program.

See “Adjusting Access Rights” in Volume 2, for more information on access rights.

In 64-bit mode, this opcode (63H) is used for the MOVSXD instruction.

Related Instructions

LAR, LSL, VERR, VERW

rFLAGS Affected

ARPL Adjust Requestor Privilege Level

Mnemonic Opcode Description

ARPL reg/mem16, reg16 63 /r

Adjust the RPL of a destination segment selector to
a level not less than the RPL of the segment
selector specified in the 16-bit source register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

372 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected legacy and
compatibility mode.

Stack, #SS X A memory address exceeded the stack segment limit.

General protection,
#GP

X A memory address exceeded a data segment limit.

X The destination operand was in a non-writable segment.

X A null segment selector was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

System Instruction Reference 373

24594—Rev. 3.32—March 2021 AMD64 Technology

Sets the Alignment Check flag in the rFLAGS register to zero. Support for the CLAC instruction is
indicated by CPUID Fn07_EBX[20] = 1. For more information on using the CPUID instruction, see
the description of the CPUID instruction on page 160.

rFLAGS Affected

Exceptions

CLAC Clear Alignment Check Flag

Mnemonic Opcode Description

CLAC 0F 01 CA Clear AC Flag

Related Instructions

STAC

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction not supported by CPUID

X X Instruction is not supported in virtual mode

X X Lock prefix (F0h) preceding opcode.

X CPL was not 0

374 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the global interrupt flag (GIF). While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume-2: System Instructions, order# 24593.

Related Instructions

STGI

rFLAGS Affected

None.

Exceptions

CLGI Clear Global Interrupt Flag

Mnemonic Opcode Description

CLGI 0F 01 DD Clears the global interrupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

System Instruction Reference 375

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking external interrupts
received on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not
affected by this instruction.

In real mode, this instruction clears IF to 0.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction clears IF to 0.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled (CR4.PVI
= 1), then the instruction instead clears rFLAGS.VIF to 0. If none of these conditions apply, the
processor raises a general-purpose exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF) to 0 instead.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

Action
IF (CPL <= IOPL)

RFLAGS.IF = 0

ELSEIF (((VIRTUAL_MODE) && (CR4.VME == 1))
 || ((PROTECTED_MODE) && (CR4.PVI == 1) && (CPL == 3)))

RFLAGS.VIF = 0;

ELSE
EXCEPTION[#GP(0)]

Related Instructions

STI

CLI Clear Interrupt Flag

Mnemonic Opcode Description

CLI FA Clear the interrupt flag (IF) to zero.

376 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual mode
extensions are not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected mode virtual interrupts were not enabled
(CR4.PVI = 0).

System Instruction Reference 377

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the task-switched (TS) flag in the CR0 register to 0. The processor sets the TS flag on each task
switch. The CLTS instruction is intended to facilitate the synchronization of FPU context saves during
multitasking operations.

This instruction can only be used if the current privilege level is 0.

See “System-Control Registers” in Volume 2 for more information on FPU synchronization and the
TS flag.

Related Instructions

LMSW, MOV CRn

rFLAGS Affected

None

Exceptions

CLTS Clear Task-Switched Flag in CR0

Mnemonic Opcode Description

CLTS 0F 06 Clear the task-switched (TS) flag in CR0 to 0.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

378 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates the busy (in use) shadow stack token pointed to by the memory operand and clears the tokens
busy bit. If the token validation checks pass, CF is cleared to 0 and SSP is cleared to 0. If the token
validation checks fail, CF is set to 1 and the token and SSP are not modified.

CLRSSBY is a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is
generated. If shadow stacks are not enabled at the supervisor level, a #UD exception is generated.

Actions

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (S_CET.SH_STK_EN == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

temp_linAdr = Linear_Address(mem64)

IF (temp_linAdr is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool INVALID_TOKEN = FALSE

< start atomic section >
temp_Token = SSTK_READ_MEM.q [temp_linAdr] // fetch token with locked read

IF ((temp_Token AND 0x01) != 1)
 INVALID_TOKEN = TRUE // token busy bit must be set

IF ((temp_Token AND ~0x01) != temp_linAdr)
 INVALID_TOKEN = TRUE // address in token must equal
 // linear address of mem64
IF (!INVALID_TOKEN)
 temp_Token = temp_Token AND ~0x01 // valid token, clear busy bit

SSTK_WRITE_MEM.q[temp_linAdr] = temp_Token // write back token and unlock
< end atomic section >

RFLAGS.ZF,PF,AF,OF,SF = 0

IF (INVALID_TOKEN)
 RFLAGS.CF = 1 // set CF if token not valid
ELSE

CLRSSBSY Clear Shadow Stack Busy

Mnemonic Opcode Description

CLRSSBSY mem64 F3 0F AE /6 Validate shadow stack token and clear busy bit.

System Instruction Reference 379

24594—Rev. 3.32—March 2021 AMD64 Technology

 {
 RFLAGS.CF = 0 // else clear CF
 SSP = 0 // and set SSP = 0
 }
EXIT

Related Instructions

SETSSBSY

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks not enabled at supervisor level

General protection,
#GP

X CPL ! = 0

X The linear address is not 8-byte aligned.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was
non-canonical.

X A null data segment was used to reference memory.

X A non-writable data segment was used.

X An execute-only code segment was used to reference
memory.

Page fault, #PF
X The linear address is not a supervisor shadow stack

page in the OS page tables.

X A page fault resulted from the execution of the
instruction.

380 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Causes the microprocessor to halt instruction execution and enter the HALT state. Entering the HALT
state puts the processor in low-power mode. Execution resumes when an unmasked hardware interrupt
(INTR), non-maskable interrupt (NMI), system management interrupt (SMI), RESET, or INIT occurs.

If an INTR, NMI, or SMI is used to resume execution after a HLT instruction, the saved instruction
pointer points to the instruction following the HLT instruction.

Before executing a HLT instruction, hardware interrupts should be enabled. If rFLAGS.IF = 0, the
system will remain in a HALT state until an NMI, SMI, RESET, or INIT occurs.

If an SMI brings the processor out of the HALT state, the SMI handler can decide whether to return to
the HALT state or not. See Volume 2: System Programming, for information on SMIs.

Current privilege level must be 0 to execute this instruction.

Related Instructions

STI, CLI

rFLAGS Affected

None

Exceptions

HLT Halt

Mnemonic Opcode Description

HLT F4 Halt instruction execution.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

System Instruction Reference 381

24594—Rev. 3.32—March 2021 AMD64 Technology

Increments SSP by the operand size of the instruction multiplied by the unsigned 8-bit value in bits
[7:0] of the register operand. The operand size is 8 bytes in 64-bit mode (when REX.W = 1) and is 4
bytes in all other cases.

Before incrementing SSP, the first and last elements of the shadow stack in the range specified by the
register operand are read and discarded.

Action

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
EXCEPTION [#UD]

ELSEIF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
EXCEPTION [#UD]

IF (OPERAND_SIZE == 64)
{
temp_numItems = (reg64[7:0] == 0) ? 1 : reg64[7:0]
temp = SSTK_READ_MEM.q [SSP] // touch TOS and last
temp = SSTK_READ_MEM.q [SSP + temp_numItems*8 - 8] // element in range
SSP = SSP + reg64[7:0]*8 // increment SSP
}

ELSE
{
temp_numItems = (reg32[7:0] == 0) ? 1 : reg32[7:0]
temp = SSTK_READ_MEM.d [SSP] // touch TOS and last
temp = SSTK_READ_MEM.d [SSP + temp_numItems*4 - 4] // element in range
SSP = SSP + reg32[7:0]*4 // increment SSP
}

EXIT

Related Instructions

RDSSP, RSTORSSP

rFLAGS Affected

None

INCSSP Increment Shadow Stack Pointer

Mnemonic Opcode Description

INCSSPD reg32 F3 0F AE /05 Increment SSP by 4*(reg32[7:0]).

INCSSPQ reg64 F3 0F AE /05 Increment SSP by 8*(reg64[7:0]).

382 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks are not enabled at the current privilege level.

Page fault, #PF
X A page fault occurred when touching the first or last element of

the shadow stack in the range specified.

X The first or last element in the range specified is not in a
shadow stack page.

System Instruction Reference 383

24594—Rev. 3.32—March 2021 AMD64 Technology

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that raises a #BP
exception. The INT 3 instruction is normally used by debug software to set instruction breakpoints by
replacing the first byte of the instruction opcode bytes with the INT 3 opcode.

This one-byte INT 3 instruction behaves differently from the two-byte INT 3 instruction (opcode CD
03) (see “INT” in Chapter 3 “General Purpose Instructions” for further information) in two ways:

The #BP exception is handled without any IOPL checking in virtual x86 mode. (IOPL mismatches
will not trigger an exception.)

• In VME mode, the #BP exception is not redirected via the interrupt redirection table. (Instead, it is
handled by a protected mode handler.)

For complete descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

// Refer to INT instruction’s Action section for the details on INT_N_REAL,
// INT_N_PROTECTED, and INT_N_VIRTUAL_TO_PROTECTED.
INT3_START:

If (REAL_MODE)
 INT_N_REAL //N = 3

ELSEIF (PROTECTED_MODE)
 INT_N_PROTECTED //N = 3

ELSE // VIRTUAL_MODE
 INT_N_VIRTUAL_TO_PROTECTED //N = 3

Related Instructions

INT, INTO, IRET

INT 3 Interrupt to Debug Vector

Mnemonic Opcode Description

INT 3 CC Trap to debugger at Interrupt 3.

384 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

If a task switch occurs, all flags are modified; otherwise, setting are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M 0 0 M M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Breakpoint, #BP X X X INT 3 instruction was executed.

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS that was beyond the TSS limit.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector)

X X
After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical and a stack switch
occurred.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

System Instruction Reference 385

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

386 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates all levels of cache associated with this processor. This may or may not include lower level
caches associated with another processor that shares any level of this processor's cache hierarchy.

No data is written back to main memory from invalidating the caches.

CPUID Fn8000_001D_EDX[WBINVD]_xN indicates the behavior of the processor at various levels
of the cache hierarchy. If the feature bit is 0, the instruction causes the invalidation of all lower level
caches of other processors sharing the designated level of cache. If the feature bit is 1, the instruction
does not necessarily cause the invalidation of all lower level caches of other processors sharing the
designated level of cache. See Appendix E, “Obtaining Processor Information Via the CPUID
Instruction,” on page 597 for more information on using the CPUID function.

This is a privileged instruction. The current privilege level (CPL) of a procedure invalidating the
processor’s internal caches must be 0.

To insure that data is written back to memory prior to invalidating caches, use the WBINVD
instruction.

This instruction does not invalidate TLB caches.

INVD is a serializing instruction.

Related Instructions

WBINVD, WBNOINVD, CLWB, CLFLUSH

rFLAGS Affected

None

Exceptions

INVD Invalidate Caches

Mnemonic Opcode Description

INVD 0F 08 Invalidate internal caches and trigger external cache
invalidations.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

System Instruction Reference 387

24594—Rev. 3.32—March 2021 AMD64 Technology

Invalidates the TLB entry that would be used for the 1-byte memory operand.

This instruction invalidates the TLB entry, regardless of the G (Global) bit setting in the associated
PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes, 4 Mbytes, or 1 Gbyte). It may
invalidate any number of additional TLB entries, in addition to the targeted entry. INVLPG only
invalidates TLB entries tagged with the current PCID and also global pages regardless of PCIDs. If
PCIDs are disabled (CR4.PCID=0) then the current PCID is zero.

INVLPG is a serializing instruction and a privileged instruction. The current privilege level must be 0
to execute this instruction.

See “Page Translation and Protection” in Volume 2 for more information on page translation.

Related Instructions

INVLPGA, INVLPGB, INVPCID, MOV CRn (CR3 and CR4)

rFLAGS Affected

None

Exceptions

INVLPG Invalidate TLB Entry

Mnemonic Opcode Description

INVLPG mem8 0F 01 /7 Invalidate the TLB entry for the page containing a specified
memory location.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

388 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates the TLB mapping for a given virtual page and a given ASID. The virtual (linear) address is
specified in the implicit register operand rAX. The portion of rAX used to form the address is
determined by the effective address size (current execution mode and optional address size prefix).
The ASID is taken from ECX.

The INVLPGA instruction may invalidate any number of additional TLB entries, in addition to the
targeted entry.

The INVLPGA instruction is a serializing instruction and a privileged instruction. The current
privilege level must be 0 to execute this instruction.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume-2: System Instructions, order# 24593.

Related Instructions

INVLPG, INVLPGB, INVPCID

rFLAGS Affected

None.

Exceptions

INVLPGA Invalidate TLB Entry in a Specified ASID

Mnemonic Opcode Description

INVLPGA rAX, ECX 0F 01 DF Invalidates the TLB mapping for the virtual page
specified in rAX and the ASID specified in ECX.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

System Instruction Reference 389

24594—Rev. 3.32—March 2021 AMD64 Technology

Invalidates the TLB entry or entries specified by the descriptor in the rAX:EDX register pair.
Invalidations are done both in the local TLB and broadcast to all processors to perform the same
invalidations. The virtual (linear) address is specified in the implicit register operand rAX. The portion
of rAX used to form the address is determined by the effective address size.

The TLB control field is specified in rAX[5:0]. It determines which components of the address (VA,
PCID, ASID) are valid for comparison in the TLB and whether to include global entries in the
invalidation process. If rAX[4] is set, only the final translation is invalidated and not the cached upper
level TLB entries that lead to the final page. This ability may not be possible with all processors in
which case the bit is ignored. If rAX[5] is set, all nested translations that could be used for guest
translation selected in rAX[4:0] are flushed. rAX[5] can only be set if CPUID Fn8000_0008_EBX[21
=1. ECX provides a count of the number of pages to include in invalidation with the specified address
and the page size at which to increment the specified address.

The descriptor in rAX has the following format:

rAX[3:0] provides for various types of invalidations, including these example encodings:

INVLPGB Invalidate TLB Entry(s) with Broadcast

rAX Attributes

0 Valid VA

1 Valid PCID

2 Valid ASID

3 Include Global

4 Final Translation Only

5 Include Nested Translations

11:6 Reserved, MBZ

63:12 or 31:12 VA

rAX [3:0] Action

0xF Invalidate all TLB entries that match {ASID, PCID, VA}
including Global

0xC Invalidate all TLB entries that match {ASID} including
Global

0x4 Invalidate all TLB entries that match {ASID} excluding
Global

0xE Invalidate all TLB entries that match {ASID, PCID}
including Global

0x6 Invalidate all TLB entries that match {ASID, PCID}
excluding Global

390 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

The descriptor in EDX has the following format:

ECX[15:0] contains a count of the number of sequential pages to invalidate in addition to the original
virtual address, starting from the virtual address specified in rAX. A count of 0 invalidates a single
page. ECX[31]=0 indicates to increment the virtual address at the 4K boundary. ECX[31]=1 indicates
to increment the virtual address at the 2M boundary. The maximum count supported is reported in
CPUID function 8000_0008h, EDX[15:0].

This instruction invalidates the TLB entry or entries, regardless of the page size (4 Kbytes, 2 Mbytes, 4
Mbytes, or 1 Gbyte). It may invalidate any number of additional TLB entries in addition to the targeted
entry or entries to accomplish the specified function. INVLPGB follows the same rules for cached
upper TLB entries as INVLPG which is controlled by EFER.TCE. However, since this is a broadcast,
the invalidation is controlled by the EFER.TCE value on the processor executing the INVLPGB
instruction. (See Section 3, “Translation Cache Extension” in AMD64 Architecture Programmer’s
Manual Volume 2 for more information on EFER.TCE.)

Under the following circumstances, execution of INVLPGB will result in a General Protection fault
(#GP):

• If SVM is disabled, requesting the ASID field with any value but zero, even if the ASID is not
necessary for the flush.

• If PCID is disabled, requesting the PCID field with any value but zero, even if the PCID is not
necessary for the flush.

• If the request exceeds the number of valid ASIDs for the processor, even if the ASID is not valid.

• Attempts to request a count larger than the maximum count supported, even if the VA is not valid

• Attempts to execute an INVLPGB while in 4M paging mode.

Guest Usage of INVLPGB. Guest usage of INVLPGB is supported only when the instruction has
been explicitly enabled by the hypervisor in the VMCB (see APM Volume 2 Appendix B, Table B-1:
VMCB Layout, Control Area). Support for INVLPGB/TLBSYNC hypervisor enable in VMCB is
indicated by CPUID Fn8000_000A_EDX[24] = 1.

A guest that executes a legal INVLPGB that is not intercepted will have the requested ASID field
replaced by the current ASID and the valid ASID bit set before doing the broadcast invalidation.
Because of its broadcast nature, the ASID field must be global and all processors must allocate the
same ASID to the same Guest for proper operation. Hypervisors that do not support a global ASID
must intercept the Guest usage of INVLPGB, if enabled, for proper behavior.

EDX Attributes

15:0 ASID

27:16 PCID

31:28 Reserved, MBZ

System Instruction Reference 391

24594—Rev. 3.32—March 2021 AMD64 Technology

Two forms of INVLPGB intercepts, conditional and unconditional, are available to the hypervisor.
The unconditional intercept traps all guest usage of INVLPGB. The conditional intercept traps only
illegally-specified INVLPGB instructions. An illegally specified INVLPGB is one that would, if not
intercepted, cause a #GP for any reason other than not being executed at CPL 0.

INVLPGB is a privileged instruction but not a serializing instruction. It must be executed at CPL 0, but
will broadcast the invalidate to the rest of the processors which may be running at any privilege level.

INVLPGB is weakly ordered as it broadcasts the invalidation types throughout the system to all
processors, so that a batch of invalidations can be done in a parallel fashion. For software to guarantee
that all processors have seen and done the TLB invalidations, a TLBSYNC must be executed on the
initiating processor.

Related Instructions

TLBSYNC, INVLPG, INVLPGA, INVPCID

rFLAGS Affected

None.

Exceptions

Mnemonic Opcode Description

INVLPGB 0F 01 FE Invalidates TLB entry(s) with Broadcast.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X This instruction is only recognized in protected mode.

X X X This instruction is not supported as indicated by CPUID
Fn8000_0008_EBX[INVLPGB] = 0.

X The hypervisor has not enabled Guest usage of this
instruction.

General protection,
#GP

X CPL was not zero.

X EAX[11:6] is not zero or EAX[5] not zero if not supported.

EDX[31:28] is not zero.

X CR4.PCID =0 and EDX[PCID] is not zero.

X EFER.SVME =0 and EDX[ASID] is not zero.

X EDX[ASID] > number of supported ASIDs.

X ECX[15:0] > maximum page count supported.

X 4M paging is active.

392 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates the TLB entry or entries on the logical processor for a given PCID in the local TLB based
on the operation type specified in the register operand and the PCID and virtual (linear) address
specified by the descriptor in the memory operand. (See Section 5, “Process Context Identifiers” in
AMD64 Architecture Programmer’s Manual Volume 2 for more information on PCIDs.)

The register operand is always 64 bits in 64-bit mode and 32 bits outside 64-bit mode regardless of
value of CS.D.

The operation type is specified in the register operand bits [1:0]. The operation type determines which
components of the address (VA, PCID) are valid for comparison in the TLB and whether to include
global valid bits in the invalidation process.

The operation types are:

The descriptor in the memory operand is formatted as follows:

This instruction invalidates the TLB entry or entries, regardless of the page size (4 Kbytes, 2 Mbytes, 4
Mbytes, or 1 Gbyte). It may invalidate any number of additional TLB entries, in addition to the
targeted entry or entries to accomplish the specified function. INVPCID follows the same rules for
cached upper TLB entries as INVLPG which is controlled by EFER.TCE. (See Section 3, “Translation
Cache Extension” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
EFER.TCE.)

If PCID is disabled (CR4.PCID = 0), all TLB entries are being cached with PCID = 0. When
CR4.PCID = 0, executing INVPCID with type 0 and 1 is only allowed if the PCID specified in the
descriptor is zero. Furthermore, when CR4.PCID = 0, executing INVPCID with type 2 or 3 invalidate
mappings only for PCID = 0.

INVPCID is a serializing instruction and a privileged instruction. The current privilege level must be 0
to execute this instruction.

INVPCID Invalidate TLB Entry(s) in a Specified PCID

reg32/64 [1:0] Action

0 Invalidate TLB entries that match {PCID, VA} excluding
Global

1 Invalidate all TLB entries that match {PCID} excluding
Global

2 Invalidate all TLB entries including Global

3 Invalidate all TLB entries excluding Global

127:64 63:12 11:0

VA Reserved, MBZ PCID

System Instruction Reference 393

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INVLPG, INVLPGA, INVLPGB, TLBSYNC

rFLAGS Affected

None.

Exceptions

Mnemonic Opcode Description

INVPCID reg32, mem128 66 0F 38 82 /r Invalidates the TLB entry(s) by PCID in r32 and
descriptor in mem28.

INVPCID reg64, mem128 66 0F 38 82 /r Invalidates the TLB entry(s) by PCID in r64 and
descriptor in mem28.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X This instruction is only recognized in protected mode.

X This instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[INVPCID] = 0.

X If mod=11 (register is specified instead of memory for desc).

 X If the LOCK prefix is used.

General protection,
#GP

 X CPL was not 0.

 X An invalid type (>3) was specified in register operand.

 X Bits 63:12 of descriptor in memory operand are not all zero.

 X Invalidation type 0 was specified and the virtual address in
bits 127:64 of descriptor is not canonical.

 X Invalidation type 0 or 1 and bits 11:0 of descriptor are not
zero when CR4.PCIDE = 0.

 X An execute-only code segment was used to reference
memory.

 X A memory address exceeded a data segment limit.

 X In long mode, the address of the memory operand was non-
canonical.

 X A null data segment was used to reference memory.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

Page Fault, #PF X A page fault resulted from the execution of the instruction.

394 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns program control from an exception or interrupt handler to a program or procedure previously
interrupted by an exception, an external interrupt, or a software-generated interrupt. These instructions
also perform a return from a nested task. All flags, CS, and rIP are restored to the values they had
before the interrupt so that execution may continue at the next instruction following the interrupt or
exception. In 64-bit mode or if the CPL changes, SS and RSP are also restored.

IRET, IRETD, and IRETQ are synonyms mapping to the same opcode. They are intended to provide
semantically distinct forms for various opcode sizes. The IRET instruction is used for 16-bit operand
size; IRETD is used for 32-bit operand sizes; IRETQ is used for 64-bit operands. The latter form is
only meaningful in 64-bit mode.

IRET, IRETD, or IRETQ must be used to terminate the exception or interrupt handler associated with
the exception, external interrupt, or software-generated interrupt.

IRETx is a serializing instruction.

For detailed descriptions of the steps performed by IRETx instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action
// For functions READ_DESCRIPTOR, ShadowStacksEnabled
// see "Pseudocode Definition" on page 57

IRET_START:

IF (REAL_MODE)
 IRET_REAL

ELSIF (PROTECTED_MODE)
 IRET_PROTECTED

ELSE // (VIRTUAL_MODE)
 IRET_VIRTUAL

IRET
IRETD
IRETQ

Return from Interrupt

Mnemonic Opcode Description

IRET CF Return from interrupt (16-bit operand size).

IRETD CF Return from interrupt (32-bit operand size).

IRETQ CF Return from interrupt (64-bit operand size).

System Instruction Reference 395

24594—Rev. 3.32—March 2021 AMD64 Technology

IRET_REAL:

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
RIP = temp_RIP
EXIT

IRET_PROTECTED:

IF (RFLAGS.NT == 1)
 IF (LEGACY_MODE) // IRET does a task-switch to a previous task
 TASK_SWITCH // using the ’back link’ field in the TSS
 ELSE // (LONG_MODE)
 EXCEPTION [#GP(0)] // task switches aren’t supported in long mode

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF ((temp_RFLAGS.VM==1) && (CPL==0) && (LEGACY_MODE))
 IRET_FROM_PROTECTED_TO_VIRTUAL

IF (temp_CS.rpl = CPL)
 changing_CPL = FALSE
ELSEIF (temp_CS.rpl > CPL)
 changing_CPL = TRUE
ELSE // (temp_CS.rpl < CPL)
 EXCEPTION [#GP(temp_CS)] // IRET to greater priv not allowed

IF ((64BIT_MODE) || (changing_CPL))
 POP.v temp_RSP // in 64-bit mode or changing CPL, IRET always pops SS:RSP
 POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

IF (changing_CPL)
 IRET_PROTECTED_TO_OUTER_PRIV
ELSE

396 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IRET_PROTECTED_TO_SAME_PRIV

IRET_PROTECTED_TO_OUTER_PRIV:

CPL = CS.rpl

// SS:RSP were popped, so load them into the registers
SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP

// pop shadow stack and compare with program stack
IF (ShadowStacksEnabled(old CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 IF (temp_newCPL != 3)
 {
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 }
 }

temp_oldSSP = SSP

IF (ShadowStacksEnabled(new CPL))
 IF (new CPL == 3)
 temp_SSP = PL3_SSP
 IF ((COMPATIBILITY_MODE) && (temp_SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4GB in compat mode
 SSP = temp_SSP

IF (ShadowStacksEnabled(old CPL)) // check shadow stack token, clear busy
 {
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must=oldSSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid

System Instruction Reference 397

24594—Rev. 3.32—March 2021 AMD64 Technology

 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at old CPL

FOR (seg = ES, DS, FS, GS)
 IF ((seg.sel == NULL) || ((seg.attr.dpl < CPL) &&
 ((seg.attr.type == ’data’) ||
 (seg.attr.type == ’non-conforming-code’))))
 seg = NULL // can’t use lower DPL data segment at higher CPL
 // also clears RPL of any null selectors

RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if old_CPL == 0
 // IF only changed if old_CPL <= old_RFLAGS.IOPL
 // VM unchanged
 // RF cleared
RIP = temp_RIP
EXIT // end IRET_PROTECTED_TO_OUTER_PRIV

IRET_PROTECTED_TO_SAME_PRIV:

IF (started in 64-bit mode)
 { // in Long Mode SS:RSP were popped, so load them into the registers
 SS = READ_DESCRIPTOR (temp_SS, ss_chk)
 RSP.s = temp_RSP
 }

IF (ShadowStacksEnabled(current CPL)) // pop the shadow stack
 { // and compare with program stack
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 } // end shadow stack enabled at current CPL

// check shadow stack token, clear busy
IF ((ShadowStacksEnabled(currentCPL)) && (LONG_MODE))
 {
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token

398 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must=oldSSP
 IF temp_SSP = SSP
 to_same_sstk = TRUE // switch was to same sstk
 IF ((!invalid_Token) AND (!to_same_sstk))
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at CPL and in Long Mode

RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if old_CPL == 0
 // IF only changed if old_CPL <= old_RFLAGS.IOPL
 // VM unchanged
 // RF cleared
RIP = temp_RIP
EXIT // end IRET_PROTECTED_TO_SAME_PRIV

IRET_VIRTUAL:

IF ((RFLAGS.IOPL < 3) && (CR4.VME == 0))
 EXCEPTION [#GP(0)]

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

IF (RFLAGS.IOPL == 3)
 {
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged, RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RIP = temp_RIP
 EXIT
 }

// (IOPL < 3) && (CR4.VME == 1)
ELSEIF ((OPERAND_SIZE == 16) &&
 ((temp_RFLAGS.IF == 0) || (RFLAGS.VIP == 0)) &&
 (temp_RFLAGS.TF == 0))
 {
 RFLAGS.w = temp_RFLAGS // RFLAGS.VIF = temp_RFLAGS.IF
 // IF unchanged, RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

System Instruction Reference 399

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT
 }

ELSE
 // ((RFLAGS.IOPL < 3) && (CR4.VME == 1) && ((OPERAND_SIZE == 32) ||
 // ((temp_RFLAGS.IF == 1) && (RFLAGS.VIP == 1)) ||
 // (temp_RFLAGS.TF == 1)))
 EXCEPTION [#GP(0)]

IRET_FROM_PROTECTED_TO_VIRTUAL:

// temp_RIP already popped
// temp_CS already popped
// temp_RFLAGS already popped, temp_RFLAGS.VM = 1
// and CPL = 0

POP.d temp_RSP
POP.d temp_SS
POP.d temp_ES
POP.d temp_DS
POP.d temp_FS
POP.d temp_GS

// force the segments to have virtual-mode values
FOR (seg = CS, SS, ES, DS, FS, GS)
 {
 seg.sel = temp_seg
 seg.base = temp_seg SHL 4
 seg.limit = 0x0000FFFF
 IF (seg == CS)
 CS.attr = 16-bit dpl3 code
 ELSEIF (seg == SS)
 SS.attr = 16-bit dpl3 stack
 ELSE
 seg.attr = 16-bit dpl3 data
 }

RSP.d = temp_RSP
RFLAGS.d = temp_RFLAGS
CPL = 3

temp_oldSSP = SSP

IF (ShadowStacksEnabled(old CPL)) // old CPL is 0 at this point
 { // check shadow stack token, clear busy
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)

400 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must = oldSSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at old CPL

RIP = temp_RIP AND 0x0000FFFF
EXIT // end IRET FROM PROTECTED TO VIRTUAL

Related Instructions

INT, INTO, INT3

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X The target offset exceeded the code segment limit or was non-
canonical.

X

IOPL was less than 3 and one of the following conditions was
true:
• CR4.VME was 0.

• The effective operand size was 32-bit.

• Both the original EFLAGS.VIP and the new EFLAGS.IF
were set.

• The new EFLAGS.TF was set.

X IRETx was executed in long mode while EFLAGS.NT=1.

System Instruction Reference 401

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X

The return address on the program stack did not match the
address on the shadow stack, or the previous SSP is not 4
byte aligned, or the previous SSP was not <4GB when
returning to 32-bit mode or compatibility mode.

Exception Real
Virtual
8086 Protected Cause of Exception

402 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the access rights from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LAR clears the zero flag if the descriptor is invalid for any reason.

The LAR instruction checks that:

• the segment selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the
following table. LDT and TSS descriptors in 64-bit mode, and call-gate descriptors in long mode,
are only valid if bits 12:8 of doubleword +12 are zero.

See Volume 2, Section 6.4 for more information on checking access rights using LAR.

If the segment descriptor passes these checks, the attributes are loaded into the destination general-
purpose register. If it does not, then the zero flag is cleared and the destination register is not modified.

When the operand size is 16 bits, access rights include the DPL and Type fields located in bytes 4 and
5 of the descriptor table entry. Before loading the access rights into the destination operand, the low
order word is masked with FF00H.

When the operand size is 32 or 64 bits, access rights include the DPL and type as well as the descriptor
type (S field), segment present (P flag), available to system (AVL flag), default operation size (D/B

LAR Load Access Rights Byte

Valid Descriptor Type Description

Legacy Mode Long Mode

All All All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

4 — 16-bit call gate

5 — Task gate

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

C C 32-bit or 64-bit call gate

System Instruction Reference 403

24594—Rev. 3.32—March 2021 AMD64 Technology

flag), and granularity flags located in bytes 4–7 of the descriptor. Before being loaded into the
destination operand, the doubleword is masked with 00FF_FF00H.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

This instruction can only be executed in protected mode.

Related Instructions

ARPL, LSL, VERR, VERW

rFLAGS Affected

Exceptions

Mnemonic Opcode Description

LAR reg16, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with FF00h and saves
the result in the 16-bit destination register.

LAR reg32, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 32-bit destination register.

LAR reg64, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

404 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the pseudo-descriptor specified by the source operand into the global descriptor table register
(GDTR). The pseudo-descriptor is a memory location containing the GDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is 6 bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the GDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
typically executed once in real mode to initialize the processor before switching to protected mode.

LGDT is a serializing instruction.

Related Instructions

LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LGDT Load Global Descriptor Table Register

Mnemonic Opcode Description

LGDT mem16:32 0F 01 /2 Loads mem16:32 into the global descriptor table register.

LGDT mem16:64 0F 01 /2 Loads mem16:64 into the global descriptor table register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X
X

The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

System Instruction Reference 405

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.

X The new GDT base address was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

406 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the pseudo-descriptor specified by the source operand into the interrupt descriptor table register
(IDTR). The pseudo-descriptor is a memory location containing the IDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is six bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the IDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit, and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
normally executed once in real mode to initialize the processor before switching to protected mode.

LIDT is a serializing instruction.

Related Instructions

LGDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LIDT Load Interrupt Descriptor Table Register

Mnemonic Opcode Description

LIDT mem16:32 0F 01 /3 Loads mem16:32 into the interrupt descriptor table register.

LIDT mem16:64 0F 01 /3 Loads mem16:64 into the interrupt descriptor table register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

System Instruction Reference 407

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.

X The new IDT base address was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

408 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the specified segment selector into the visible portion of the local descriptor table (LDT). The
processor uses the selector to locate the descriptor for the LDT in the global descriptor table. It then
loads this descriptor into the hidden portion of the LDTR.

If the source operand is a null selector, the LDTR is marked invalid and all references to descriptors in
the LDT will generate a general protection exception (#GP), except for the LAR, VERR, VERW or
LSL instructions.

In legacy and compatibility modes, the LDT descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the LDT descriptor is 16-bytes long and contains a 64-bit base address. The LDT
descriptor type (02h) is redefined in 64-bit mode for use as the 16-byte LDT descriptor.

This instruction must be executed in protected mode. It is only provided for use by operating system
software at CPL 0.

LLDT is a serializing instruction.

Related Instructions

LGDT, LIDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LLDT Load Local Descriptor Table Register

Mnemonic Opcode Description

LLDT
reg/mem16 0F 00 /2 Load the 16-bit segment selector into the local descriptor

table register and load the LDT descriptor from the GDT.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present,
#NP (selector) X The LDT descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.

X A null data segment was used to reference memory.

System Instruction Reference 409

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The source selector did not point into the GDT.

X The descriptor was beyond the GDT limit.

X The descriptor was not an LDT descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new LDT base address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

410 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the lower four bits of the 16-bit register or memory operand into bits 3:0 of the machine status
word in register CR0. Only the protection enabled (PE), monitor coprocessor (MP), emulation (EM),
and task switched (TS) bits of CR0 are modified. Additionally, LMSW can set CR0.PE, but cannot
clear it.

The LMSW instruction can be used only when the current privilege level is 0. It is only provided for
compatibility with early processors.

Use the MOV CR0 instruction to load all 32 or 64 bits of CR0.

Related Instructions

MOV CRn, SMSW

rFLAGS Affected

None

Exceptions

LMSW Load Machine Status Word

Mnemonic Opcode Description

LMSW reg/mem16 0F 01 /6 Load the lower 4 bits of the source into the lower 4 bits of
CR0.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X A memory address exceeded a data segment limit or was non-
canonical.

X X CPL was not 0.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

System Instruction Reference 411

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the segment limit from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LSL clears the zero flag if the descriptor is invalid for any reason.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

The LSL instruction checks that:

• the segment selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the
following table. LDT and TSS descriptors in 64-bit mode are only valid if bits 12:8 of doubleword
+12 are zero, as described in “System Descriptors” in Volume 2.

If the segment selector passes these checks and the segment limit is loaded into the destination
general-purpose register, the instruction sets the zero flag of the rFLAGS register to 1. If the selector
does not pass the checks, then LSL clears the zero flag to 0 and does not modify the destination.

The instruction calculates the segment limit to 32 bits, taking the 20-bit limit and the granularity bit
into account. When the operand size is 16 bits, it truncates the upper 16 bits of the 32-bit adjusted
segment limit and loads the lower 16-bits into the target register.

LSL Load Segment Limit

Valid Descriptor Type Description

Legacy Mode Long Mode

— — All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

Mnemonic Opcode Description

LSL reg16, reg/mem16 0F 03 /r
Loads a 16-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

412 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ARPL, LAR, VERR, VERW

rFLAGS Affected

Exceptions

LSL reg32, reg/mem16 0F 03 /r
Loads a 32-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

LSL reg64, reg/mem16 0F 03 /r
Loads a 64-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

System Instruction Reference 413

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the specified segment selector into the visible portion of the task register (TR). The processor
uses the selector to locate the descriptor for the TSS in the global descriptor table. It then loads this
descriptor into the hidden portion of TR. The TSS descriptor in the GDT is marked busy, but no task
switch is made.

If the source operand is null, a general protection exception (#GP) is generated.

In legacy and compatibility modes, the TSS descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the instruction references a 64-bit descriptor to load a 64-bit base address. The TSS
type (09H) is redefined in 64-bit mode for use as the 16-byte TSS descriptor.

This instruction must be executed in protected mode when the current privilege level is 0. It is only
provided for use by operating system software.

The operand size attribute has no effect on this instruction.

LTR is a serializing instruction.

Related Instructions

LGDT, LIDT, LLDT, STR, SGDT, SIDT, SLDT

rFLAGS Affected

None

Exceptions

LTR Load Task Register

Mnemonic Opcode Description

LTR reg/mem16 0F 00 /3 Load the 16-bit segment selector into the task register and
load the TSS descriptor from the GDT.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present,
#NP (selector) X The TSS descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

414 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.

X A null data segment was used to reference memory.

X The new TSS selector was a null selector.

General protection,
#GP
(selector)

X The source selector did not point into the GDT.

X The descriptor was beyond the GDT limit.

X The descriptor was not an available TSS descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new TSS base address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

System Instruction Reference 415

24594—Rev. 3.32—March 2021 AMD64 Technology

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT instruction uses the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITOR on an address range for
a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITOR instruction can
be determined by CPUID function 0000_0005h.

The [rAX] register provides the effective address. The DS segment is the default segment used to
create the linear address. Segment overrides may be used with the MONITOR instruction.

The ECX register specifies optional extensions for the MONITOR instruction. There are currently no
extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITOR instruction. There are currently no hints
defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITOR instruction can be executed at CPL 0 and is allowed at CPL > 0
only if MSR C001_0015h[MonMwaitUserEn] = 1. When MSR C001_0015h[MonMwaitUserEn] = 0,
MONITOR generates #UD at CPL > 0. (See the BIOS and Kernel Developer’s Guide applicable to
your product for specific details on MSR C001_0015h.)

MONITOR performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITOR instruction is indicated by CPUID Fn0000_0001_ECX[MONITOR] = 1.
Software must check the CPUID bit once per program or library initialization before using the
MONITOR instruction, or inconsistent behavior may result. Software designed to run at CPL greater
than 0 must also check for availability by testing whether executing MONITOR causes a #UD
exception.

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

while (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

MONITOR Setup Monitor Address

416 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MWAIT, MONITORX, MWAITX

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MONITOR 0F 01 C8 Establishes a linear address range to be monitored
by hardware and activates the monitor hardware.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_ECX[MONITOR] = 0.

X X CPL was not zero and
MSR C001_0015[MonMwaitUserEn] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X X X ECX was non-zero.

X A null data segment was used to reference memory.

Page Fault, #PF X X A page fault resulted from the execution of the
instruction.

System Instruction Reference 417

24594—Rev. 3.32—March 2021 AMD64 Technology

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32 bits and the upper 32 bits of the destination are forced to 0.

CR0 maintains the state of various control bits. CR2 and CR3 are used for page translation. CR4 holds
various feature enable bits. CR8 is used to prioritize external interrupts. CR1, CR5, CR6, CR7, and
CR9 through CR15 are all reserved and raise an undefined opcode exception (#UD) if referenced.

CR8 can be read and written in 64-bit mode, using a REX prefix. CR8 can be read and written in all
modes using a LOCK prefix instead of a REX prefix to specify the additional opcode bit. To verify
whether the LOCK prefix can be used in this way, check for support of this feature. CPUID
Fn8000_0001_ECX[AltMovCr8] = 1, indicates that this feature is supported.

For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

CR8 can also be read and modified using the task priority register described in “System-Control
Registers” in Volume 2.

This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
encoding of the MOD field in the MODR/M byte.

MOV CRn is a privileged instruction and must always be executed at CPL = 0.

MOV CRn is a serializing instruction.

Related Instructions

CLTS, LMSW, SMSW

MOV CRn Move to/from Control Registers

Mnemonic Opcode Description

MOV CRn, reg32 0F 22 /r Move the contents of a 32-bit register to CRn

MOV CRn, reg64 0F 22 /r Move the contents of a 64-bit register to CRn

MOV reg32, CRn 0F 20 /r Move the contents of CRn to a 32-bit register.

MOV reg64, CRn 0F 20 /r Move the contents of CRn to a 64-bit register.

MOV CR8, reg32 F0 0F 22/r Move the contents of a 32-bit register to CR8.

MOV CR8, reg64 F0 0F 22/r Move the contents of a 64-bit register to CR8.

MOV reg32, CR8 F0 0F 20/r Move the contents of CR8 into a 32-bit register.

MOV reg64, CR8 F0 0F 20/r Move the contents of CR8 into a 64-bit register.

418 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Instruction,
#UD

X X X An illegal control register was referenced (CR1, CR5–CR7,
CR9–CR15).

X X X The use of the LOCK prefix to read CR8 is not supported, as
indicated by CPUID Fn8000_0001_ECX[AltMovCr8] = 0.

General protection,
#GP

X X CPL was not 0.

X X An attempt was made to set CR0.PG = 1 and CR0.PE = 0.

X X An attempt was made to set CR0.CD = 0 and CR0.NW = 1.

X X
Reserved bits were set in the page-directory pointers table
(used in the legacy extended physical addressing mode) and
the instruction modified CR0, CR3, or CR4.

X X An attempt was made to write 1 to any reserved bit in CR0,
CR3, CR4 or CR8.

X X
An attempt was made to set CR0.PG while long mode was
enabled (EFER.LME = 1), but paging address extensions
were disabled (CR4.PAE = 0).

X An attempt was made to clear CR4.PAE while long mode was
active (EFER.LMA = 1).

X An attempt was made to set CR4.PCIDE=1 when long mode
was disabled (EFER.LMA=0).

X An attempt was made to set CR4.PCIDE=1 when CR3[11:0]
<>0.

X An attempt was made to set CR0.PG=0 when CR4.PCIDE=1.

System Instruction Reference 419

24594—Rev. 3.32—March 2021 AMD64 Technology

Moves the contents of a debug register into a 32-bit or 64-bit general-purpose register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32-bits and the upper 32 bits of the destination are forced to 0.

DR0 through DR3 are linear breakpoint address registers. DR6 is the debug status register and DR7 is
the debug control register. DR4 and DR5 are aliased to DR6 and DR7 if CR4.DE = 0, and are reserved
if CR4.DE = 1.

DR8 through DR15 are reserved and generate an undefined opcode exception if referenced.

These instructions are privileged and must be executed at CPL 0.

The MOV DRn,reg32 and MOV DRn,reg64 instructions are serializing instructions.

The MOV(DR) instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

See “Debug and Performance Resources” in Volume 2 for details.

Related Instructions

None

rFLAGS Affected

None

MOV DRn Move to/from Debug Registers

Mnemonic Opcode Description

MOV reg32, DRn 0F 21 /r Move the contents of DRn to a 32-bit register.

MOV reg64, DRn 0F 21 /r Move the contents of DRn to a 64-bit register.

MOV DRn, reg32 0F 23 /r Move the contents of a 32-bit register to DRn.

MOV DRn, reg64 0F 23 /r Move the contents of a 64-bit register to DRn.

420 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Debug, #DB X X A debug register was referenced while the general detect
(GD) bit in DR7 was set.

Invalid opcode, #UD
X X DR4 or DR5 was referenced while the debug extensions

(DE) bit in CR4 was set.

X An illegal debug register (DR8–DR15) was referenced.

General protection,
#GP

X X CPL was not 0.

X A 1 was written to any of the upper 32 bits of DR6 or DR7 in
64-bit mode.

System Instruction Reference 421

24594—Rev. 3.32—March 2021 AMD64 Technology

Used in conjunction with the MONITOR instruction to cause a processor to wait until a store occurs to
a specific linear address range from another processor. The previously executed MONITOR
instruction causes the processor to enter the monitor event pending state. The MWAIT instruction may
enter an implementation dependent power state until the monitor event pending state is exited. The
MWAIT instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

• A store from another processor matches the address range established by the MONITOR
instruction.

• Any unmasked interrupt, including INTR, NMI, SMI, INIT.

• RESET.

• Any far control transfer that occurs between the MONITOR and the MWAIT.

EAX specifies optional hints for the MWAIT instruction. Optimized C-state request is communicated
through EAX[7:4]. The processor C-state is EAX[7:4]+1, so to request C0 is to place the value F in
EAX[7:4] and to request C1 is to place the value 0 in EAX[7:4]. All other components of EAX should
be zero when making the C1 request. Setting a reserved bit in EAX is ignored by the processor. This is
implicitly a 32-bit operand.

ECX specifies optional extensions for the MWAIT instruction. The only extension currently defined is
ECX bit 0, which allows interrupts to wake MWAIT, even when eFLAGS.IF = 0. Support for this
extension is indicated by a feature flage returned by the CPUID instruction. Setting any unsupported
bit in ECX results in a #GP exception. This is implicitly a 32-bit operand.

CPUID Function 0000_0005h indicates support for extended features of MONITOR/MWAIT:

• CPUID Fn0000_0005_ECX[EMX] = 1 indicates support for enumeration of MONITOR/MWAIT
extensions.

• CPUID Fn0000_0005_ECX[IBE] = 1 indicates that MWAIT can set ECX[0] to allow interrupts to
cause an exit from the monitor event pending state even when eFLAGS.IF = 0.

The MWAIT instruction can be executed at CPL 0 and is allowed at CPL > 0 only if MSR
C001_0015h[MonMwaitUserEn] =1. When MSR C001_0015h[MonMwaitUserEn] is 0, MWAIT
generates #UD at CPL > 0. (See the BIOS and Kernel Developer’s Guide applicable to your product
for specific details on MSR C001_0015h.)

Support for the MWAIT instruction is indicated by CPUID Fn0000_0001_ECX[MONITOR] = 1.
Software MUST check the CPUID bit once per program or library initialization before using the
MWAIT instruction, or inconsistent behavior may result. Software designed to run at CPL greater than
0 must also check for availability by testing whether executing MWAIT causes a #UD exception.

The use of the MWAIT instruction is contingent upon the satisfaction of the following coding
requirements:

MWAIT Monitor Wait

422 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

• MONITOR must precede the MWAIT and occur in the same loop.

• MWAIT must be conditionally executed only if the awaited store has not already occurred. (This
prevents a race condition between the MONITOR instruction arming the monitoring hardware and
the store intended to trigger the monitoring hardware.)

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

WHILE (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

Related Instructions

MONITOR

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MWAIT 0F 01 C9
Causes the processor to stop instruction execution
and enter an implementation-dependent optimized
state until occurrence of a class of events.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not supported,
as indicated by
CPUID Fn0000_0001_ECX[MONITOR] = 0.

X X CPL was not zero and
MSRC001_0015[MonMwaitUserEn] = 0.

General protection,
#GP X X X Unsupported extension bits were set in ECX

System Instruction Reference 423

24594—Rev. 3.32—March 2021 AMD64 Technology

Expands a 2MB-page RMP entry into a corresponding set of contiguous 4KB-page RMP entries. The
2MB page’s system physical address is specified in the RAX register.

The new entries inherit the attributes of the original entry. Upon completion, a return code is stored in
EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on this return code.

The PSMASH instruction invalidates all TLB entries in the system that translate to the 2MB page
being expanded.

This instruction is intended for hypervisor use. Attempted execution at an ASID other than 0 will
result in a FAIL_PERMISSION return code.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode with SNP enabled; in all
other modes a #UD exception will be generated.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
SYSTEM_PA = RAX & ~0x1FFFFF

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode

EXCEPTION [#UD]

IF (!SYSCFG.SNP_EN) // Instruction only valid when SNP is enabled
 EXCEPTION [#UD]

IF (CPL != 0) // Instruction only allowed at CPL 0
 EXCEPTION [#GP(0)]

IF (CURRENT_ASID != 0) // Instruction only allowed at ASID 0
 EAX = FAIL_PERMISSION
 EXIT

RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // System address must have an RMP entry

EAX = FAIL_INPUT
EXIT

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED || (temp_RMP.PAGE_SIZE != 2MB))

PSMASH Page Smash

Mnemonic Opcode Description

PSMASH F3 0F 01 FF Creates 512 4KB RMP entries from a 2MB RMP entry

424 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EAX = FAIL_BADADDR
EXIT

temp_RMP.PAGE_ SIZE = 4KB
WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP

FOR (I = 1; I < 512, I++)
{

temp_RMP.GUEST_PA = temp_RMP.GUEST_PA + 0x1000;
WRITE_MEM_PA.o [RMP_ENTRY_PA + I * 16] = temp_RMP;

}

EAX = SUCCESS
EXIT

Return Codes

Related Instructions

RMPUPDATE, PVALIDATE, RMPADJUST

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Current ASID not 0

3 FAIL_INUSE Another processor is modifying the same RMP entry

4 FAIL_BADADDR The page did not meet smashing criteria

System Instruction Reference 425

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X SYSCFG[SNP_EN] was not set to 1

General Protection,
#GP X X A null data segment was used to reference memory.

426 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates or rescinds validation of a guest page’s RMP entry. The guest virtual address is specified in
the register operand rAX. The portion of RAX used to form the address is determined by the effective
address size (current execution mode and optional address size prefix). The page size is specified in
ECX[0]. The new RMP Validated bit is specified in EDX[0].

The PVALIDATE instruction is used by an SNP-active guest to modify the validation status of a page.
The PVALIDATE instruction will attempt to access the provided page and will take a
#VMEXIT(NPF) if a nested translation error occurs or the translated address is outside the range of
memory covered by the RMP. Assuming no error is detected, the PVALIDATE instruction will store
EDX[0] to the Validated bit in the page’s RMP entry.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code. If the instruction completed successfully, the rFLAGS bit CF indicates if the contents
of the RMP entry were changed or not.

While this instruction is intended for use in SNP-active guest system software, it is recognized in any
operating mode at CPL0. If the PVALIDATE instruction is executed by an SNP-active guest and
changes the Validated bit in the RMP entry, upon completion it sets rFLAGS.CF to 0. If the
PVALIDATE instruction is executed in a non-SNP-active environment or does not change the
Validated bit in the RMP entry, it sets rFLAGS.CF to 1 and otherwise behaves as a NOP instruction.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception.

PVALIDATE performs the same segmentation and paging checks as a 1-byte read. PVALIDATE does
not invalidate TLB caches.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
GUEST_VA = rAX & ~0xFFF
PAGE_SIZE = ECX[0]
VALIDATE_PAGE = EDX[0]

IF (CPL != 0) // This instruction is only allowed at CPL 0

 EXCEPTION [#GP(0)]

IF (!SNP_ACTIVE)

rFLAGS.CF = 1 // Set CF to indicate that the RMP was not changed
EAX = SUCCESS

 EXIT

PVALIDATE Page Validate

Mnemonic Opcode Description

PVALIDATE F2 0F 01 FF Performs guest page validation

System Instruction Reference 427

24594—Rev. 3.32—March 2021 AMD64 Technology

IF (CURRENT_VMPL != 0)
EXCEPTION [#GP(0)] // This instruction is only allowed at VMPL 0

IF ((PAGE_SIZE == 2MB) && (GUEST_VA[20:12] != 0))

EAX = FAIL_INPUT // Page size is 2MB and page is not 2MB aligned
EXIT

(SYSTEM_PA, GUEST_PA) = TRANSLATE(GUEST_VA)
RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END)
#VMEXIT(NPF) //Translated system address must have an RMP entry

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED ||
 (temp_RMP.GUEST_PA != GUEST_PA) || (temp_RMP.ASID != ASID) ||

(temp_RMP.PAGE_SIZE != nPT page size) ||
((temp_RMP.PAGE_SIZE == 2MB) && (PAGE_SIZE == 4KB)))
#VMEXIT(NPF)

IF ((RMP_DATA.PAGE_SIZE == 4KB) && (PAGE_SIZE == 2MB))
EAX = FAIL_SIZEMISMATCH // 2MB validation backed by 4KB pages
EXIT

IF (temp_RMP.VALIDATED == VALIDATE_PAGE)
rFLAGS.CF = 1

ELSE
rFLAGS.CF = 0

temp_RMP.VALIDATED = VALIDATE_PAGE
WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

Return Codes

Related Instructions

RMPUPDATE, PSMASH, RMPADJUST

Value Name Description

0 SUCCESS Successful completion (regardless of whether Validated bit
changed state)

1 FAIL_INPUT Illegal input parameters

6 FAIL_SIZEMISMATCH Page size mismatch between guest (2M) and RMP entry (4K)

428 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The SNP instructions are not supported as indicated by

CPUID Fn8000_001F_EAX[SNP] = 0

General Protection,
#GP

X X CPL was not zero

X X X Current VMPL was not zero

Page Fault, #PF
X X A page fault resulted from the execution of the instruction

X The effective C-bit was a 0 during the guest page table walk

System Instruction Reference 429

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX register into
registers EDX:EAX. The EDX register receives the high-order 32 bits and the EAX register receives
the low order bits. The RDMSR instruction ignores operand size; ECX always holds the MSR number,
and EDX:EAX holds the data. If a model-specific register has fewer than 64 bits, the unimplemented
bit positions loaded into the destination registers are undefined.

This instruction must be executed at a privilege level of 0 or a general protection exception (#GP) will
be raised. This exception is also generated if a reserved or unimplemented model-specific register is
specified in ECX.

Support for the RDMSR instruction is indicated by CPUID Fn0000_0001_EDX[MSR] = 1 OR
CPUID Fn8000_0001_EDX[MSR] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

For more information about model-specific registers, see the documentation for various hardware
implementations and “Model-Specific Registers (MSRs)” in Volume 2: System Programming.

Related Instructions

WRMSR, RDTSC, RDPMC

rFLAGS Affected

None

Exceptions

RDMSR Read Model-Specific Register

Mnemonic Opcode Description

RDMSR 0F 32 Copy MSR specified by ECX into EDX:EAX.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

The RDMSR instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[MSR] = 0 or CPUID
Fn8000_0001_EDX[MSR] = 0.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

430 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the contents of the 32-bit Protection Key Rights (PKRU) register into RAX[31:0] and clears the
upper 32 bits of RAX. RDX is also cleared to 0. The RDPKRU instruction ignores operand size.

This instruction must be executed with ECX=0, otherwise a general protection fault (#GP) is
generated. The upper 32 bits of RCX are ignored. Memory protection keys must be enabled
(CR4.PKE=1), otherwise executing this instruction generates an invalid opcode fault (#UD).

Software can check that the operating system has enabled memory protection keys (CR4.PKE=1) by
testing CPUID Function 0000_0007h_ECX[OSPKE]. (See Section 5, “Protection Key Rights for
User Pages” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
memory protection keys.)

RDPKRU can be executed at any privilege level.

Related Instructions

WRPKRU

rFLAGS Affected

None

Exceptions

RDPKRU Read Protection Key Rights

Mnemonic Opcode Description

RDPKRU 0F 01 EE Read the PKRU MSR into EAX and clear RDX

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X CR4.PKE=0

General protection,
#GP X ECX was not zero

System Instruction Reference 431

24594—Rev. 3.32—March 2021 AMD64 Technology

Reads the contents of a 64-bit performance counter and returns it in the registers EDX:EAX. The ECX
register is used to specify the index of the performance counter to be read. The EDX register receives
the high-order 32 bits and the EAX register receives the low order 32 bits of the counter. The RDPMC
instruction ignores operand size; the index and the return values are all 32 bits.

The base architecture supports four core performance counters: PerfCtr0–3. An extension to the
architecture increases the number of core performance counters to 6 (PerfCtr0–5). Other extensions
add four northbridge performance counters NB_PerfCtr0–3 and four L2 cache performance counters
L2I_PerfCtr0–3.

To select the core performance counter to be read, specify the counter index, rather than the
performance counter MSR address. To access the northbridge performance counters, specify the index
of the counter plus 6. To access the L2 cache performance counters, specify the index of the counter
plus 10.

Programs running at any privilege level can read performance monitor counters if the PCE flag in CR4
is set to 1; otherwise this instruction must be executed at a privilege level of 0.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the performance counter is read.

For more information about performance-counter registers, see the documentation for various
hardware implementations and “Performance Counters” in Volume 2.

Suppo r t f o r t he co r e pe r fo rmance coun t e r s Pe r fC t r4–5 i s i nd i ca t ed by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1. CPUID Fn8000_0001_ECX[PerfCtrExtNB] = 1 indicates
support for the four architecturally defined northbridge performance counters and CPUID
Fn8000_0001_ECX[PerfCtrExtL2I] = 1 indicates support for the L2 cache performance counters.

For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Related Instructions

RDMSR, WRMSR

rFLAGS Affected

None

RDPMC Read Performance-Monitoring Counter

Mnemonic Opcode Description

RDPMC 0F 33 Copy the performance monitor counter specified
by ECX into EDX:EAX.

432 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General Protection,
#GP

X X X The value in ECX specified an unimplemented performance
counter number.

X X CPL was not 0 and CR4.PCE = 0.

System Instruction Reference 433

24594—Rev. 3.32—March 2021 AMD64 Technology

Reads the current Shadow Stack Pointer (SSP) to the specified GPR. The operand size is 64 bits in 64-
bit mode when REX.W=1 and is 32 bits in all other cases. RDSSP is treated as a NOP if CR4.CET = 0,
or if shadow stacks are not enabled at the current privilege level.

Action

IF (((CPL==3) && SSTK_USER_ENABLED) || ((CPL!=3) && SSTK_SUPV_ENABLED))

 IF (OPERAND_SIZE == 64)
 reg64 = SSP
 ELSE
 reg32 = SSP[31:0]
EXIT

Related Instructions

RDSSP, RSTORSSP

rFLAGS Affected

None

Exceptions

None.

RDSSP Read Shawdow Stack Pointer

Mnemonic Opcode Description

RDSSPD reg32 F3 0F 1E /1 Read SSP[31:0] to reg32

RDSSPQ reg64 F3 0F 1E /1 Read SSP[63:0] to reg64

434 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.

The time-stamp counter (TSC) is contained in a 64-bit model-specific register (MSR). The processor
sets the counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the
TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register. This instruction ignores operand size.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction can only be used at
privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the time-stamp counter is read.

The behavior of the RDTSC instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID Fn8000_0007_EDX[TscInvariant] = 1, then the TSC rate is
ensured to be invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK
Throttling); therefore, the TSC is suitable for use as a source of time. Consult the BIOS and Kernel
Developer’s Guide applicable to your product for information concerning the effect of power
management on the TSC.

Support for the RDTSC instruction is indicated by CPUID Fn0000_0001_EDX[TSC] = 1 OR CPUID
Fn8000_0001_EDX[TSC] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

Instruction Encoding

Related Instructions

RDTSCP, RDMSR, WRMSR

rFLAGS Affected

None

RDTSC Read Time-Stamp Counter

Mnemonic Opcode Description

RDTSC 0F 31 Copy the time-stamp counter into EDX:EAX.

System Instruction Reference 435

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The RDTSC instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[TSC] = 0 OR
CPUID Fn8000_0001_EDX[TSC] = 0.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

436 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX, and loads the
value of TSC_AUX into ECX. This instruction ignores operand size.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The processor sets the
counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register.

The TSC_AUX value is contained in the low-order 32 bits of the TSC_AUX register (MSR address
C000_0103h). This MSR is initialized by privileged software to any meaningful value, such as a
processor ID, that software wants to associate with the returned TSC value.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSCP instruction can only be used
at privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

Unlike the RDTSC instruction, RDTSCP forces all older instructions to retire before reading the time-
stamp counter.

The behavior of the RDTSCP instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID Fn8000_0007_EDX[TscInvariant] = 1, then the TSC rate is
ensured to be invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK
Throttling); therefore, the TSC is suitable for use as a source of time. Consult the BIOS and Kernel
Developer’s Guide applicable to your product for information concerning the effect of power
management on the TSC.

Support for the RDTSCP instruction is indicated by CPUID Fn8000_0001_EDX[RDTSCP] = 1. For
more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Related Instructions

RDTSC

rFLAGS Affected

None

RDTSCP Read Time-Stamp Counter
and Processor ID

Mnemonic Opcode Description

RDTSCP 0F 01 F9 Copy the time-stamp counter into EDX:EAX and
the TSC_AUX register into ECX.

System Instruction Reference 437

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The RDTSCP instruction is not supported, as indicated by
CPUID Fn8000_0001_EDX[RDTSCP] = 0.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

438 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Modifies RMP permissions for a guest page. The guest virtual address is specified in the RAX register.
The page size is specified in RCX[0]. The target VMPL and its permissions are specified in the RDX
register as follows:

The RMPADJUST instruction is used by an SNP-active guest to modify RMP permissions of a lesser-
privileged VMPL. The RMPADJUST instruction will attempt to access the specified page and will
take a #VMEXIT(NPF) if a nested translation error occurs or the translated address is outside the
range of memory covered by the RMP. Assuming no such error is detected, the target VMPL is
numerically higher than the current VMPL, and the specified permissions for the target VMPL are not
greater than the permissions of the current VMPL, the RMPADJUST instruction will modify the target
permission mask in the RMP entry.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code.

RMPADJUST performs the same segmentation and paging checks as a 1-byte read. RMPADJUST
does not invalidate TLB caches.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode in an SNP-active guest; in
all other modes a #UD exception will be generated.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
GUEST_VA = RAX & ~0xFFF
PAGE_SIZE = RCX[0]
TARGET_VMPL = RDX[7:0]
TARGET_PERM_MASK = RDX[15:8]
VMSA = RDX[16]

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode
EXCEPTION [#UD]

IF (!SNP_ACTIVE)

RMPADJUST Adjust RMP Permissions

RDX bits Field Description

[63:17] RESERVED

[16] VMSA Indicates if the page may be used as a VM Save Area page.
This bit is ignored whenever the current VMPL is not 0

[15:8] TARGET_PERM_MASK Desired permission mask settings

[7:0] TARGET_VMPL Target VMPL

Mnemonic Opcode Description

RMPADJUST F3 0F 01 FE Modifies RMP permissions

System Instruction Reference 439

24594—Rev. 3.32—March 2021 AMD64 Technology

EXCEPTION [#UD]

IF (CPL != 0) // Instruction only allowed at CPL 0
EXCEPTION [#GP(0)]

IF ((PAGE_SIZE == 2MB) && (GUEST_VA[20:12] != 0))
EAX = FAIL_INPUT // Page size is 2MB and not 2MB aligned
EXIT

IF (TARGET_VMPL <= CURRENT_VMPL) // Only permissions for numerically-
EAX = FAIL_PERMISSION // higher VMPL can be modified
EXIT

(SYSTEM_PA, GUEST_PA) = TRANSLATE(GUEST_VA)
RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // Translated system address
#VMEXIT(NPF) // must have an RMP entry

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED ||
(temp_RMP.GUEST_PA != GUEST_PA) || (temp_RMP.ASID != ASID) ||
(temp_RMP.PAGE_SIZE != nPT page size) ||
((temp_RMP.PAGE_SIZE == 2MB) && (PAGE_SIZE == 4KB)))
#VMEXIT(NPF)

IF (!temp_RMP.VALIDATED)
#VC(PAGE_NOT_VALIDATED)

IF ((RMP_DATA.PAGE_SIZE == 4KB) && (PAGE_SIZE == 2MB))
EAX = FAIL_SIZEMISMATCH
EXIT

IF (TARGET_PERM_MASK & ~temp_RMP.PERMISSIONS[CURRENT_VMPL])
EAX = FAIL_PERMISSION
EXIT

IF (CURRENT_VMPL == 0)
temp_RMP.VMSA = VMSA

temp_RMP.PERMISSIONS[TARGET_VMPL] = TARGET_PERM_MASK

WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

440 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Return Codes

Related Instructions

PVALIDATE, RMPUPDATE, PSMASH

rFLAGS Affected

Exceptions

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Insufficient permissions

6 FAIL_SIZEMISMATCH Page size mismatch between guest and RMP

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X Guest is not SNP-Active

General Protection,
#GP X X CPL was not zero

Page Fault, #PF
X X A page fault resulted from the execution of the instruction

X The effective C-bit was a 0 during the guest page table walk

VMM
Communication,
#VC

X RMP.VALIDATED was not set to 1

System Instruction Reference 441

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes a new RMP entry. The system physical address of a page whose RMP entry is modified is
specified in the RAX register. The RCX register provides the effective address of a 16-byte data
structure which contains the new RMP state. The DS segment is the default segment used to create the
linear address, but may be overridden by a segment prefix. The layout of the data structure with the
new RMP state is as follows:

The RMPUPDATE instruction checks that new RMP state is legal before it updates the RMP table.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code.

The RMPUPDATE instruction invalidates all TLB entries in the system that translate to the page being
modified.

This instruction is intended for hypervisor use. Attempted execution at an ASID other than 0 will
result in a FAIL_PERMISSION return code.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode with SNP enabled; in all
other modes a #UD exception will be generated.

Support for this instruction is indicated by the feature flag CPUID Fn8000_001F_EAX[SNP]=1.

Action
SYSTEM_PA = RAX & ~0xFFF
NEW_RMP_PTR = RCX

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode
EXCEPTION [#UD]

IF (!SYSCFG.SNP_EN) // Instruction only valid when SNP enabled
EXCEPTION [#UD]

RMPUPDATE Write RMP Entry

Byte
Offset

Length
(bytes) Name Description

00h 8 GUEST_PA Guest physical address

08h 1 ASSIGNED Assigned flag (bit 0)

09h 1 PAGE_SIZE Page size (0 = 4KB, 1 = 2MB) (bit 0)

0Ah 1 IMMUTABLE Immutable flag (bit 0)

0Bh 1 - Reserved (SBZ)

0Ch 4 ASID ASID of intended page owner

Mnemonic Opcode Description

RMPUPDATE F2 0F 01 FE Writes a new RMP entry

442 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

IF (CPL != 0) // Instruction only allowed at CPL 0
EXCEPTION [#GP(0)]

IF (CURRENT_ASID != 0) // Instruction only allowed at ASID 0
EAX = FAIL_PERMISSION
EXIT

NEW_RMP = READ_MEM.o [NEW_RMP_PTR]

IF ((NEW_RMP.PAGE_SIZE == 2MB) && (SYSTEM_PA[20:12] != 0))
EAX = FAIL_INPUT
EXIT

IF (!NEW_RMP.ASSIGNED && (NEW_RMP.IMMUTABLE || (NEW_RMP.ASID != 0))
EAX = FAIL_INPUT
EXIT

RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // System address must have an RMP entry
EAX = FAIL_INPUT
EXIT

OLD_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (OLD_RMP.IMMUTABLE)
EAX = FAIL_PERMISSION
EXIT

IF (NEW_RMP.PAGE_SIZE == 4KB)
IF ((SYSTEM_PA[20:12] == 0) && (OLD_RMP.PAGE_SIZE == 2MB))

EAX = FAIL_OVERLAP
EXIT

ELSE
IF (Any 4KB RMP entry with (RMP.ASSIGNED == 1) exists in 2MB region)

EAX = FAIL_OVERLAP
EXIT

ELSE
 FOR (I = 1; I < 512, I++)

{
temp_RMP = 0
temp_RMP.ASSIGNED = NEW_RMP.ASSIGNED
WRITE_MEM.o [RMP_ENTRY_PA + I * 16] = temp_RMP;

}

IF (!NEW_RMP.ASSIGNED)
temp_RMP = 0

ELSE
temp_RMP.ASID = NEW_RMP.ASID
temp_RMP.GUEST_PA = NEW_RMP.GUEST_PA
temp_RMP.PAGE_SIZE = NEW_RMP.PAGE_SIZE

System Instruction Reference 443

24594—Rev. 3.32—March 2021 AMD64 Technology

temp_RMP.ASSIGNED = NEW_RMP.ASSIGNED
temp_RMP.IMMUTABLE = NEW_RMP.IMMUTABLE

temp_RMP.VALIDATED = OLD_RMP.VALIDATED
temp_RMP.PERMISSIONS = OLD_RMP.PERMISSIONS
temp_RMP.VMSA = OLD_RMP.VMSA

IF (NEW_RMP.ASID == 0)
temp_RMP.GUEST_PA = 0

IF ((OLD_RMP.ASID ^ NEW_RMP.ASID) ||
 (OLD_RMP.GUEST_PA ^ NEW_RMP.GUEST_PA) ||
(OLD_RMP.PAGE_SIZE ^ NEW_RMP.PAGE_SIZE) ||
(OLD_RMP.ASSIGNED ^ NEW_RMP.ASSIGNED))
N = CPUID Fn8000001F_EBX[15:12]
temp_RMP.VALIDATED = 0
temp_RMP.VMSA = 0
temp_RMP.PERMISSIONS[0] = 0xF
temp_RMP.PERMISSIONS[1:(N-1)] = 0

WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

Return Codes

Related Instructions

PVALIDATE, PSMASH, RMPADJUST

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Current ASID not 0 or RMP entry is Immutable

3 FAIL_INUSE Another processor is modifying the same RMP entry

4 FAIL_OVERLAP 4KB page and 2MB page RMP overlap detected

444 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X SYSCFG[SNP_EN] was not set to 1

General Protection,
#GP X X CPL was not zero

System Instruction Reference 445

24594—Rev. 3.32—March 2021 AMD64 Technology

Resumes an operating system or application procedure previously interrupted by a system
management interrupt (SMI). The processor state is restored from the information saved when the SMI
was taken. The processor goes into a shutdown state if it detects invalid state information in the system
management mode (SMM) save area during RSM.

RSM will shut down if any of the following conditions are found in the save map (SSM):

• An illegal combination of flags in CR0 (CR0.PG = 1 and CR0.PE = 0, or CR0.NW = 1 and
CR0.CD = 0).

• A reserved bit in CR3, CR4, or the extended feature enable register (EFER) is set to 1.

• A reserved bit in the range 63:32 of CR0, DR6, or DR7 is set to 1.

• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 0.

• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 1, CS.D = 1,
CS.L = 1.

• SMM revision field has been modified.

• The following bit combination occurs: CR4.PCIDE=1 and EFER.LMA=0.

RSM cannot modify EFER.SVME. Attempts to do so are ignored.

When EFER.SVME is 1, RSM reloads the four PDPEs (through the incoming CR3) when returning to
a mode that has legacy PAE mode paging enabled.

When EFER.SVME is 1, the RSM instruction is permitted to return to paged real mode (i.e.,
CR0.PE=0 and CR0.PG=1).

The AMD64 architecture uses a new 64-bit SMM state-save memory image. This 64-bit save-state
map is used in all modes, regardless of mode. See “System-Management Mode” in Volume 2 for
details.

Related Instructions

None

RSM Resume from System Management Mode

Mnemonic Opcode Description

RSM 0F AA Resume operation of an interrupted program.

446 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

All flags are restored from the state-save map (SSM).

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The processor was not in System Management Mode (SMM).

System Instruction Reference 447

24594—Rev. 3.32—March 2021 AMD64 Technology

Restores SSP using the shadow stack restore token pointed to by the memory operand. If the token
validation checks pass, SSP is set to the linear address of the memory operand and the restore token is
replaced with a previous SSP token.

If a return to the previous shadow stack is required, the SAVEPREVSSP instruction can be used to
save the previous SSP token to the previous stack. Otherwise, the INCSSP instruction can be used to
pop the unneeded previous SSP token from the shadow stack.

If the restored SSP is 4-byte aligned and not 8-byte aligned, CF is set to 1 indicating an alignment hole.
The INCSSP instruction can be used to increment SSP past the alignment hole.

Action
// see "Pseudocode Definition" on page 57

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
 EXCEPTION [#UD]

IF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
 EXCEPTION [#UD]

temp_linAdr = Linear_Address(mem64)
IF (temp_linAdr is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool INVALID_TOKEN = FALSE

< start atomic section >

temp_rstorToken = SSTK_READ_MEM.q [mem64] // fetch token, with locked read

IF ((temp_rstorToken AND 0x02) != 0)
 INVALID_TOKEN = TRUE // token bit 1 must be clear

IF (64BIT_MODE != (temp_rstorToken AND 0x01))
 INVALID_TOKEN = TRUE // token bit 0 must match current mode

IF (!64-bit mode) && (temp_rstorToken[63:32] != 0))
 INVALID_TOKEN = TRUE // previous SSP must be <4Gb in
 // legacy and compat modes

temp_prevSSP = (temp_rstorToken AND ~0x01) – 8
temp_prevSSP = temp_prevSSP AND ~0x07

RSTORSSP Restore Saved Shadow Stack Pointer

Mnemonic Opcode Description

RSTORSSP mem64 F3 0F 01 /5 Restore SSP and create previous SSP token.

448 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

IF (temp_prevSSP != temp_linAdr)
 INVALID_TOKEN = TRUE // prev SSP from token must match lin addr

temp_prevSSPtoken = SSP OR 64BIT_MODE OR 0x02 //create the previousSSP token
SSTK_WRITE_MEM.q [mem64] = INVALID_TOKEN ? temp_rstorToken : temp_prevSSPtoken
 // write token and unlock
< end atomic section >

IF (INVALID_TOKEN)
 EXCEPTION [#CP(RSTORSSP)]
ELSE
 {
 SSP = temp_linAdr // SSP = linear address of memory operand
 RFLAGS.ZF,PF,AF,OF,SF = 0
 RFLAGS.CF = (temp_rstorToken AND 0x04) ? 1 : 0; // set CF if SSP in token
 // was 4-byte aligned
 }

EXIT

Related Instructions

SAVEPREVSSP

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X CR4.CET = 0

X Shadow stacks not enabled at current privilege level.

General protection,
#GP

X The linear address was not 8-byte aligned.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

System Instruction Reference 449

24594—Rev. 3.32—March 2021 AMD64 Technology

Control Protection,
#CP

X The mode bit (bit 0) in the token did not match the current
mode.

X The type bit (bit 1) in the token was not 0.

X The SSP address in the token did not match the linear
address of the memory operand.

Page fault, #PF
X The linear address was not a shadow stack page.

X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

450 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Saves a restore shadow stack token to previous shadow stack. The previous SSP pointer is taken from
the previous SSP token found at the top of the current shadow stack. The previous SSP token is then
popped from the current shadow stack.

Action

// see "Pseudocode Definition" on page 57

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
 EXCEPTION [#UD]

IF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
 EXCEPTION [#UD]

IF (SSP is not 8-byte aligned)
 EXCEPTION [#GP(0)]

temp_prevSSPtoken = SSTK_READ_MEM.q [SSP] // pop prev SSP token
 // from current stack
temp_SSP = SSP
temp_SSP = temp_SSP + 8

IF (RFLAGS.CF) // CF indicates a 4-byte alignment hole exists
 IF (64BIT_MODE)
 EXCEPTION [#GP(0)] // alignment hole allowed only in legacy/compat mode
 ELSE
 {
 hole = SSTK_READ_MEM.d [temp_SSP] // pop the 4-byte alignment hole
 temp_SSP = temp_SSP + 4
 IF (hole != 0)
 EXCEPTION [#GP(0)] // the alignment hole must be all 0’s
 }
IF ((temp_prevSSPtoken AND 0x02) != 1)
 EXCEPTION [#GP(0)] // prev SSP token must have bit 1 set

IF (64BIT_MODE != (temp_prevSSPtoken AND 0x01))
 EXCEPTION [#GP(0)] // token bit 0 must match current mode

IF (!64-bit mode) && (temp_prevSSPtoken[63:32] != 0))
 EXCEPTION [#GP(0)] // previous SSP must be <4Gb in
 // legacy and compat modes

SAVEPREVSSP Save Previous Shadow Stack Pointer

Mnemonic Opcode Description

SAVEPREVSSP F3 0F 01 EA Push restore shadow stack token to the previous shadow
stack

System Instruction Reference 451

24594—Rev. 3.32—March 2021 AMD64 Technology

temp_oldSSP = temp_prevSSPtoken AND ~0x03
temp_rstorSSPtoken = temp_oldSSP OR (64BIT_MODE) //create the restore

SSP token
SSTK_WRITE_MEM.d [temp_oldSSP - 4] = 0x0 // zero out hole (in case aligning
 // oldSSP creates a hole)
temp_oldSSP = temp_oldSSP AND ~0x07 // align oldSSP to next 8b boundary
SSTK_WRITE_MEM.q [temp_oldSSP-8]= temp_rstorSSPtoken // write restore token to
 // old stack
SSP = temp_SSP // no faults, update SSP

Related Instructions

RSTORSSP

rFLAGS Affected

None.

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks not enabled at current privilege level.

General protection, #GP

X The SSP was not 8-byte aligned.

X The type bit (bit 1) in the token was not 1.

X CF was set in 64-bit mode.

X The previous SSP was >4Gb when not in 64-bit mode.

X A non-zero alignment hole was found in legacy or
compatibility mode.

Page fault, #PF
X A page fault resulted from the execution of the instruction.

X A shadow stack reference was made to a non-shadow
stack page.

452 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates a non-busy (not in-use) shadow stack token pointed to by the PL0_SSP MSR and sets the
token’s busy bit. If the validation checks pass, SSP is set to the address in PL0_SSP.

SETSSBY is a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is
generated. If shadow stacks are not enabled at the supervisor level, a #UD exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (S_CET.SH_STK_EN == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

temp_newSSP = PL0_SSP

IF (temp_newSSP is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool FAULT = FALSE

< start atomic section >

temp_Token = SSTK_READ_MEM.q [temp_newSSP] // fetch token with locked read

IF ((!64-bit mode) && (temp_token[63:32] != 0))
 FAULT=TRUE // address in token must be < 4GB
 // in legacy/compatibility mode
IF ((temp_Token AND 0x01) != 0)
 FAULT = TRUE // token busy bit must be 0
IF ((temp_Token AND ~x01) != temp_newSSP)
 FAULT = TRUE // address in token must match new SSP
IF (!FAULT)
 temp_Token = temp_Token OR 0x01 // if no faults, set token busy bit

SSTK_WRITE_MEM.q [temp_newSSP] = temp_Token // write token and unlock

< end atomic section >

IF (FAULT)
 EXCEPTION [#CP(SETSSBSY)]

SETSSBSY Set Shadow Stack Busy

Mnemonic Opcode Description

SETSSBSY F3 0F 01 E8 Validate token and set shadow stack busy bit

System Instruction Reference 453

24594—Rev. 3.32—March 2021 AMD64 Technology

ELSE
 SSP = temp_newSSP // if no faults, SSP = PL0_SSP

EXIT

Related Instructions

CLRSSBSY

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Opcode,
#UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X Shadow stacks not enabled at supervisor level.

General Protection,
#GP

X CPL ! = 0

X PL0_SSP MSR is not 8-byte aligned.

Control, #CP

X The shadow stack token is busy.

X The shadow stack token reserved bits are not 0.

X PL0_SSP MSR >4Gb when not in 64-bit mode.

X The new SSP in the token != PL0_SSP.

Page Fault, #PF
X PL0_SSP MSR is not a supervisor shadow stack page.

X A page fault resulted from the execution of the instruction.

454 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the global descriptor table register (GDTR) into the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode, it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SIDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SGDT Store Global Descriptor Table Register

Mnemonic Opcode Description

SGDT mem16:32 0F 01 /0 Store global descriptor table register to memory.

SGDT mem16:64 0F 01 /0 Store global descriptor table register to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

System Instruction Reference 455

24594—Rev. 3.32—March 2021 AMD64 Technology

Stores the interrupt descriptor table register (IDTR) in the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SGDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SIDT Store Interrupt Descriptor Table Register

Mnemonic Opcode Description

SIDT mem16:32 0F 01 /1 Store interrupt descriptor table register to memory.

SIDT mem16:64 0F 01 /1 Store interrupt descriptor table register to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

456 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Securely reinitializes the cpu, allowing for the startup of trusted software (such as a VMM). The code
to be executed after reinitialization can be verified based on a secure hash comparison. SKINIT takes
the physical base address of the SLB as its only input operand, in EAX. The SLB must be structured as
described in “Secure Loader Block” on page 499 of the AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, order# 24593, and is assumed to contain the code for a Secure Loader
(SL).

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Action
IF ((EFER.SVME == 0) && !(CPUID 8000_0001.ECX[SKINIT]) || (!PROTECTED_MODE))

 EXCEPTION [#UD] // This instruction can only be executed
 // in protected mode with SVM enabled.

IF (CPL != 0) // This instruction is only allowed at CPL 0.
 EXCEPTION [#GP]

Initialize processor state as for an INIT signal
CR0.PE = 1

CS.sel = 0x0008
CS.attr = 32-bit code, read/execute
CS.base = 0
CS.limit = 0xFFFFFFFF

SS.sel = 0x0010
SS.attr = 32-bit stack, read/write, expand up
SS.base = 0
SS.limit = 0xFFFFFFFF

EAX = EAX & 0xFFFF0000 // Form SLB base address.
EDX = family/model/stepping
ESP = EAX + 0x00010000 // Initial SL stack.
Clear GPRs other than EAX, EDX, ESP

EFER = 0
VM_CR.DPD = 1

SKINIT Secure Init and Jump with Attestation

Mnemonic Opcode Description

SKINIT EAX 0F 01 DE Secure initialization and jump, with attestation.

System Instruction Reference 457

24594—Rev. 3.32—March 2021 AMD64 Technology

VM_CR.R_INIT = 1
VM_CR.DIS_A20M = 1

Enable SL_DEV, to protect 64Kbyte of physical memory starting at
the physical address in EAX

GIF = 0

Read the SL length from offset 0x0002 in the SLB
Copy the SL image to the TPM for attestation

Read the SL entrypoint offset from offset 0x0000 in the SLB
Jump to the SL entrypoint, at EIP = EAX+entrypoint offset

Related Instructions

None.

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM-Lock is not available, as indicated by

CPUID Fn8000_000A_EDX[SVML] = 0.

• DEV is not available, as indicated by CPUID
Fn8000_0001_ECX[SKINIT] = 0.

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

458 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the local descriptor table (LDT) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on operand size.

If the destination operand is a memory location, the segment selector is written to memory as a 16-bit
value, regardless of operand size.

This SLDT instruction can only be used in protected mode, but it can be executed at any privilege
level.

Related Instructions

SIDT, SGDT, STR, LIDT, LGDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SLDT Store Local Descriptor Table Register

Mnemonic Opcode Description

SLDT reg16 0F 00 /0 Store the segment selector from the local
descriptor table register to a 16-bit register.

SLDT reg32 0F 00 /0 Store the segment selector from the local
descriptor table register to a 32-bit register.

SLDT reg64 0F 00 /0 Store the segment selector from the local
descriptor table register to a 64-bit register.

SLDT mem16 0F 00 /0
Store the segment selector from the local
descriptor table register to a 16-bit memory
location.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

System Instruction Reference 459

24594—Rev. 3.32—March 2021 AMD64 Technology

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

460 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the lower bits of the machine status word (CR0). The target can be a 16-, 32-, or 64-bit register
or a 16-bit memory operand.

This instruction is provided for compatibility with early processors.

This instruction can be used at any privilege level (CPL).

Related Instructions

LMSW, MOV CRn

rFLAGS Affected

None

Exceptions

SMSW Store Machine Status Word

Mnemonic Opcode Description

SMSW reg16 0F 01 /4 Store the low 16 bits of CR0 to a 16-bit register.

SMSW reg32 0F 01 /4 Store the low 32 bits of CR0 to a 32-bit register.

SMSW reg64 0F 01 /4 Store the entire 64-bit CR0 to a 64-bit register.

SMSW mem16 0F 01 /4 Store the low 16 bits of CR0 to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

System Instruction Reference 461

24594—Rev. 3.32—March 2021 AMD64 Technology

Sets the Alignment Check flag in the rFLAGS register to one. Support for the STAC instruction is
indicated by CPUID Fn07_EBX[20] =1. For more information on using the CPUID instruction, see
the description of the CPUID instruction on page 160.

rFLAGS Affected

Exceptions

STAC Set Alignment Check Flag

Mnemonic Opcode Description

STAC 0F 01 CB Sets the AC flag

Related Instructions

CLAC

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID

X Instruction is not supported in virtual mode

X Lock prefix (F0h) preceding opcode.

X CPL was not 0

462 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the interrupt flag (IF) in the rFLAGS register to 1, thereby allowing external interrupts received
on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not affected by
this instruction.

In real mode, this instruction sets IF to 1.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction sets IF to 1.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled
(CR4.PVI = 1), then the instruction instead sets rFLAGS.VIF to 1. If none of these conditions apply,
the processor raises a general protection exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the STI instruction instead sets the virtual interrupt flag (rFLAGS.VIF) to 1.

If STI sets the IF flag and IF was initially clear, then interrupts are not enabled until after the
instruction following STI. Thus, if IF is 0, this code will not allow an INTR to happen:

STI
CLI

In the following sequence, INTR will be allowed to happen only after the NOP.

STI
NOP
CLI

If STI sets the VIF flag and VIP is already set, a #GP fault will be generated.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

STI Set Interrupt Flag

Mnemonic Opcode Description

STI FB Set interrupt flag (IF) to 1.

System Instruction Reference 463

24594—Rev. 3.32—March 2021 AMD64 Technology

Action

IF (CPL <= IOPL)
 RFLAGS.IF = 1

ELSIF (((VIRTUAL_MODE) && (CR4.VME == 1))
 || ((PROTECTED_MODE) && (CR4.PVI == 1) && (CPL == 3)))
 {
 IF (RFLAGS.VIP == 1)
 EXCEPTION[#GP(0)]
 RFLAGS.VIF = 1
 }
ELSE
 EXCEPTION[#GP(0)]

Related Instructions

CLI

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. M (modified) is either set to one or cleared to zero. Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual-mode
extensions were not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected-mode virtual interrupts were not enabled
(CR4.PVI = 0).

X X This instruction would set RFLAGS.VIF to 1 and
RFLAGS.VIP was already 1.

464 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the global interrupt flag (GIF) to 1. While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine (SVM) instruction.

Attempted execution of this instruction causes a #UD exception if SVM is not enabled and neither
SVM Lock nor the device exclusion vector (DEV) are supported. Support for SVM Lock is indicated
by CPUID Fn8000_000A_EDX[SVML] = 1. Support for DEV is part of the SKINIT architecture and
is indicated by CPUID Fn8000_0001_ECX[SKINIT] = 1. For more information on using the CPUID
instruction, see the description of the CPUID instruction on page 160.

For information on enabling SVM, see “Enabling SVM” in AMD64 Architecture Programmer’s
Manual Volume-2: System Instructions, order# 24593.

Related Instructions

CLGI

rFLAGS Affected

None.

Exceptions

STGI Set Global Interrupt Flag

Mnemonic Opcode Description

STGI 0F 01 DC Sets the global interrupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM Lock is not available, as indicated by

CPUID Fn8000_000A_EDX[SVML] = 0.

• DEV is not available, as indicated by
CPUID Fn8000_0001_ECX[SKINIT] = 0.

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

System Instruction Reference 465

24594—Rev. 3.32—March 2021 AMD64 Technology

Stores the task register (TR) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on the operand size.

If the destination is a memory location, the segment selector is written to memory as a 16-bit value,
regardless of operand size.

The STR instruction can only be used in protected mode, but it can be used at any privilege level.

Related Instructions

LGDT, LIDT, LLDT, LTR, SIDT, SGDT, SLDT

rFLAGS Affected

None

Exceptions

STR Store Task Register

Mnemonic Opcode Description

STR reg16 0F 00 /1 Store the segment selector from the task register to a 16-bit
general-purpose register.

STR reg32 0F 00 /1 Store the segment selector from the task register to a 32-bit
general-purpose register.

STR reg64 0F 00 /1 Store the segment selector from the task register to a 64-bit
general-purpose register.

STR mem16 0F 00 /1 Store the segment selector from the task register to a 16-bit
memory location.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

466 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Provides a fast method for system software to load a pointer to system data structures. SWAPGS can
be used upon entering system-software routines as a result of a SYSCALL instruction, an interrupt or
an exception. Prior to returning to application software, SWAPGS can be used to restore the
application data pointer that was replaced by the system data-structure pointer.

This instruction can only be executed in 64-bit mode. Executing SWAPGS in any other mode
generates an undefined opcode exception.

The SWAPGS instruction only exchanges the base-address value located in the KernelGSbase model-
specific register (MSR address C000_0102h) with the base-address value located in the hidden-
portion of the GS selector register (GS.base). This allows the system-kernel software to access kernel
data structures by using the GS segment-override prefix during memory references.

The address stored in the KernelGSbase MSR must be in canonical form. The WRMSR instruction
used to load the KernelGSbase MSR causes a general-protection exception if the address loaded is not
in canonical form. The SWAPGS instruction itself does not perform a canonical check.

This instruction is only valid in 64-bit mode at CPL 0. A general protection exception (#GP) is
generated if this instruction is executed at any other privilege level.

For additional information about this instruction, refer to “System Instructions” in Volume 2.

Examples

At a kernel entry point, the OS uses SwapGS to obtain a pointer to kernel data structures and
simultaneously save the user's GS base. Upon exit, it uses SwapGS to restore the user's GS base:

SystemCallEntryPoint:
SwapGS ; get kernel pointer, save user GSbase
mov gs:[SavedUserRSP], rsp ; save user's stack pointer
mov rsp, gs:[KernelStackPtr] ; set up kernel stack
push rax ; now save user GPRs on kernel stack
 . ; perform system service
 .
SwapGS ; restore user GS, save kernel pointer

Related Instructions

None

rFLAGS Affected

None

SWAPGS Swap GS Register with KernelGSbase MSR

Mnemonic Opcode Description

SWAPGS 0F 01 F8 Exchange GS base with KernelGSBase MSR.
(Invalid in legacy and compatibility modes.)

System Instruction Reference 467

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X This instruction was executed in legacy or
compatibility mode.

General protection, #GP X CPL was not 0.

468 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions, which assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes considerably fewer clock cycles than the CALL FAR /RET
FAR instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 3 to a new privilege level of 0. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSCALL sets the CPL to 0, regardless of the values of bits 33:32 of the STAR register. There are no
permission checks based on the CPL, real mode, or virtual-8086 mode. SYSCALL and SYSRET must
be enabled by setting EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

Legacy x86 Mode. In legacy x86 mode, when SYSCALL is executed, the EIP of the instruction
following the SYSCALL is copied into the ECX register. Bits 31:0 of the SYSCALL/SYSRET target
address register (STAR) are copied into the EIP register. (The STAR register is model-specific register
C000_0081h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS register.

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

SYSCALL Fast System Call

System Instruction Reference 469

24594—Rev. 3.32—March 2021 AMD64 Technology

Long Mode. When long mode is activated, the behavior of the SYSCALL instruction depends on
whether the calling software is in 64-bit mode or compatibility mode. In 64-bit mode, SYSCALL
saves the RIP of the instruction following the SYSCALL into RCX and loads the new RIP from
LSTAR bits 63:0. (The LSTAR register is model-specific register C000_0082h.) In compatibility
mode, SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the
new RIP from CSTAR bits 63:0. (The CSTAR register is model-specific register C000_0083h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS register.

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 64-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 64-bit stack referenced by
RSP.

The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If an RIP written
by WRMSR is not in canonical form, a general-protection exception (#GP) occurs.

How SYSCALL and SYSRET handle rFLAGS, depends on the processor’s operating mode.

In legacy mode, SYSCALL treats EFLAGS as follows:

• EFLAGS.IF is cleared to 0.

• EFLAGS.RF is cleared to 0.

• EFLAGS.VM is cleared to 0.

In long mode, SYSCALL treats RFLAGS as follows:

• The current value of RFLAGS is saved in R11.

• RFLAGS is masked using the value stored in SYSCALL_FLAG_MASK.

• RFLAGS.RF is cleared to 0.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, CSTAR, and SYSCALL_FLAG_MASK), see “Fast System Call and Return” in
Volume 2.

Support for the SYSCALL instruction is indicated by CPUID Fn8000_0001_EDX[SysCallSysRet] =
1. For more information on using the CPUID instruction, see the description of the CPUID instruction
on page 160.

470 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Instruction Encoding

Action
// See “Pseudocode Definition” on page 57.

SYSCALL_START:

 IF (MSR_EFER.SCE == 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF (LONG_MODE)
 SYSCALL_LONG_MODE
 ELSE // (LEGACY_MODE)
 SYSCALL_LEGACY_MODE

SYSCALL_LONG_MODE:

 RCX.q = next_RIP
 R11.q = RFLAGS // with rf cleared

 IF (64BIT_MODE)
 temp_RIP.q = MSR_LSTAR
 ELSE // (COMPATIBILITY_MODE)
 temp_RIP.q = MSR_CSTAR

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 64-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS = RFLAGS AND ~MSR_SFMASK
 RFLAGS.RF = 0

 IF (ShadowStacksEnabled at current CPL)
PL3_SSP = SSP

 CPL = 0

 IF (ShadowStacksEnabled at current CPL)
SSP = 0

Mnemonic Opcode Description

SYSCALL 0F 05 Call operating system.

System Instruction Reference 471

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT

SYSCALL_LEGACY_MODE:

 RCX.d = next_RIP

 temp_RIP.d = MSR_STAR.EIP

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 32-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS.VM,IF,RF=0

 CPL = 0

 RIP = temp_RIP
 EXIT

Related Instructions

SYSRET, SYSENTER, SYSEXIT

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by CPUID
Fn8000_0001_EDX[SysCallSysRet] = 0.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

472 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model. This instruction is valid only in
legacy mode.

Three model-specific registers (MSRs) are used to specify the target address and stack pointers for the
SYSENTER instruction, as well as the CS and SS selectors of the called and returned procedures:

• MSR_SYSENTER_CS: Contains the CS selector of the called procedure. The SS selector is set to
MSR_SYSENTER_CS + 8.

• MSR_SYSENTER_ESP: Contains the called procedure’s stack pointer.

• MSR_SYSENTER_EIP: Contains the offset into the CS of the called procedure.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 CALL instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The return EIP and application stack are not saved by this instruction. System software must explicitly
save that information.

An invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSCALL (and SYSRET) instructions in long mode. If SYSENTER is used in real mode, a #GP is
raised.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Support for the SYSENTER instruction is indicated by CPUID Fn0000_0001_EDX[SysEnterSysExit]
= 1. For more information on using the CPUID instruction, see the description of the CPUID
instruction on page 160.

Instruction Encoding

SYSENTER System Call

Mnemonic Opcode Description

SYSENTER 0F 34 Call operating system.

System Instruction Reference 473

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SYSCALL, SYSEXIT, SYSRET

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_EDX[SysEnterSysExit] = 0.

X This instruction is not recognized in long mode.

General protection, #GP
X This instruction is not recognized in real mode.

X X MSR_SYSENTER_CS was a null selector.

474 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat-segment memory model.

This is a privileged instruction. The current privilege level must be zero to execute this instruction. An
invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSRET (and SYSCALL) instructions when running in long mode.

When a system procedure performs a SYSEXIT back to application software, the CS selector is
updated to point to the second descriptor entry after the SYSENTER CS value (MSR
SYSENTER_CS+16). The SS selector is updated to point to the third descriptor entry after the
SYSENTER CS value (MSR SYSENTER_CS+24). The CPL is forced to 3, as are the descriptor
privilege levels.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to 32-bit read/execute at CPL 3.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The following additional actions result from executing SYSEXIT:

• EIP is loaded from EDX.

• ESP is loaded from ECX.

System software must explicitly load the return address and application software-stack pointer into the
EDX and ECX registers prior to executing SYSEXIT.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Support for the SYSEXIT instruction is indicated by CPUID Fn0000_0001_EDX[SysEnterSysExit] =
1. For more information on using the CPUID instruction, see the description of the CPUID instruction
on page 160.

SYSEXIT System Return

System Instruction Reference 475

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

Related Instructions

SYSCALL, SYSENTER, SYSRET

rFLAGS Affected

Exceptions

Mnemonic Opcode Description

SYSEXIT 0F 35 Return from operating system to application.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_EDX[SysEnterSysExit] = 0.

X This instruction is not recognized in long mode.

General protection, #GP

X X This instruction is only recognized in protected
mode.

X CPL was not 0.

X MSR_SYSENTER_CS was a null selector.

476 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat segmentation memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions that assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes substantially fewer internal clock cycles when compared to
the CALL/RET instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 0 to a new privilege level of 3. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSRET sets the CPL to 3, regardless of the values of bits 49:48 of the star register. SYSRET can only
be executed in protected mode at CPL 0. SYSCALL and SYSRET must be enabled by setting
EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

When a system procedure performs a SYSRET back to application software, the CS selector is
updated from bits 63:50 of the STAR register (STAR.SYSRET_CS) as follows:

• If the return is to 32-bit mode (legacy or compatibility), CS is updated with the value of
STAR.SYSRET_CS.

• If the return is to 64-bit mode, CS is updated with the value of STAR.SYSRET_CS + 16.

In both cases, the CPL is forced to 3, effectively ignoring STAR bits 49:48. The SS selector is updated
to point to the next descriptor-table entry after the CS descriptor (STAR.SYSRET_CS + 8), and its
RPL is not forced to 3.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS base value is forced to 0.

• The CS limit value is forced to 4 Gbytes.

SYSRET Fast System Return

System Instruction Reference 477

24594—Rev. 3.32—March 2021 AMD64 Technology

• The CS segment attributes are set to execute-read 32 bits or 64 bits (see below).

• The SS segment base, limit, and attributes are not modified.

When SYSCALLed system software is running in 64-bit mode, it has been entered from either 64-bit
mode or compatibility mode. The corresponding SYSRET needs to know the mode to which it must
return. Executing SYSRET in non-64-bit mode or with a 16- or 32-bit operand size returns to 32-bit
mode with a 32-bit stack pointer. Executing SYSRET in 64-bit mode with a 64-bit operand size returns
to 64-bit mode with a 64-bit stack pointer.

The instruction pointer is updated with the return address based on the operating mode in which
SYSRET is executed:

• If returning to 64-bit mode, SYSRET loads RIP with the value of RCX.

• If returning to 32-bit mode, SYSRET loads EIP with the value of ECX.

How SYSRET handles RFLAGS depends on the processor’s operating mode:

• If executed in 64-bit mode, SYSRET loads the lower-32 RFLAGS bits from R11[31:0] and clears
the upper 32 RFLAGS bits.

• If executed in legacy mode or compatibility mode, SYSRET sets EFLAGS.IF.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, and CSTAR), see “Fast System Call and Return” in Volume 2.

Support for the SYSRET instruction is indicated by CPUID Fn8000_0001_EDX[SysCallSysRet] = 1.
For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Action
// See “Pseudocode Definition” on page 57.

SYSRET_START:

 IF (MSR_EFER.SCE == 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF ((!PROTECTED_MODE) || (CPL != 0))
 EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0

 IF (64BIT_MODE)
 SYSRET_64BIT_MODE
 ELSE // (!64BIT_MODE)

Mnemonic Opcode Description

SYSRET 0F 07 Return from operating system.

478 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 SYSRET_NON_64BIT_MODE

SYSRET_64BIT_MODE:

 IF (OPERAND_SIZE == 64) // Return to 64-bit mode.
 {
 CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 64-bit code,dpl3

 temp_RIP.q = RCX
 }
 ELSE // Return to 32-bit compatibility mode.
 {
 CS.sel = MSR_STAR.SYSRET_CS OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 32-bit code,dpl3

 temp_RIP.d = RCX
 }

 SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
 // SS base, limit, attributes unchanged.

 RFLAGS.q = R11 // RF=0,VM=0
 CPL = 3

 IF (ShadowStacksEnabled at current CPL)
 SSP = PL3_SSP

 RIP = temp_RIP
 EXIT

SYSRET_NON_64BIT_MODE:

CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3

temp_RIP.d = RCX

SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
 // SS base, limit, attributes unchanged.

RFLAGS.IF = 1
CPL = 3

 IF (ShadowStacksEnabled at current CPL)
 SSP = PL3_SSP

System Instruction Reference 479

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT

Related Instructions

SYSCALL, SYSENTER, SYSEXIT

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by CPUID
Fn8000_0001_EDX[SysCallSysRet] = 0.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

General protection, #GP
X X This instruction is only recognized in protected

mode.

X CPL was not 0.

480 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

TLBSYNC acts as a synchronizing instruction to guarantee that all logical processors in a system have
responded to an INVLPGB previously executed by the current logical processor. Upon execution of an
INVLPGB, the processor does not wait for confirmation that the other processors have performed the
specified TLB invalidation. A TLBSYNC is therefore required before software can move forward
with the knowledge that all requested invalidations have been completed in the system.

The TLBSYNC instruction is weakly ordered with respect to data and instruction prefetches.

The TLBSYNC instruction is strongly ordered with respect to surrounding loads and stores.

TLBSYNC is a serializing instruction and is privileged. It can only be executed at CPL 0. TLBSYNC
is only supported in guests if enabled by hypervisor in the VMCB.

Related Instructions

INVLPGB

rFLAGS Affected

None

Exceptions

TLBSYNC Synchronize TLB Invalidations

Mnemonic Opcode Description

TLBSYNC 0F 01 FF Synchronize broadcasted TLB Invalidations

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X Instruction not supported as indicated by CPUID
Fn8000_0008_EBX[INVLPGB] = 0

X X Instruction is only recognized in protected mode

X The hypervisor has not enabled Guest usage of this
instruction.

General protection,
#GP X CPL was not zero

System Instruction Reference 481

24594—Rev. 3.32—March 2021 AMD64 Technology

Verifies whether a code or data segment specified by the segment selector in the 16-bit register or
memory operand is readable from the current privilege level. The zero flag (ZF) is set to 1 if the
specified segment is readable. Otherwise, ZF is cleared.

A segment is readable if all of the following apply:

• the selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the segment is a data segment or readable code segment.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

The processor does not recognize the VERR instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERW

rFLAGS Affected

Exceptions

VERR Verify Segment for Reads

Mnemonic Opcode Description

VERR reg/mem16 0F 00 /4 Set the zero flag (ZF) to 1 if the segment
selected can be read.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or is
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

482 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

System Instruction Reference 483

24594—Rev. 3.32—March 2021 AMD64 Technology

Verifies whether a data segment specified by the segment selector in the 16-bit register or memory
operand is writable from the current privilege level. The zero flag (ZF) is set to 1 if the specified
segment is writable. Otherwise, ZF is cleared.

A segment is writable if all of the following apply:

• the selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the segment is a writable data segment.

• the descriptor DPL is greater than or equal to both the CPL and RPL.

The processor does not recognize the VERW instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERR

rFLAGS Affected

Exceptions

VERW Verify Segment for Write

Mnemonic Opcode Description

VERW reg/mem16 0F 00 /5 Set the zero flag (ZF) to 1 if the segment
selected can be written.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to access memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

484 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads a subset of processor state from the VMCB specified by the system-physical address in the rAX
register. The portion of RAX used to form the address is determined by the effective address size.

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Load from a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMSAVE

rFLAGS Affected

None.

VMLOAD Load State from VMCB

Mnemonic Opcode Description

VMLOAD rAX 0F 01 DA Load additional state from VMCB.

System Instruction Reference 485

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

486 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

VMMCALL and VMGEXIT provide a mechanism for a non-SEV-ES and an SEV-ES guest,
respectively, to explicitly communicate with the VMM by generating a #VMEXIT.

A non-intercepted VMMCALL unconditionally raises a #UD exception. VMGEXIT is always
intercepted and unconditionally causes a #VMEXIT.

VMMCALL and VMGEXIT instructions are allowed in all modes and at all privilege levels. These
instructions generate a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

VMMCALL and VMGEXIT are Secure Virtual Machine (SVM) instructions. Support for the SVM
architecture and the SVM instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. Support
for VMGEXIT instruction is indicated by CPUID Fn8000_001F_EAX[SEV-ES] = 1. The VMGEXIT
encoding is interpreted as VMMCALL on processors that do not explicitly support VMGEXIT,
including legacy processors, or if VMGEXIT instruction is not executed by an SEV-ES guest. For
more information on using the CPUID instruction, see the reference page for the CPUID instruction on
page 160.

Related Instructions

None.

rFLAGS Affected

None.

Exceptions

VMMCALL Call VMM
VMGEXIT SEV-ES Exit to VMM

Mnemonic Opcode Description

VMMCALL 0F 01 D9 Explicit communication with the VMM.

VMGEXIT F2/F3 0F 01 D9 Explicit communication with the VMM for SEV-ES
VMs.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X X X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X X VMMCALL was not intercepted.

System Instruction Reference 487

24594—Rev. 3.32—March 2021 AMD64 Technology

Starts execution of a guest instruction stream. The physical address of the virtual machine control
block (VMCB) describing the guest is taken from the rAX register (the portion of RAX used to form
the address is determined by the effective address size). The physical address of the VMCB must be
aligned on a 4KB boundary.

VMRUN saves a subset of host processor state to the host state-save area specified by the physical
address in the VM_HSAVE_PA MSR. VMRUN then loads guest processor state (and control
information) from the VMCB at the physical address specified in rAX. The processor then executes
guest instructions until one of several intercept events (specified in the VMCB) is triggered. When an
intercept event occurs, the processor stores a snapshot of the guest state back into the VMCB, reloads
the host state, and continues execution of host code at the instruction following the VMRUN
instruction.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

The VMRUN instruction is not supported in System Management Mode. Processor behavior resulting
from an attempt to execute this instruction from within the SMM handler is undefined.

Instruction Encoding

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported physical address)
 EXCEPTION [#GP]

IF (intercepted(VMRUN))
 #VMEXIT (VMRUN)
remember VMCB address (delivered in rAX) for next #VMEXIT
save host state to physical memory indicated in the VM_HSAVE_PA MSR:

ES.sel
CS.sel
SS.sel

VMRUN Run Virtual Machine

Mnemonic Opcode Description

VMRUN rAX 0F 01 D8 Performs a world-switch to guest.

488 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

DS.sel
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR4
CR3
// host CR2 is not saved
RFLAGS
RIP
RSP
RAX

from the VMCB at physical address rAX, load control information:
 intercept vector
 TSC_OFFSET
 interrupt control (v_irq, v_intr_*, v_tpr)
 EVENTINJ field
 ASID

IF(nested paging supported)
 NP_ENABLE
 IF (NP_ENABLE == 1)

 nCR3

from the VMCB at physical address rAX, load guest state:
 ES.{base,limit,attr,sel}
 CS.{base,limit,attr,sel}
 SS.{base,limit,attr,sel}
 DS.{base,limit,attr,sel}
 GDTR.{base,limit}
 IDTR.{base,limit}
 EFER
 CR0
 CR4
 CR3
 CR2

IF (NP_ENABLE == 1)
 gPAT // Leaves host hPAT register unchanged.

 RFLAGS
 RIP
 RSP
 RAX
 DR7
 DR6
 CPL // 0 for real mode, 3 for v86 mode, else as loaded.

INTERRUPT_SHADOW

IF (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 IF (LBR_VIRTUALIZATION_ENABLE == 1)

System Instruction Reference 489

24594—Rev. 3.32—March 2021 AMD64 Technology

 save LBR state to the host save area
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO
 load LBR state from the VMCB
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

IF (guest state consistency checks fail)
 #VMEXIT(INVALID)

Execute command stored in TLB_CONTROL.

GIF = 1 // allow interrupts in the guest
IF (EVENTINJ.V)

cause exception/interrupt in guest
else

jump to first guest instruction

Upon #VMEXIT, the processor performs the following actions in order to return to the host execution
context:

GIF = 0
save guest state to VMCB:

ES.{base,limit,attr,sel}
CS.{base,limit,attr,sel}
SS.{base,limit,attr,sel}
DS.{base,limit,attr,sel}
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR4
CR3
CR2
CR0
if (nested paging enabled)
 gPAT
RFLAGS
RIP
RSP
RAX
DR7
DR6
CPL
INTERRUPT_SHADOW

save additional state and intercept information:
V_IRQ, V_TPR

490 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EXITCODE
EXITINFO1
EXITINFO2
EXITINTINFO

clear EVENTINJ field in VMCB

prepare for host mode by clearing internal processor state bits:
clear intercepts
clear v_irq
clear v_intr_masking
clear tsc_offset
disable nested paging
clear ASID to zero

reload host state
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR0.PE = 1 // saved copy of CR0.PE is ignored
CR4
CR3
if (host is in PAE paging mode)

 reloaded host PDPEs
// Do not reload host CR2 or PAT
RFLAGS
RIP
RSP
RAX
DR7 = “all disabled”
CPL = 0
ES.sel; reload segment descriptor from GDT
CS.sel; reload segment descriptor from GDT
SS.sel; reload segment descriptor from GDT
DS.sel; reload segment descriptor from GDT

if (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 if (LBR_VIRTUALIZATION_ENABLE == 1)
 save LBR state to the VMCB:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO
 load LBR state from the host save area:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

System Instruction Reference 491

24594—Rev. 3.32—March 2021 AMD64 Technology

if (illegal host state loaded, or exception while loading host state)
shutdown

else
execute first host instruction following the VMRUN

Related Instructions

VMLOAD, VMSAVE.

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

492 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores a subset of the processor state into the VMCB specified by the system-physical address in the
rAX register (the portion of RAX used to form the address is determined by the effective address size).

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Instruction Encoding

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Store to a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMLOAD

rFLAGS Affected

None.

VMSAVE Save State to VMCB

Mnemonic Opcode Description

VMSAVE rAX 0F 01 DB Save additional guest state to VMCB.

System Instruction Reference 493

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

494 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

WBINVD writes all modified lines in all levels of cache associated with this processor to main
memory and invalidates the caches. This may or may not include lower level caches associated with
another processor that shares any level of this processor's cache hierarchy. WBNOINVD does not
invalidate the caches, instead leaving all (or most) cache lines in the cache hierarchy in non-modified
state, but in all other respects it behaves the same as WBINVD.

CPUID Fn8000_001D_EDX[WBINVD]_xN indicates the behavior of the operation at various levels
of the cache hierarchy, for both WBINVD and WBNOINVD, with respect to lower branches in the
cache hierarchy. If the feature bit is 0, the instruction causes the write back and (for WBINVD)
invalidation of all lower level caches of other processors sharing the designated level of cache. If the
feature bit is 1, the instruction does not necessarily cause the write back and invalidation of all lower
level caches of other processors sharing the designated level of cache. See Appendix E, “Obtaining
Processor Information Via the CPUID Instruction,” on page 597 for more information on using the
CPUID function.

The INVD instruction can be used when cache coherence with memory is not important.

These instructions do not invalidate TLB caches.

These are privileged instructions. The current privilege level of a procedure invalidating the
processor’s internal caches must be zero.

WBINVD and WBNOINVD are serializing instructions

Support for WBNOINVD is indicated by CPUID Fn8000_0008_EBX[WBNOINVD] = 1. However,
the encoding of WBNOINVD results in it being interpreted as WBINVD on processors that do not
explicitly support WBNOINVD, including legacy processors. For more information on using the
CPUID instruction, see the description of the CPUID instruction on page 160.

On some processor implementations, WBINVD and WBNOINVD can be made interruptible by
setting EFER.INTWB to 1. When this bit is set, the processor periodically checks for all types of
interrupts (SMI, INTR, NMI, etc.) while flushing the caches. If an interrupt is observed, the processor
stops flushing the caches, saves the instruction pointer and transfers control to the interrupt handler.
Upon returning (via an IRET), the processor restarts the flush process from the beginning as lines will
have been modified and cached while executing the interrupt handler. Support for setting
EFER.INTWB is indicated by CPUID Fn8008_0008_EBX[INT_WBINVD] (bit 13) = 1.

WBINVD Writeback and Invalidate Caches
WBNOINVD Writeback With No Invalidate

Mnemonic Opcode Description

WBINVD 0F 09 Write modified cache lines to main memory, invalidate
internal caches, and trigger external cache flushes.

WBNOINVD F3 0F 09 Write modified cache lines to main memory and trigger
external cache flushes.

System Instruction Reference 495

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

CLFLUSH, CLWB, INVD

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

496 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes data to 64-bit model-specific registers (MSRs). These registers are widely used in
performance-monitoring and debugging applications, as well as testability and program execution
tracing.

This instruction writes the contents of the EDX:EAX register pair into a 64-bit model-specific register
specified in the ECX register. The 32 bits in the EDX register are mapped into the high-order bits of
the model-specific register and the 32 bits in EAX form the low-order 32 bits.

This instruction must be executed at a privilege level of 0 or a general protection fault #GP(0) will be
raised. This exception is also generated if an attempt is made to specify a reserved or unimplemented
model-specific register in ECX.

WRMSR is a serializing instruction for most MSRs, however some x2APIC and AVIC MSRs may
have relaxed serialization semantics. See the APIC and AVIC sections in volume 2 for details.

Support for the WRMSR instruction is indicated by CPUID Fn0000_0001_EDX[MSR] = 1 OR
CPUID Fn8000_0001_EDX[MSR] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

The CPUID instruction can provide model information useful in determining the existence of a
particular MSR.

See “Model-Specific Registers (MSRs)” in Volume 2: System Programming, for more information
about model-specific registers, machine check architecture, performance monitoring and debug
registers.

Related Instructions

RDMSR

rFLAGS Affected

None

WRMSR Write to Model-Specific Register

Mnemonic Opcode Description

WRMSR 0F 30 Write EDX:EAX to the MSR specified by ECX.

System Instruction Reference 497

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

The WRMSR instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[MSR] = 0 OR CPUID
Fn8000_0001_EDX[MSR] = 0.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

X X Writing 1 to any bit that must be zero (MBZ) in the MSR.

X X Writing a non-canonical value to a MSR that can only be
written with canonical values.

498 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes the contents of the 32-bit Protection Key Rights (PKRU) register with the value in EAX. This
instruction forces strong memory ordering between load and store instructions preceding the
WRPKRU, and load and store instructions that follow the WRPKRU.

This instruction must be executed with ECX=0 and EDX=0, otherwise a general protection fault
(#GP) is generated. The upper 32 bits of RCX and RDX are ignored. The WRPKRU instruction
ignores operand size overrides.

Memory protection keys must be enabled (CR4.PKE=1), otherwise executing this instruction
generates an invalid opcode fault (#UD).

Software can check that system software has enabled memory protection keys (CR4.PKE=1) by
testing CPUID Function 0000_0007h_ECX[OSPKE]. (See Section 5, “Protection Key Rights for
User Pages” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
memory protection keys.)

WRPKRU can be executed at any privilege level.

Related Instructions

RDPKRU

rFLAGS Affected

None

Exceptions

WRPKRU Write Protection Key Rights

Mnemonic Opcode Description

WRPKRU 0F 01 EF Write the value in EAX to the PKRU MSR

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X CR4.PKE=0

General protection,
#GP X ECX was not zero or EDX was not zero

System Instruction Reference 499

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes 4 or 8 bytes from the source register operand to the specified address in a shadow stack page.
The operand size is 8 bytes in 64-bit mode (when REX.W set to 1) and 4 bytes in all other cases.

If shadow stacks are not enabled at the current privilege level, or if WRSS is not enabled at the current
privilege level a #UD exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CPL == 3)
 {
 IF ((CR4.CET && U_CET.SH_STK_EN) == 0)
 EXCEPTION [#UD]
 IF (U_CET.WR_SSTK_EN == 0)
 EXCEPTION [#UD] // WRSS not enabled in U_CET
 }
ELSE // CPL <3
 {
 IF ((CR4.CET && S_CET.SH_STK_EN) == 0)
 EXCEPTION [#UD]
 IF (S_CET.WR_SSTK_EN == 0)
 EXCEPTION [#UD] // WRSS not enabled in S_CET
 }

IF (OPERAND_SIZE == 64)
 {
 temp_LinAdr = Linear_Address(mem64)
 IF (temp_LinAdr is 8-byte aligned)
 SSTK_WRITE_MEM.q[temp_LinAdr] = reg64[63:0] // write reg64

// to shadow stack
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 {
 temp_LinAdr = Linear_Address(mem32)
 IF (tmp_LinAdr is 4-byte aligned)
 SSTK_WRITE_MEM.d[temp_LinAdr] = reg32[31:0] // write reg32

// to shadow stack
 ELSE
 EXCEPTION [#GP(0)]
 }

WRSS Write to Shadow Stack

Mnemonic Opcode Description

WRSS mem32, reg32 66 0F 38 F6 Write 4 bytes to shadow stack at mem32

WRSSQ mem64, reg64 66 0F 38 F6 Write 8 bytes to shadow stack at mem64

500 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EXIT

Related Instructions

WRUSS

rFLAGS Affected

None

System Instruction Reference 501

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X Shadow stacks are not enabled at the current privilege
level.

X If CPL == 3 and U_CET.WR_SHSTK_EN = 0.

X If CPL !=3 and S_CET.WR_SHSTK_EN = 0.

X If mod=11b (register destination was specified).

General protection,
#GP

X Address not 8-byte aligned for 64-bit operand size.

X Address not 4-byte aligned for 32-bit operand size.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

Page fault, #PF
X A page fault resulted from the execution of the instruction.

X The destination was not a shadow stack page.

502 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes 4 or 8 bytes from the source register operand to the specified address in a user shadow stack
page. The write is performed with user-mode shadow stack semantics. The operand size is 8 bytes in
64-bit mode (when REX.W set to 1) and 4 bytes in all other cases.

The destination must be a user shadow stack page, otherwise a #PF exception is generated. WRUSS is
a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

IF (OPERAND_SIZE == 64)
 {
 temp_LinAdr = Linear_Address(mem64)
 IF (temp_LinAdr is 8-byte aligned)
 SSTK_WRITE_MEM.q[tmp_LinAdr] = reg64[63:0] // write as user access
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 {
 temp_LinAdr = Linear_Address(mem32)
 IF (tmp_LinAdr is 4-byte aligned)
 SSTK_WRITE_MEM.d[temp_LinAdr] = reg32[31:0] // write as user access
 ELSE
 EXCEPTION [#GP(0)]
 }

EXIT

Related Instructions

WRSS

rFLAGS Affected

None

WRUSS Write to User Shadow Stack

Mnemonic Opcode Description

WRUSSD mem32, reg32 66 0F 38 F5 Write 4 bytes to user shadow stack

WRUSSQ mem64, reg64 66 0F 38 F5 Write 8 bytes to user shadow stack

System Instruction Reference 503

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X If mod=11b (register destination was specified).

General protection,
#GP

X If CPL ! = 0.

X Address not 8-byte aligned for 64-bit operand size.

X Address not 4-byte aligned for 32-bit operand size.

X A memory address exceeded a data segment limit .

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

Page fault, #PF
X The linear address is not a user shadow stack page.

X A page fault resulted from the execution of the instruction.

504 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Opcode and Operand Encodings 505

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix A Opcode and Operand Encodings

This appendix specifies the opcode and operand encodings for each instruction in the AMD64
instruction set. As discussed in Chapter 1, “Instruction Encoding,” the basic operation and implied
operand type(s) of an instruction are encoded by the binary value of the opcode byte. The
correspondence between an opcode binary value and its meaning is provided by the opcode map.

Each opcode map has 256 entries and can encode up to 256 different operations. Since the AMD64
instruction set comprises more than 256 instructions, multiple opcode maps are utilized to encode the
instruction set. A particular opcode map is selected using the instruction encoding syntax diagrammed
in Figure 1-1 on page 2. For each opcode map, values may be reserved or utilized for purposes other
than encoding an instruction operation.

To preserve compatibility with future instruction architectural extensions, reserved opcodes should not
be used. If a means to reliably cause an invalid-opcode exception (#UD) is required, software should
use one of the UDx opcodes. These opcodes are set aside for this purpose and will not be used for
future instructions. The UD opcodes are located on the secondary opcode map at code points B9h,
0Bh, and FFh.

The following section provides a key to the notation used in the opcode maps to specify the implied
operand types.

Opcode-Syntax Notation

In the opcode maps which follow, each table entry represents a specific form of an instruction,
identifying the instruction by its mnemonic and listing the operand or operands peculiar to that
opcode. If a register-based operand is specified by the opcode itself, the operand is represented directly
using the register mnemonic as defined in “Summary of Registers and Data Types” on page 38. If the
operand is encoded in one or more bytes following the opcode byte, the following special notation is
used to represent the operand and its encoding in more generic terms.

This special notation, used exclusively in the opcode maps, is composed of three parts:

• an initial capital letter that represents the operand source / destination (register-based, memory-
based, or immediate) and how it is encoded in the instruction (either as an immediate, or via the
ModRM.reg, ModRM.{mod,r/m}, or VEX/XOP.vvvv fields). For register-based operands, the
inital letter also specifies the register type (General-purpose, MMX, YMM/XMM, debug, or
control register).

• one, two, or three letter modifier (in lowercase) that represents the data type (for example, byte,
word, quadword, packed single-precision floating-point vector).

• x, which indicates for an SSE instruction that the instruction supports both vector sizes (128 bits
and 256 bits). The specific vector size is encoded in the VEX/XOP.L field. L=0 indicates 128 bits
and L=1 indicates 256 bits.

506 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

The following list describes the meaning of each letter that is used in the first position of the operand
notation:

A A far pointer encoded in the instruction. No ModRM byte in the instruction encoding.

B General-purpose register specified by the VEX or XOP vvvv field.

C Control register specified by the ModRM.reg field.

D Debug register specified by the ModRM.reg field.

E General purpose register or memory operand specified by the r/m field of the ModRM byte. For
memory operands, the ModRM byte may be followed by a SIB byte to specify one of the indexed
register-indirect addressing forms.

F rFLAGS register.

G General purpose register specified by the ModRM.reg field.

H YMM or XMM register specified by the VEX/XOP.vvvv field.

I Immediate value encoded in the instruction immediate field.

J The instruction encoding includes a relative offset that is added to the rIP.

L YMM or XMM register specified using the most-significant 4 bits of an 8-bit immediate value.
In legacy or compatibility mode the most significant bit is ignored.

M A memory operand specified by the {mod, r/m} field of the ModRM byte. ModRM.mod ≠ 11b.

M* A sparse array of memory operands addressed using the VSIB addressing mode. See “VSIB
Addressing” in Volume 4.

N 64-bit MMX register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

O The offset of an operand is encoded in the instruction. There is no ModRM byte in the instruction
encoding. Indexed register-indirect addressing using the SIB byte is not supported.

P 64-bit MMX register specified by the ModRM.reg field.

Q 64-bit MMX-register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

R General purpose register specified by the ModRM.r/m field. The ModRM.mod field must be
11b.

S Segment register specified by the ModRM.reg field.

U YMM/XMM register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

V YMM/XMM register specified by the ModRM.reg field.

W YMM/XMM register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

Opcode and Operand Encodings 507

24594—Rev. 3.32—March 2021 AMD64 Technology

X A memory operand addressed by the DS.rSI registers. Used in string instructions.

Y A memory operand addressed by the ES.rDI registers. Used in string instructions.

The following list provides the key for the second part of the operand notation:

a Two 16-bit or 32-bit memory operands, depending on the effective operand size. Used in the
BOUND instruction.

b A byte, irrespective of the effective operand size.

c A byte or a word, depending on the effective operand size.

d A doubleword (32 bits), irrespective of the effective operand size.

do A double octword (256 bits), irrespective of the effective operand size.

i A 16-bit integer.

j A 32-bit integer.

m A bit mask of size equal to the source operand.

mn Where n = 2,4,8, or 16. A bit mask of size n.

o An octword (128 bits), irrespective of the effective operand size.

o.q Operand is either the upper or lower half of a 128-bit value.

p A 32- or 48-bit far pointer, depending on 16- or 32-bit effective operand size.

pb Vector with byte-wide (8-bit) elements (packed byte).

pd A double-precision (64-bit) floating-point vector operand (packed double-precision).

pdw Vector composed of 32-bit doublewords.

ph A half-precision (16-bit) floating-point vector operand (packed half-precision)

pi Vector composed of 16-bit integers (packed integer).

pj Vector composed of 32-bit integers (packed double integer).

pk Vector composed of 8-bit integers (packed half-word integer).

pq Vector composed of 64-bit integers (packed quadword integer).

pqw Vector composed of 64-bit quadwords (packed quadword).

ps A single-precision floating-point vector operand (packed single-precision).

pw Vector composed of 16-bit words (packed word).

q A quadword (64 bits), irrespective of the effective operand size.

s A 6-byte or 10-byte pseudo-descriptor.

sd A scalar double-precision floating-point operand (scalar double).

sj A scalar doubleword (32-bit) integer operand (scalar double integer).

508 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

ss A scalar single-precision floating-point operand (scalar single).

v A word, doubleword, or quadword (in 64-bit mode), depending on the effective operand size.

w A word, irrespective of the effective operand size.

x Instruction supports both vector sizes (128 bits or 256 bits). Size is encoded using the
VEX/XOP.L field. (L=0: 128 bits; L=1: 256 bits). This symbol may be appended to ps or pd to
represent a packed single- or double-precision floating-point vector of either size; or to pk, pi, pj,
or pq, to represent a packed 8-bit, 16-bit, 32-bit, or 64-bit packed integer vector of either size.

y A doubleword or quadword depending on effective operand size.

z A word if the effective operand size is 16 bits, or a doubleword if the effective operand size is 32
or 64 bits.

For some instructions, fields in the ModRM or SIB byte are used as encoding extensions. This is
indicated using the following notation:

/n A ModRM-byte reg field or SIB-byte base field, where n is a value between zero (000b) and 7
(111b).

For SSE instructions that take scalar operands, VEX/XOP.L field is ignored.

For immediates and memory-based operands, only the size and not the datatype is indicated. Operand
widths and datatypes are specified based on the source operands. For instructions where the result
overwrites one of the source registers, the data width and datatype of the result may not match that of
the source register. See individual instruction descriptions for more details.

A.1 Opcode Maps

In all of the following opcode maps, cells shaded grey represent reserved opcodes.

A.1.1 Legacy Opcode Maps

Primary Opcode Map. Tables A-1 and A-2 below show the primary opcode map (known in legacy
terminology as one-byte opcodes).

Table A-1 below shows those instructions for which the low nibble is in the range 0–7h. Table A-2 on
page 510 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble.

Opcode and Operand Encodings 509

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0
ADD

PUSH ES3 POP ES3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1
ADC

PUSH SS3 POP SS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2
AND

seg ES6 DAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3
XOR

seg SS6 AAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4
INC / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5
PUSH

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6
PUSHA3

PUSHD3
POPA3

POPD3
BOUND 3

Gv, Ma

ARPL3

Ew, Gw

MOVSXD4

Gv, Ez

seg FS
prefix

seg GS
prefix

operand size
override

prefix

address
size override

prefix

7 JO Jb JNO Jb JB Jb JNB Jb JZ Jb JNZ Jb JBE Jb JNBE Jb

8
Group 12 TEST XCHG

Eb, Ib Ev, Iz Eb, Ib3 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9
XCHG

r8, rAX
NOP,PAUSE

rCX/r9, rAX rDX/r10, rAX rBX/r11, rAX rSP/r12, rAX rBP/r13, rAX rSI/r14, rAX rDI/r15, rAX

A
MOV MOVSB

Yb, Xb
MOVSW/D/Q

Yv, Xv
CMPSB
Xb, Yb

CMPSW/D/Q
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B
MOV

AL, Ib
r8b, Ib

CL, Ib
r9b, Ib

DL, Ib
r10b, Ib

BL, Ib
r11b, Ib

AH, Ib
r12b, Ib

CH, Ib
r13b, Ib

DH, Ib
r14b, Ib

BH, Ib
r15b, Ib

C
Group 22 RET near LES3 Gz, Mp LDS3 Gz, Mp Group 112

Eb, Ib Ev, Ib Iw
VEX escape

prefix
VEX escape

prefix
Eb, Ib Ev, Iz

D
Group 22

AAM Ib3 AAD Ib3 invalid
XLAT

XLATBEb, 1 Ev, 1 Eb, CL Ev, CL

E
LOO-

PNE/NZJb
LOOPE/Z

Jb
LOOP Jb JrCXZ Jb

IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK Prefix INT1
REPNE
Prefix

REP / REPE
Prefix

HLT CMC
Group 32

Eb Ev

Notes:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 517 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

510 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Secondary Opcode Map. As described in “Encoding Syntax” on page 1, the escape code 0Fh
indicates the switch from the primary to the secondary opcode map. In legacy terminology, the
secondary opcode map is presented as a listing of “two-byte” opcodes where the first byte is 0Fh.
Tables A-3 and A-4 show the secondary opcode map.

Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0 OR PUSH
CS3

escape to
secondary

opcode mapEb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1
SBB PUSH

DS3
POP
DS3Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2
SUB

seg CS6 DAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3
CMP

seg DS6 AAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4
DEC3 / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5
POP

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6
PUSH

Iz
IMUL

Gv, Ev, Iz
PUSH

Ib
IMUL

Gv, Ev, Ib
INSB

Yb, DX
INSW/D
Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS
OUTSW/D

DX, Xz

7 JS Jb JNS Jb JP Jb JNP Jb JL Jb JNL Jb JLE Jb JNLE Jb

8
MOV

LEA
Gv, M

MOV
Sw, Ew

Group 1a2

Eb, Gb Ev, Gv Gb, Eb Gv, Ev Mw/Rv, Sw
XOP escape

prefix

9
CBW, CWDE

CDQE
CWD, CDQ,

CQO
CALL3

Ap
WAIT

FWAIT
PUSHF/D/Q

Fv
POPF/D/Q

Fv
SAHF LAHF

A
TEST STOSB

Yb, AL
STOSW/D/Q

Yv, rAX
LODSB
AL, Xb

LODSW/D/Q
rAX, Xv

SCASB
AL, Yb

SCASW/D/Q
rAX, YvAL, Ib rAX, Iz

B
MOV

rAX, Iv
r8, Iv

rCX, Iv
r9, Iv

rDX, Iv
r10, Iv

rBX, Iv
r11, Iv

rSP, Iv
r12, Iv

rBP, Iv
r13, Iv

rSI, Iv
r14, Iv

rDI, Iv
r15, Iv

C
ENTER
Iw, Ib

LEAVE
RET far

INT3 INT Ib INTO3 IRET, IRETD,

Iw IRETQ

D
x87 instructions

see Table A-15 on page 528

E CALL Jz
JMP IN OUT

Jz Ap3 Jb AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD
Group 42 Group 52

Eb

Notes:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 517 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

Opcode and Operand Encodings 511

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-3 below shows those instructions for which the low nibble is in the range 0–7h. Table A-4 on
page 514 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble. Note the added column labeled “prefix.”

For the secondary opcode map shown below, the legacy prefixes 66h, F2h, and F3 are repurposed to
provide additional opcode encoding space. For those rows that utilize them, the presence of a 66h,
F2h, or F3h prefix changes the operation or the operand types specified by the corresponding opcode
value.

As discussed in “Encoding Extensions Using the ModRM Byte” on page 517, some opcode values
represent a group of instructions. This is denoted in the map entry by “Group n”, where n = [1:17,P].
Instructions within a group are encoded by the reg field of the ModRM byte. These encodings are
specified in Table A-7 on page 519. For some opcodes, both the reg and the r/m field of the ModRM
byte are used to extend the encoding. See Table A-8 on page 520.

512 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h

Prefix Nibble1 0 1 2 3 4 5 6 7

n/a 0 Group 62 Group 72 LAR
Gv, Ew

LSL
Gv, Ew

SYSCALL CLTS SYSRET

none

1

MOVUPS
MOVLPS
Vq, Mq

MOVHLPS
Vo.q, Uo.q

MOVLPS
Mq, Vq

UNPCKLPS
Vps,Wps

UNPCKHPS
Vps,Wps

MOVHPS
Vo.q, Mq

MOVLHPS
Vo.q, Uo.q

MOVHPS
Mq, Vo.q

Vps, Wps Wps, Vps

F3
MOVSS MOVSLDUP

Vps, Wps
MOVSHDUP

Vps, WpsVss, Wss Wss, Vss

66
MOVUPD MOVLPD UNPCKLPD

Vo.q, Wo.q
UNPCKHPD
Vo.q, Wo.q

MOVHPD

Vpd, Wpd Wpd, Vpd Vo.q, Mq Mq, Vo.q Vo.q, Mq Mq, Vo.q

F2
MOVSD MOVDDUP

Vo, WsdVsd, Wsd Wsd, Vsd

n/a 2
MOV4

Rd/q, Cd/q Rd/q, Dd/q Cd/q, Rd/q Dd/q, Rd/q

n/a 3 WRMSR RDTSC RDMSR RDPMC SYSENTER3 SYSEXIT3

n/a 4 CMOVO
Gv, Ev

CMOVNO
Gv, Ev

CMOVB
Gv, Ev

CMOVNB
Gv, Ev

CMOVZ
Gv, Ev

CMOVNZ
Gv, Ev

CMOVBE
Gv, Ev

CMOVNBE
Gv, Ev

none

5

MOVMSKPS
Gd, Ups

SQRTPS
Vps, Wps

RSQRTPS
Vps, Wps

RCPPS
Vps, Wps

ANDPS
Vps, Wps

ANDNPS
Vps, Wps

ORPS
Vps, Wps

XORPS
Vps, Wps

F3
SQRTSS
Vss, Wss

RSQRTSS
Vss, Wss

RCPSS
Vss, Wss

66
MOVMSKPD

Gd, Upd
SQRTPD
Vpd, Wpd

ANDPD
Vpd, Wpd

ANDNPD
Vpd, Wpd

ORPD
Vpd, Wpd

XORPD
Vpd, Wpd

F2
SQRTSD
Vsd, Wsd

none

6

PUNPCK-
LBW

Pq, Qd

PUNPCK-
LWD

Pq, Qd

PUNPCK-
LDQ

Pq, Qd

PACKSSWB
Ppi, Qpi

PCMPGTB
Ppk, Qpk

PCMPGTW
Ppi, Qpi

PCMPGTD
Ppj, Qpj

PACKUSWB
Ppi, Qpi

F3

66
PUNPCK-

LBW
Vo.q, Wo.q

PUNPCK-
LWD

Vo.q, Wo.q

PUNPCK-
LDQ

Vo.q, Wo.q

PACKSSWB
Vpi, Wpi

PCMPGTB
Vpk, Wpk

PCMPGTW
Vpi, Wpi

PCMPGTD
Vpj, Wpj

PACKUSWB
Vpi, Wpi

F2

none

7

PSHUFW
Pq, Qq, Ib

Group 122 Group 132 Group 142

PCMPEQB
Ppk, Qpk

PCMPEQW
Ppi, Qpi

PCMPEQD
Ppj, Qpj

EMMS

F3 PSHUFHW
Vq, Wq, Ib

66 PSHUFD
Vo, Wo, Ib

PCMPEQB
Vpk, Wpk

PCMPEQW
Vpi, Wpi

PCMPEQD
Vpj, Wpj

F2
PSHUFLW

Vq, Wq, Ib

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. Invalid in long mode.
4. Operand size is based on processor mode.

Opcode and Operand Encodings 513

24594—Rev. 3.32—March 2021 AMD64 Technology

n/a 8 JO Jz JNO Jz JB Jz JNB Jz JZ Jz JNZ Jz JBE Jz JNBE Jz

n/a 9 SETO Eb SETNO Eb SETB Eb SETNB Eb SETZ Eb SETNZ Eb SETBE Eb SETNBE Eb

n/a A PUSH FS POP FS CPUID BT Ev, Gv
SHLD

Ev, Gv, Ib Ev, Gv, CL

n/a B
CMPXCHG

LSS Gz, Mp BTR Ev, Gv LFS Gz, Mp LGS Gz, Mp
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

none

C

XADD
CMPPS

Vps, Wps, Ib
MOVNTI
My, Gy

PINSRW
Pq, Ry/Mw,

Ib

PEXTRW
Gd, Nq, Ib

SHUFPS
Vps, Wps, Ib

Group 92

Mq

F3

Eb, Gb Ev, Gv

CMPSS
Vss, Wss, Ib

66
CMPPD

Vpd, Wpd, Ib

PINSRW

Vo, Ry/Mw,
Ib

PEXTRW

Gd, Uo, Ib

SHUFPD

Vpd, Wpd, Ib

F2
CMPSD

Vsd, Wsd, Ib

none

D

PSRLW
Pq, Qq

PSRLD
Pq, Qq

PSRLQ
Pq, Qq

PADDQ
Pq, Qq

PMULLW
Pq, Qq

PMOVMSKB
Gd, Nq

F3 MOVQ2DQ
Vo, Nq

66 ADDSUBPD
Vpd, Wpd

PSRLW
Vo, Wo

PSRLD
Vo, Wo

PSRLQ
Vo, Wo

PADDQ
Vo, Wo

PMULLW
Vo, Wo

MOVQ
Wq, Vq

PMOVMSKB
Gd, Uo

F2 ADDSUBPS
Vps, Wps

MOVDQ2Q
Pq, Uq

none

E

PAVGB
Pq, Qq

PSRAW
Pq, Qq

PSRAD
Pq, Qq

PAVGW
Pq, Qq

PMULHUW
Pq, Qq

PMULHW
Pq, Qq

MOVNTQ
Mq, Pq

F3 CVTDQ2PD
Vpd, Wpj

66 PAVGB
Vo, Wo

PSRAW
Vo, Wo

PSRAD
Vo, Wo

PAVGW
Vo, Wo

PMULHUW
Vo, Wo

PMULHW
Vo, Wo

CVTTPD2DQ
Vpj, Wpd

MOVNTDQ
Mo, Vo

F2 CVTPD2DQ
Vpj, Wpd

none

F

PSLLW
Pq, Qq

PSLLD
Pq, Qq

PSLLQ
Pq, Qq

PMULUDQ
Pq, Qq

PMADDWD
Pq, Qq

PSADBW
Pq, Qq

MASKMOVQ
Pq, Nq

F3

66 PSLLW
Vpw, Wo.q

PSLLD
Vpwd, Wo.q

PSLLQ
Vpqw, Wo.q

PMULUDQ
Vpj, Wpj

PMADDWD
Vpi, Wpi

PSADBW
Vpk, Wpk

MASKMOVDQU
Vpb, Upb

F2
LDDQU

Vo, Mo

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h (continued)

Prefix Nibble1 0 1 2 3 4 5 6 7

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. Invalid in long mode.
4. Operand size is based on processor mode.

514 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

n/a 0 INVD
WBINVD

(F3)
WBNOINVD

UD2

Group P2

FEMMS

3DNow!

PREFETCH

See
“3DNow!™
Opcodes”

on page 524

n/a 1
Group 162 NOP3 NOP3 NOP3 NOP3

NOP3

(F3) RDSSP

reg=1,
mod=11

NOP3 NOP3

none

2

MOVAPS CVTPI2PS MOVNTPS CVTTPS2PI CVTPS2PI UCOMISS COMISS

Vps, Wps Wps, Vps Vps, Qpj Mo, Vps Ppj, Wps Ppj, Wps Vss, Wss Vss, Wss

F3
CVTSI2SS MOVNTSS CVTTSS2SI CVTSS2SI

Vss, Ey Md, Vss Gy, Wss Gy, Wss

66
MOVAPD CVTPI2PD MOVNTPD CVTTPD2PI CVTPD2PI UCOMISD COMISD

Vpd, Wpd Wpd, Vpd Vpd, Qpj Mo, Vpd Ppj, Wpd Ppj, Wpd Vsd, Wsd Vsd, Wsd

F2
CVTSI2SD MOVNTSD CVTTSD2SI CVTSD2SI

Vsd, Ey Mq, Vsd Gy, Wsd Gy, Wsd

n/a 3
Escape to

0F_38h
opcode map

Escape to
0F_3Ah

opcode map

n/a 4
CMOVS CMOVNS CMOVP CMOVNP CMOVL CMOVNL CMOVLE CMOVNLE

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

none

5

ADDPS MULPS CVTPS2PD CVTDQ2PS SUBPS MINPS DIVPS MAXPS

Vps, Wps Vps, Wps Vpd, Wps Vps, Wo Vps, Wps Vps, Wps Vps, Wps Vps, Wps

F3
ADDSS MULSS CVTSS2SD CVTTPS2DQ SUBSS MINSS DIVSS MAXSS

Vss, Wss Vss, Wss Vsd, Wss Vo, Wps Vss, Wss Vss, Wss Vss, Wss Vss, Wss

66
ADDPD MULPD CVTPD2PS CVTPS2DQ SUBPD MINPD DIVPD MAXPD

Vpd, Wpd Vpd, Wpd Vps, Wpd Vo, Wps Vpd, Wpd Vpd, Wpd Vpd, Wpd Vpd, Wpd

F2
ADDSD MULSD CVTSD2SS SUBSD MINSD DIVSD MAXSD

Vsd, Wsd Vsd, Wsd Vss, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd

none

6

PUNPCK-
HBW

PUNPCK-
HWD

PUNPCK-
HDQ

PACKSSDW MOVD MOVQ

Pq, Qd Pq, Qd Pq, Qd Pq, Qq Py, Ey Pq, Qq

F3
MOVDQU

Vo, Wo

66
PUNPCK-

HBW
PUNPCK-

HWD
PUNPCK-

HDQ
PACKSSDW

PUNPCK-
LQDQ

PUNPCKH-
QDQ

MOVD MOVDQA

Vo, Wq Vo, Wq Vo, Wq Vo, Wo Vo, Wq Vo, Wq Vy, Ey Vo, Wo

F2

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

Opcode and Operand Encodings 515

24594—Rev. 3.32—March 2021 AMD64 Technology

none

7

MOVD MOVQ

Ey, Py Qq, Pq

F3
MOVQ MOVDQU

Vq, Wq Wo, Vo

66
Group 172 EXTRQ HADDPD HSUBPD MOVD MOVDQA

Vo.q, Uo Vpd, Wpd Vpd, Wpd Ey, Vy Wo, Vo

F2
INSERTQ INSERTQ HADDPS HSUBPS

Vo.q, Uo.q,
Ib, Ib

Vo.q, Uo Vps, Wps Vps, Wps

n/a 8
JS JNS JP JNP JL JNL JLE JNLE

Jz Jz Jz Jz Jz Jz Jz Jz

n/a 9
SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

n/a A
PUSH POP RSM BTS SHRD Group 152 IMUL

GS GS Ev, Gv Ev, Gv, Ib Ev, Gv, CL Gv, Ev

none

B

Group 102 Group 82 BTC BSF BSR MOVSX

Ev, Ib Ev, Gv Gv, Ev Gv, Ev Gv, Eb Gv, Ew

F3
POPCNT TZCNT LZCNT

Gv, Ev Gv, Ev Gv, Ev

F2

n/a C
BSWAP

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

none

D

PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

none

E

PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

516 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions. Table A-5 shows
the rFLAGS condition codes specified by the low nibble in the opcode of the CMOVcc, Jcc, and
SETcc instructions.

none

F

PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD

UD0

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc

Low Nibble of
Opcode (hex)

rFLAGS Value cc Mnemonic
Arithmetic

Type
Condition(s)

0 OF = 1 O
Signed

Overflow

1 OF = 0 NO No Overflow

2 CF = 1 B, C, NAE

Unsigned

Below, Carry, Not Above or Equal

3 CF = 0 NB, NC, AE Not Below, No Carry, Above or Equal

4 ZF = 1 Z, E Zero, Equal

5 ZF = 0 NZ, NE Not Zero, Not Equal

6 CF = 1 or ZF = 1 BE, NA Below or Equal, Not Above

7 CF = 0 and ZF = 0 NBE, A Not Below or Equal, Above

8 SF = 1 S
Signed

Sign

9 SF = 0 NS Not Sign

A PF = 1 P, PE
n/a

Parity, Parity Even

B PF = 0 NP, PO Not Parity, Parity Odd

C (SF xor OF) = 1 L, NGE

Signed

Less than, Not Greater than or Equal to

D (SF xor OF) = 0 NL, GE Not Less than, Greater than or Equal to

E
(SF xor OF) = 1

or ZF = 1
LE, NG Less than or Equal to, Not Greater than

F
(SF xor OF) = 0

and ZF = 0
NLE, G Not Less than or Equal to, Greater than

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

Opcode and Operand Encodings 517

24594—Rev. 3.32—March 2021 AMD64 Technology

Encoding Extensions Using the ModRM Byte. The ModRM byte, which immediately
follows the opcode byte, is used in certain instruction encodings to provide additional opcode bits with
which to define the function of the instruction. ModRM bytes have three fields—mod, reg, and r/m, as
shown in Figure A-1.

Figure A-1. ModRM-Byte Fields

In most cases, the reg field (bits [5:3]), and in some cases, the r/m field (bits [2:0]) provide the
additional bits used to extend the encodings of the opcode byte. In the case of the x87 floating-point
instructions, the entire ModRM byte is used to extend the opcode encodings.

Table A-6 shows how the ModRM.reg field is used to extend the range of opcodes in the primary
opcode map. The opcode ranges are organized into groups of opcode extensions. The group number is
shown in the left-most column. These groups are referenced in the primary opcode map shown in
Table A-1 on page 509 and Table A-2 on page 510. An entry of “n.a.” in the Prefix column means that
prefixes are not applicable to the opcodes in that row. Prefixes only apply to certain 64-bit media and
SSE instructions.

Table A-7 on page 519 shows how the ModRM.reg field is used to extend the range of the opcodes in
the secondary opcode map.

The /0 through /7 notation for the ModRM reg field (bits [5:3]) in the tables below means that the
three-bit field contains a value from zero (000b) to 7 (111b).

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Group 1 n/a

80
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

81
ADD OR ADC SBB AND SUB XOR CMP

Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz

82
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2

83
ADD OR ADC SBB AND SUB XOR CMP

Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

Notes:
1. See Table A-7 on page 519 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. Redundant encoding generally unsupported by tools..

mod reg r/m ModRM
01234567Bits:

518 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Group 1a n/a 8F
POP

XOP
Ev

Group 2 n/a

C0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

C1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

D0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1

D1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1

D2
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL

D3
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL

Group 3 n/a

F6
TEST

Eb,Ib

NOT NEG MUL IMUL DIV IDIV

Eb Eb Eb Eb Eb Eb

F7
TEST

Ev,Iz

NOT NEG MUL IMUL DIV IDIV

Ev Ev Ev Ev Ev Ev

Group 4 n/a FE
INC DEC

Eb Eb

Group 5 n/a FF
INC DEC CALL CALL JMP JMP PUSH

Ev Ev Ev Mp Ev Mp Ev

Group 11
n/a C6

MOV

Eb, Ib

n/a C7
MOV

Ev, Iz

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 (continued)

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Notes:
1. See Table A-7 on page 519 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. Redundant encoding generally unsupported by tools..

Opcode and Operand Encodings 519

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Group 6 n/a 0F 00
SLDT

Mw/Rv
STR Mw/Rv LLDT Ew LTR Ew VERR Ew VERW Ew

Group 7 n/a 0F 01
SGDT

Ms

SIDT
Ms

LGDT Ms LIDT Ms
SMSW Mw

/ Rv
RSTORSSP1

(mod!=11)
LMSW Ew

INVLPG
Mb

MONITOR1

MWAIT
XGETBV1

XSETBV
SVM1 SWAPGS1

RDTSCP

Group 8 n/a 0F BA BT Ev, Ib BTS Ev, Ib BTR Ev, Ib BTC Ev, Ib

Group 9

none

0F C7

CMPX-

CHG8B Mq RDRAND
Rv

RDSEED
Rv

66
CMPX-

CHG16B Mo

F2

F3
RDPID

Rd/q

Group
10

n/a 0F B9 UD1

Group
12

none

0F 71

PSRLW PSRAW PSLLW

Nq, Ib Nq, Ib Nq, Ib

66
PSRLW PSRAW PSLLW

Uo, Ib Uo, Ib Uo, Ib

F2, F3

Group
13

none

0F 72

PSRLD PSRAD PSLLD

Nq, Ib Nq, Ib Nq, Ib

66
PSRLD PSRAD PSLLD

Uo, Ib Uo, Ib Uo, Ib

F2, F3

Group
14

none

0F 73

PSRLQ PSLLQ

Nq, Ib Nq, Ib

66
PSRLQ PSRLDQ PSLLQ PSLLDQ

Uo, Ib Uo, Ib Uo, Ib Uo, Ib

F2, F3

Notes:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 520 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

520 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Secondary Opcode Map, ModRM Extensions for Opcode 01h . Table A-8 below shows
the ModRM byte encodings for the 01h opcode. In the table the full ModRM byte is listed below the
instruction in hexadecimal, with ellipses representing the [0Fh, 01h] opcode bytes.

Group
15

none

0F AE

FXSAVE
M

FXRSTOR
M

LDMXCSR
Md

STMXCS
R

Md
XSAVE M6 LFENCE5

XRSTOR M6

MFENCE5

XSAVE-
OPT M6

SFENCE5

CLFLUSH
Mb6

F3
RDFSBASE

Rv
RDGSBASE Rv

WRFSBASE
Rv

WRGS-
BASE Rv

INCSSP CLRSSBSY

F2

66 CLWB Mb6

Group
16

n/a. 0F 18
PREFETCH PREFETCH PREFETCH PREFETCH NOP4 NOP4 NOP4 NOP4

NTA T0 T1 T2

Group
17

66

0F 78

EXTRQ

Vo.q, Ib, Ib

none,
F2, F3

Group P n/a. 0F 0D
PREFETCH PREFETCH

PREFETCH
PREFETCH

PREFETCH PREFETCH PREFETCH PREFETCH
Exclusive Modified Modified

Table A-8. Opcode 01h ModRM Extensions

reg Field Prefix
ModRM.r/m Field

0 1 2 3 4 5 6 7

/1 none
MONITOR

(...C8)
MWAIT
(...C9)

CLAC

(...CA)

STAC

(...CB)

/2 none
XGETBV

(...D0)
XSETBV

(...D1)

/3

none
VMRUN
(...D8)

VMMCALL
(...D9)

VMLOAD
(...DA)

VMSAVE
(...DB)

STGI
(...DC)

CLGI
(...DD)

SKINIT
(...DE)

INVLPGA
(...DF)

F3 VMGEXIT
(...D9)F2

/5
none RDPKRU WRPKRU

F3 SETSSBSY
SAVE-

PREVSSP

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Notes:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 520 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

Opcode and Operand Encodings 521

24594—Rev. 3.32—March 2021 AMD64 Technology

0F_38h and 0F_3Ah Opcode Maps. The 0F_38h and 0F_3Ah opcode maps are used primarily
to encode the legacy SSE instructions. In legacy terminology, these maps are presented as three-byte
opcodes where the first two bytes are {0Fh, 38h} and {0Fh, 3Ah} respectively.

In these maps the legacy prefixes F2h and F3h are repurposed to provide additional opcode encoding
space. In rows [0:E] the legacy prefix 66h is also used to modify the opcode. However, in row F, 66h is
used as an operand-size override. See the CRC32 instruction as an example.

The 0F_38h opcode map is presented below in Tables A-9 and A-10. The 0F_3Ah opcode map is
presented in Tables A-11 and A-12.

/7

none
SWAPGS

(...F8)
RDTSCP

(...F9)
MON...ITORX

(FA)
MWAITX

(...FB)
RDPRU
(...FD)

F3
MCOMMIT
(F3...FA)

RMPADJUST

(F3...FE)
PSMASH
(F3...FF)

F2
RMPUPDATE

(F2...FE)
PVALIDATE

(F2...FF)

ModRM.mod = 11b

Table A-8. Opcode 01h ModRM Extensions (continued)

reg Field Prefix
ModRM.r/m Field

0 1 2 3 4 5 6 7

522 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h]

Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh]

Prefix Opcode x0 x1 x2 x3 x4 x5 x6 x7

none

0x

PSHUFB
Ppb, Qpb

PHADDW
Ppi, Qpi

PHADDD
Ppj, Qpj

PHADDSW
Ppi, Qpi

PMADDUBSW
Ppk, Qpk

PHSUBW
Ppi, Qpi

PHSUBD
Ppj, Qpj

PHSUBSW
Ppi, Qpi

66
PSHUFB
PVb, Wpb

PHADDW
Vpi, Wpi

PHADDD
Vpj, Vpj

PHADDSW
Vpi, Wpi

PMADDUBSW
Vpk, Wpk

PHSUBW
Vpi, Wpi

PHSUBD
Vpj, Wpj

PHSUBSW
Vpi, Wpi

none

1x
66

PBLENDVB
Vpb, Wpb

BLENDVPS
Vps, Wps

PBLENDVB
Vpb, Wpb

PTEST
 Vo, Wo

none

2x
66

PMOVSXBW
Vpi, Wpk

PMOVSXBD
 Vpj, Wpk

PMOVSXBQ
Vpq, Wpk

PMOVSXWD
Vpj, Wpi

PMOVSXWQ
Vpq, Wpi

PMOVSXDQ
Vpq, Wpj

none

3x
66

PMOVZXBW
Vpi, Wpk

PMOVZXBD
 Vpj, Wpk

PMOVZXBQ
Vpq, Wpk

PMOVZXWD
Vpj, Wpi

PMOVZXWQ
Vpq, Wpi

PMOVZXDQ
Vpq, Wpj

PCMPGTQ
Vpq, Wpq

none

4x
66

PMULLD
Vpj, Wpj

PHMINPOSUW
 Vpi, Wpi

. . . 5x-Ex . . .

none

Fx

MOVBE
 Gv, Mv

MOVBE
 Mv, Gv

WRSS
 My, Gy

F2
CRC32

 Gy, Eb
CRC32

 Gy, Ev

66
MOVBE

 Gv, Mv
MOVBE

 Gv, Mv
WRUSS

 My, Gy

66
and
F2

CRC32
 Gy, Eb

CRC32
 Gy, Ev

Prefix Opcode x8 x9 xA xB xC xD xE xF
PSIGNB PSIGNW PSIGND PMULHRSW

Ppk, Qpk Ppi, Qpi Ppj, Qpj Ppi, Qpi

PSIGNB PSIGNW PSIGND PMULHRSW
Vpk, Wpk Vpi, Wpi Vpj, Wpj Vpi, Wpi

PABSB PABSW PABSD
Ppk, Qpk Ppi, Qpi Ppj, Qpj

PABSB PABSW PABSD
Vpk, Wpk Vpi, Wpi Vpj, Wpj

PMULDQ PCMPEQQ MOVNTDQA PACKUSDW
Vpq, Wpj Vpq, Wpq Vo, Mo Vpi, Wpj

PMINSB PMINSD PMINUW PMINUD PMAXSB PMAXSD PMAXUW PMAXUD
Vpk, pk Vpj, Wpj Vpi, Wpi Vpj, Wpj Vpk, Wpk Vpj, Wpj Vpi, Wpi Vpj, Wpj

4xh-Cxh . . .
AESIMC AESENC AESENCLAST AESDEC AESDECLAST
Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

. . . Exh-Fxh . . .

0x

3x

Dx

none

66

none

66

none

none

2x

66

1x

66

66

Opcode and Operand Encodings 523

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h]

Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh]

Prefix Opcode x0 x1 x2 x3 x4 x5 x6 x7

PEXTRB PEXTRW PEXTRD EXTRACTPS
Mb, Vpk, Ib Mw, Vpw, Ib Ed, Vpj, Ib Md, Vps, Ib

PEXTRB PEXTRW PEXTRQ1 EXTRACTPS
Ry, Vpk, Ib Ry, Vpw, Ib Eq, Vpq, Ib Ry, Vps, Ib

PINSRB INSERTPS PINSRD
Vpk, Mb, Ib Vps, Md, Ib Vpj, Ed, Ib

PINSRB INSERTPS PINSRQ1

Vpk, R , Ib Vps, Uo, Ib Vpq, Eq, Ib

. . . 3x . . .

DPPS DPPD MPSADBW PCLMULQDQ
Vps, Wps, Ib Vpd, Wpd, Ib Vpk, Wpk, Ib Vpq, Wpq, Ib

PCMPESTRM PCMPESTRI PCMPISTRM PCMPISTRI
Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib

. . . 7x-Ex . . .

Note 1: When REX prefix is present

66

n/a

none

66

n/a

0x

5x

2x

1x

Fx

6x

4x

none

n/a

none

66

none

66

PINSRB INSERTPS PINSRD
Vpk, Mb, Ib Vps, Md, Ib Vpj, Ed, Ib

PINSRB INSERTPS PINSRQ1

Vpk, R , Ib Vps, Uo, Ib Vpq, Eq, Ib

. . . 3x . . .

DPPS DPPD MPSADBW PCLMULQDQ
Vps, Wps, Ib Vpd, Wpd, Ib Vpk, Wpk, Ib Vpq, Wpq, Ib66

/

2x

4x

none

66

524 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.1.2 3DNow!™ Opcodes

The 64-bit media instructions include the MMX™ instructions and the AMD 3DNow!™ instructions.
The MMX instructions are encoded using two opcode bytes, as described in “Secondary Opcode Map”
on page 510.

The 3DNow! instructions are encoded using two 0Fh opcode bytes and an immediate byte that is
located at the last byte position of the instruction encoding. Thus, the format for 3DNow! instructions
is:

0Fh 0Fh [ModRM] [SIB] [displacement] imm8_opcode

Table A-13 and Table A-14 on page 526 show the immediate byte following the opcode bytes for
3DNow! instructions. In these tables, rows show the high nibble of the immediate byte, and columns
show the low nibble of the immediate byte. Table A-13 shows the immediate bytes whose low nibble
is in the range 0–7h. Table A-14 shows the same for immediate bytes whose low nibble is in the range
8–Fh.

Byte values shown as reserved in these tables have implementation-specific functions, which can
include an invalid-opcode exception.

Opcode and Operand Encodings 525

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9
PFCMPGE PFMIN PFRCP PFRSQRT

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

A
PFCMPGT PFMAX PFRCPIT1 PFRSQIT1

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

B
PFCMPEQ PFMUL PFRCPIT2 PMULHRW

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

C

D

E

F

Notes:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

526 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0
PI2FW PI2FD

Pq, Qq Pq, Qq

1
PF2IW PF2ID

Pq, Qq Pq, Qq

2

3

4

5

6

7

8
PFNACC PFPNACC

Pq, Qq Pq, Qq

9
PFSUB PFADD

Pq, Qq Pq, Qq

A
PFSUBR PFACC

Pq, Qq Pq, Qq

B
PSWAPD PAVGUSB

Pq, Qq Pq, Qq

C

D

E

F

Notes:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

Opcode and Operand Encodings 527

24594—Rev. 3.32—March 2021 AMD64 Technology

A.1.3 x87 Encodings

All x87 instructions begin with an opcode byte in the range D8h to DFh, as shown in Table A-2 on
page 510. These opcodes are followed by a ModRM byte that further defines the opcode. Table A-15
shows both the opcode byte and the ModRM byte for each x87 instruction.

There are two significant ranges for the ModRM byte for x87 opcodes: 00–BFh and C0–FFh. When
the value of the ModRM byte falls within the first range, 00–BFh, the opcode uses only the reg field to
further define the opcode. When the value of the ModRM byte falls within the second range, C0–FFh,
the opcode uses the entire ModRM byte to further define the opcode.

Byte values shown as reserved or invalid in Table A-15 have implementation-specific functions,
which can include an invalid-opcode exception.

The basic instructions FNSTENV, FNSTCW, FNCLEX, FNINIT, FNSAVE, FNSTSW, and FNSTSW
do not check for possible floating point exceptions before operating. Utility versions of these
mnemonics are provided that insert an FWAIT (opcode 9B) before the corresponding non-waiting
instruction. These are FSTENV, FSTCW, FCLEX, FINIT, FSAVE, and FSTSW. For further
information on wait and non-waiting versions of these instructions, see their corresponding pages in
Volume 5.

528 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-15. x87 Opcodes and ModRM Extensions

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

D8

!11

00–BF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem32-
real

mem32real mem32real mem32real mem32real
mem32-

real
mem32real mem32real

11

C0 C8 D0 D8 E0 E8 F0 F8

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)
ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)
ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)
ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)
ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)
ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)
ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)
ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7)

Opcode and Operand Encodings 529

24594—Rev. 3.32—March 2021 AMD64 Technology

D9

!11

00–BF

FLD FST FSTP FLDENV FLDCW FNSTENV FNSTCW

mem32-
real

mem32real mem32real
mem14/28en

v
mem16

mem14/28en
v

mem16

11

C0 C8 D0 D8 E0 E8 F0 F8

FLD FXCH FNOP reserved FCHS FLD1 F2XM1 FPREM

ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FLD FXCH invalid reserved FABS FLDL2T FYL2X FYL2XP1

ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FLD FXCH invalid reserved invalid FLDL2E FPTAN FSQRT

ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FLD FXCH invalid reserved invalid FLDPI FPATAN FSINCOS

ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FLD FXCH invalid reserved FTST FLDLG2 FXTRACT FRNDINT

ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FLD FXCH invalid reserved FXAM FLDLN2 FPREM1 FSCALE

ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FLD FXCH invalid reserved invalid FLDZ FDECSTP FSIN

ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FLD FXCH invalid reserved invalid invalid FINCSTP FCOS

ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

530 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DA

!11

00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR

mem32int mem32int mem32int mem32int mem32int mem32int mem32int mem32int

11

C0 C8 D0 D8 E0 E8 F0 F8

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FCMOVB FCMOVE FCMOVBE FCMOVU invalid FUCOMPP invalid invalid

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 531

24594—Rev. 3.32—March 2021 AMD64 Technology

DB

!11

00–BF

FILD FISTTP FIST FISTP invalid FLD invalid FSTP

mem32int mem32int mem32int mem32int
mem80-

real
mem80real

11

C0 C8 D0 D8 E0 E8 F0 F8

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)
ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU FNCLEX FUCOMI FCOMI invalid

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)
ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU FNINIT FUCOMI FCOMI invalid

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)
ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)
ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)
ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)
ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)
ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

532 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DC

!11

00–BF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem64-
real

mem64real mem64real mem64real mem64real
mem64-

real
mem64real mem64real

11

C0 C8 D0 D8 E0 E8 F0 F8

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)
ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)
ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)
ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)
ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)
ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)
ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)
ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 533

24594—Rev. 3.32—March 2021 AMD64 Technology

DD

!11

00–BF

FLD FISTTP FST FSTP FRSTOR invalid FNSAVE FNSTSW

mem64-
real

mem64int mem64real mem64real
mem98/108e

nv
mem98/108e

nv
mem16

11

C0 C8 D0 D8 E0 E8 F0 F8

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(0) ST(0) ST(0) ST(0), ST(0) ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(1) ST(1) ST(1) ST(1), ST(0) ST(1)

C2 CA D2 DA E2 EA F2 FA

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(2) ST(2) ST(2) ST(2), ST(0) ST(2)

C3 CB D3 DB E3 EB F3 FB

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(3) ST(3) ST(3) ST(3), ST(0) ST(3)

C4 CC D4 DC E4 EC F4 FC

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(4) ST(4) ST(4) ST(4), ST(0) ST(4)

C5 CD D5 DD E5 ED F5 FD

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(5) ST(5) ST(5) ST(5), ST(0) ST(5)

C6 CE D6 DE E6 EE F6 FE

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(6) ST(6) ST(6) ST(6), ST(0) ST(6)

C7 CF D7 DF E7 EF F7 FF

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(7) ST(7) ST(7) ST(7), ST(0) ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

534 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DE

!11

00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR

mem16int mem16int mem16int mem16int mem16int mem16int mem16int mem16int

11

C0 C8 D0 D8 E0 E8 F0 F8

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADDP FMULP reserved FCOMPP FSUBRP FSUBP FDIVRP FDIVP

ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)
ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)
ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)
ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)
ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)
ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)
ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)
ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 535

24594—Rev. 3.32—March 2021 AMD64 Technology

DF

!11

00–BF

FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP

mem16int mem16int mem16int mem16int mem80dec mem64int mem80dec mem64int

11

C0 C8 D0 D8 E0 E8 F0 F8

reserved reserved reserved reserved FNSTSW FUCOMIP FCOMIP invalid

AX
ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

536 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.1.4 rFLAGS Condition Codes for x87 Opcodes

Table A-16 shows the rFLAGS condition codes specified by the opcode and ModRM bytes of the
FCMOVcc instructions.

A.1.5 Extended Instruction Opcode Maps

The following sections present the VEX and the XOP extended instruction opcode maps. The
VEX.map_select field of the three-byte VEX encoding escape sequence selects VEX opcode maps:
01h, 02h, or 03h. The two-byte VEX encoding escape sequence implicitly selects the VEX map 01h.

The XOP.map_select field selects between the three XOP maps: 08h, 09h or 0Ah.

VEX Opcode Maps. Tables A-17 – A-23 below present the VEX opcode maps and Table A-24 on
page 544 presents the VEX opcode groups.

Table A-16. rFLAGS Condition Codes for FCMOVcc

Opcode
(hex)

ModRM
mod
Field

ModRM
reg

Field
rFLAGS Value cc Mnemonic Condition

DA

11

000 CF = 1 B Below

001 ZF = 1 E Equal

010 CF = 1 or ZF = 1 BE Below or Equal

011 PF = 1 U Unordered

DB

000 CF = 0 NB Not Below

001 ZF = 0 NE Not Equal

010 CF = 0 and ZF = 0 NBE Not Below or Equal

011 PF = 0 NU Not Unordered

Opcode and Operand Encodings 537

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h]

Opcode x0 x1 x2 x3 x4 x5 x6 x7
00 . . .

VMOVUPS2 VMOVUPS2 VMOVLPS VMOVLPS VUNPCKLPS2 VUNPCKHPS2 VMOVHPS VMOVHPS
Vpsx, Wpsx Wpsx, Vpsx Vps, Hps, Mq Mq, Vps Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vps, Hps, Mq Mq, Vps

VMOVHLPS VMOVLHPS
Vps, Hps, Ups Vps, Hps, Ups

VMOVUPD2 VMOVUPD2 VMOVLPD VMOVLPD VUNPCKLPD2 VUNPCKHPD2 VMOVHPD VMOVHPD
Vpdx, Wpdx Wpdx, Vpdx Vo, Ho, Mq Mq, Vo Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpd, Hpd, Mq Mq, Vpd

VMOVSS3 VMOVSS3 VMOVSLDUP2 VMOVSHDUP2

Vss, Md Md, Vss Vpsx, Wpsx Vpsx, Wpsx
VMOVSS VMOVSS

Vss, Hss, Uss Uss, Hss, Vss
VMOVSD3 VMOVSD3 VMOVDDUP
Vsd, Mq Mq, Vsd Vo, Wq (L=0)
VMOVSD VMOVSD Vdo, Wdo (L=1)

Vsd, Hsd, Usd Usd, Hsd, Vsd

2x–4x . . .
VMOVMSKPS2 VSQRTPS2 VRSQRTPS2 VRCPPS2 VANDPS2 VANDNPS2 VORPS2 VXORPS2

Gy, Upsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VMOVMSKPD2 VSQRTPD2 VANDPD2 VANDNPD2 VORPD2 VXORPD2

Gy, Updx Vpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VSQRTSS3 VRSQRTSS3 VRCPSS3

Vo, Ho, Wss Vo, Ho, Wss Vo, Ho, Wss

VSQRTSD3

Vo, Ho, Wsd

VPUNPCKLBW2 VPUNPCKLWD2 VPUNPCKLDQ2 VPACKSSWB2 VPCMPGTB2 VPCMPGTW2 VPCMPGTD2 VPACKUSWB2

Vpbx, Hpbx, Wpbx Vpwx, Hpwx, Wpwx Vpdwx, Hpdwx, Vpkx, Hpix, Wpix Vpbx, Hpkx, Wpkx Vpwx, Hpix, Wpix Vpdwx, Hpjx, Wpjx Vpkx, Hpix, Wpix
Wpdwx

VZEROUPPER (L=0)
VZEROALL (L=1)

VPSHUFD2 VEX group #12 VEX group #13 VEX group #14 VPCMPEQB2 VPCMPEQW2 VPCMPEQD2

Vpdwx, Wpdwx, Ib Vpbx, Hpkx, Wpkx Vpwx, Hpix, Wpix Vpdwx, Hpjx, Wpjx

VPSHUFHW2

Vpwx, Wpwx, Ib

VPSHUFLW2

Vpwx, Wpwx, Ib

8x–Bx . . .
VCMPccPS1 VSHUFPS2

Vpdw, Hps, Wps, Vpsx, Hpsx, Wpsx,
Ib Ib

VCMPccPD1 VPINSRW VPEXTRW VSHUFPD2

Vpqw, Hpd, Wpd, Vpw, Hpw, Mw, Ib Gw, Upw, Ib Vpdx, Hpdx, Wpdx,
Ib Vpw, Hpw, Rd, Ib Ib

VCMPccSS1

Vd, Hss, Wss, Ib

VCMPccSD1

Vq, Hsd, Wsd, Ib

Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.
VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

1x

Cx

7x

6x

5x

538 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued
VEX.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

VADDSUBPD2 VPSRLW2 VPSRLD2 VPSRLQ2 VPADDQ2 VPMULLW2 VMOVQ VPMOVMSKB2

Vpdx, Hpdx, Wpdx Vpwx, Hpwx, Wx Vpdwx, Hpdwx, Wx Vpqwx, Hpqwx, Wx Vpq, Hpq, Wpq Vpix, Hpix, Wpix Wq, Vq Gy, Upbx
(VEX.L=1)

VADDSUBPS2

Vpsx, Hpsx, Wpsx

VPAVGB2 VPSRAW2 VPSRAD2 VPAVGW2 VPMULHUW2 VPMULHW VCVTTPD2DQ2 VMOVNTDQ
Vpkx, Hpkx, Wpkx Vpwx, Hpwx, Wx Vpdwx, Hpdwx, Wx Vpix, Hpix, Wpix Vpi, Hpi, Wpi Vpi, Hpi, Wpi Vpjx, Wpdx Mo, Vo (L=0)

Mdo, Vdo (L=1)
VCVTDQ2PD2

Vpdx, Wpjx

VCVTPD2DQ2

Vpjx, Wpdx

VPSLLW2 VPSLLD2 VPSLLQ2 VPMULUDQ2 VPMADDWD2 VPSADBW2 VMASKMOVDQU
Vpwx, Hpwx, Wo.qx Vpdwx, Hpdwx, Vpqwx, Hpqwx, Vpqx, Hpjx, Wpjx Vpjx, Hpix, Wpix Vpix, Hpkx, Wpkx Vpb, Upb

Wo.qx Wo.qx

VLDDQU
Vo, Mo (L=0)

Vdo, Mdo (L=1)
Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.

VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

00

Dx

01

10

11

00

Fx

01

10

11

00

Ex

01

10

11

Opcode and Operand Encodings 539

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh]
VEX.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-1x . . .
VMOVAPS1 VMOVAPS1 VMOVNTPS1 VUCOMISS2 VCOMISS2

Vpsx, Wpsx Wpsx, Vpsx Mpsx, Vpsx Vss, Wss Vss, Wss

VMOVAPD1 VMOVAPD1 VMOVNTPD1 VUCOMISD2 VCOMISD2

Vpdx, Wpdx Wpdx, Vpdx Mpdx, Vpdx Vsd, Wsd Vsd, Wsd

VCVTSI2SS2 VCVTTSS2SI2 VCVTSS2SI2

Vo, Ho, Ey Gy, Wss Gy, Wss

VCVTSI2SD2 VCVTTSD2SI2 VCVTSD2SI2

Vo, Ho, Ey Gy, Wsd Gy, Wsd

. . . 3x-4x . . .
VADDPS1 VMULPS1 VCVTPS2PD1 VCVTDQ2PS1 VSUBPS1 VMINPS1 VDIVPS1 VMAXPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpdx, Wpsx Vpsx, Wpjx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VADDPD1 VMULPD1 VCVTPD2PS1 VCVTPS2DQ1 VSUBPD1 VMINPD1 VDIVPD1 VMAXPD1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpsx, Wpdx Vpjx, Wpsx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VADDSS2 VMULSS2 VCVTSS2SD2 VCVTTPS2DQ1 VSUBSS2 VMINSS2 VDIVSS2 VMAXSS2

Vss, Hss, Wss Vss, Hss, Wss Vo, Ho, Wss Vpjx, Wpsx Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss

VADDSD2 VMULSD2 VCVTSD2SS2 VSUBSD2 VMINSD2 VDIVSD2 VMAXSD2

Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vo, Ho, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd

VPUNPCKHBW1 VPUNPCKHWD1 VPUNPCKHDQ1 VPACKSSDW1 VPUNPCKLQDQ1 VPUNPCKHQDQ1 VMOVD VMOVQ VMOVDQA1

Vpbx, Hpbx, Wpbx Vpwx, Hpwx, Wpwx Vpdwx, Hpdwx, Vpix, Hpjx, Wpjx Vpqwx, Hpqwx, Vpqwx, Hpqwx, Vo, Ey Vpqwx, Wpqwx
Wpdwx Wpqwx Wpqwx (VEX.L=0)

VMOVDQU1

Vpqwx, Wpqwx

VHADDPD1 VHSUBPD1 VMOVD VMOVQ VMOVDQA1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Ey, Vo Wpqwx, Vpqwx
(VEX.L=1)
VMOVQ VMOVDQU1

Vq, Wq Wpqwx, Vpqwx
(VEX.L=0)

VHADDPS1 VHSUBPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

. . . 8x-9x . . .
VEX group #15

. . . Bx-Cx . . .

VPSUBUSB1 VPSUBUSW1 VPMINUB1 VPAND1 VPADDUSB1 VPADDUSW1 VPMAXUB1 VPANDN1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpkx, Hpkx, Wpkx Vx, Hx, Wx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpkx, Hpkx, Wpkx Vx, Hx, Wx

VPSUBSB1 VPSUBSW1 VPMINSW1 VPOR1 VPADDSB1 VPADDSW1 VPMAXSW1 VPXOR1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpix, Hpix, Wpix Vx, Hx, Wx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpix, Hpix, Wpix Vx, Hx, Wx

VPSUBB1 VPSUBW1 VPSUBD1 VPSUBQ1 VPADDB1 VPADDW1 VPADDD1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpxj, Hpjx, Wpjx Vpqx, Hpqx, Wpqx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 2: Operands are scalars. VEX.L bit is ignored.

2x

5x

Dx

Ex

6x

7x

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

n/a

00

01

00

01

00

01
Fx

Ax

540 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h]

VEX.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7
VPSHUFB1 VPHADDW1 VPHADDD1 VPHADDSW1 VPMADDUBSW1 VPHSUBW1 VPHSUBD1 VPHSUBSW1

01 Vpbx, Hpbx, Wpbx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx Vpix, Hpix, Wpix Vpix, Hpkx, Wpkx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx Vpix, Hpix, Wpix

VCVTPH2PS1 VPERMPS VPTEST1,4

01 Vpsx, Wphx Vps, Hd, Wps Vx, Wx

VPMOVSXBW1 VPMOVSXBD1 VPMOVSXBQ1 VPMOVSXWD1 VPMOVSXWQ1 VPMOVSXDQ1

01 Vpix, Wpkx Vpjx, Wpkx Vpqx, Wpkx Vpjx, Wpix Vpqx, Wpix Vpqx, Wpjx

VPMOVZXBW1 VPMOVZXBD1 VPMOVZXBQ1 VPMOVZXWD1 VPMOVZXWQ1 VPMOVZXDQ1 VPERMD VPCMPGTQ1

01 Vpix, Wpkx Vpjx, Wpkx Vpqx, Wpkx Vpjx, Wpix Vpqx, Wpix Vpqx, Wpjx Vd, Hd, Wd Vpqx, Hpqx, Wpqx

VPMULLD1 VPHMINPOSUW VPSRLV- VPSRAVD1 VPSLLV-
01 Vpjx, Hpjx, Wpxj Vo, Wpi D1 Vx, Hx, Wx (W=0) Vpdwx, Hpdwx, D1 Vx, Hx, Wx (W=0)

Q1 Vx, Hx, Wx (W=1) Wpdwx Q1 Vx, Hx, Wx (W=1)
... 5x-8x ...

5VPGATHERD- 5VPGATHERQ- 5VGATHERD- 5VGATHERQ- 2VFMADDSUB132- 3VFMSUBADD132-
D1 Vx, M*d, Hpdw (W=0) D1 Vx, M*d, Hpdw (W=0) PS1 Vx,M*ps,Hpsx (W=0) PS1 Vx,M*ps,Hps (W=0) PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)

Q1 Vx, M*q, Hpqwx (W=1) Q1 Vx, M*q, Hpqw (W=1) PD1 Vx,M*pd,Hpdx (W=1) PD1 Vx,M*pd,Hpdx (W=1) PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)
VFMADDSUB213- VFMSUBADD213-

PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

VFMADDSUB231- VFMSUBADD231-
PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

... Cx-Ex ...

ANDN BZHI BEXTR
Gy, By, Ey Gy, Ey, By Gy, Ey, By

PEXT SHLX
01 Gy, By, Ey Gy, Ey, By

SARX
10 Gy, Ey, By

PDEP MULX SHRX
11 Gy, By, Ey Gy, By, Ey Gy, Ey, By

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 2: For all VFMADDSUBnnnPS instructions, the data type is packed single-precision floating point.

For all VFMADDSUBnnnPD instructions, the data type is packed double-precision floating point.
Note 3: For all VFMSUBADDnnnPS instructions, the data type is packed single-precision floating point.

For all VFMSUBADDnnnPD instructions, the data type is packed double-precision floating point.
Note 4: Operands are treated a bit vectors.
Note 5: Uses VSIB addressing mode.

4x

0x

2x

1x

3x

00

Fx VEX group #17

01 9x

01 Ax

01 Bx

Opcode and Operand Encodings 541

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh]

542 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h]

VEX.pp Nibble x0 x1 x2 x3 x4 x5 x6 x7

VPERMQ VPERMPD VPBLENDD1 VPERMILPS1 VPERMILPD1 VPERM2F128
Vq, Wq, Ib Vpd, Wpd, Ib Vpdwx, Hpdwx, Vpsx, Wpsx, Ib Vpdx, Wpdx, Ib Vdo, Ho, Wo, Ib

Wpdwx, Ib (VEX.L=1)

VPEXTRB VPEXTRW VPEXTRD VEXTRACTPS
Mb, Vpb, Ib Mw, Vpw, Ib Ed, Vpdw, Ib Mss, Vps, Ib

VPEXTRB VPEXTRW VPEXTRQ VEXTRACTPS
Ry, Vpb, Ib Ry, Vpw, Ib Eq, Vpqw, Ib Rss, Vps, Ib

VPINSRD
Vpdw, Hpdw, Ed, Ib

VPINSRB VINSERTPS (W=0)
Vpb, Hpb, Wb, Ib Vps, Hps, Ups/Md, VPINSRQ

Vpdw, Hpqw, Eq, Ib
 (W=1)

. . . 3x . . .

VDPPS1 VDPPD VMPSADBW1 VPCLMULQDQ VPERM2I128
Vpsx, Hpsx, Wpsx, Vpd, Hpd, Wpd, Ib Vpix, Hpkx, Wpkx, Vo, Hpq, Wpq, Ib Vo, Ho, Wo, ib

 Ib Ib

. . . 5x . . .

VPCMPESTRM VPCMPESTRI VPCMPISTRM VPCMPISTRI
Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib

. . . 7x-Ex . . .

10

RORX
11 Gy, Ey, ib

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.

0x

1x

4x

2x
01

00

01

00

01

00

Fx

00

01

00

01

6x

Opcode and Operand Encodings 543

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh]

VEX.pp Opcode x8 x9 xA xB xC xD xE xF
VROUNDPS1 VROUNDPD1 VROUNDSS VROUNDSD VBLENDPS1 VBLENDPD1 VPBLENDW1 VPALIGNR1

Vpsx, Wpsx, Ib Vpdx, Wpdx, Ib Vss, Hss, Wss, Ib Vsd, Hsd, Wsd, Ib Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx, Vpwx, Hpwx, Wpwx, Vpbx, Hpbx, Wpbx,
Ib Ib Ib Ib

VINSERTF128 VEXTRACTF128 VCVTPS2PH1

Vdo, Hdo, Wo, Ib Wo, Vdo, Ib Wph, Vps, Ib

. . . 2x . . .
VINSERTI128 VEXTRACTI128

Vdo, Hdo, Wo, Ib Wo, Vdo, Ib

VPERMILzz2PS1,2 VPERMILzz2PD1,2 VBLENDVPS1 VBLENDVPD1 VPBLENDVB1

Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx, Vpbx, Hpbx, Wpbx,
Lpsx, Ib (W=0) Lpdx, Ib (W=0) Lpdx Lpdx Lx

Vpsx, Hpsx, Lpsx, Vpdx, Hpdx, Lpdx,
Wpsx, Ib (W=1) Wpdx, Ib (W=1)

VFMADDSUBPS1 VFMADDSUBPD1 VFMSUBADDPS1 VFMSUBADDPD1

Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx,
Hpsx (W=0) Hpdx (W=0) Hpsx (W=0) Hpdx (W=0)

Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx,
Wpsx (W=1) Wpdx (W=1) Wpsx (W=1) Wpdx (W=1)

VFMADDPS1 VFMADDPD1 VFMADDSS VFMADDSD VFMSUBPS1 VFMSUBPD1 VFMSUBSS VFMSUBSD
Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd

Hpsx (W=0) Hpdx (W=0) (W=0) (W=0) Hpsx (W=0) Hpdx (W=0) (W=0) (W=0)
Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd

Wpsx (W=1) Wpdx (W=1) (W=1) (W=1) Wpsx (W=1) Wpdx (W=1) (W=1) (W=1)
VFNMADDPS1 VFNMADDPD1 VFNMADDSS VFNMADDSD VFNMSUBPS1 VFNMSUBPD1 VFNMSUBSS VFNMSUBSD

Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd
Hpsx (W=0) Hpdx (W=0) (W=0) (W=0) Hpsx (W=0) Hpdx (W=0) (W=0) (W=0)

Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd
Wpsx (W=1) Wpdx (W=1) (W=1) (W=1) Wpsx (W=1) Wpdx (W=1) (W=1) (W=1)

. . . 8x-Cx . . .
VAESKEYGEN-

ASSIST
Vo, Wo, Ib

. . . Ex-Fx . . .
Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 2: The zero match codes are TD, TD (alias), MO, and MZ. They are encoded as the zzzz field of the Ib, using 0...3h. ~

Dx

01

01

01

01

01

01

01

01

6x

7x

0x

1x

3x

4x

5x

544 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-24. VEX Opcode Groups

XOP Opcode Maps. Tables A-25 – A-30 below present the XOP opcode maps and Table A-31 on
page 546 presents the VEX opcode groups.

Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]

Number
VEX Map,
Opcode VEX.pp xx000xxx xx001xxx xx010xxx xx011xxx xx100xxx xx101xxx xx110xxx xx111xxx

1 VPSRLW1 VPSRAW1 VPSLLW1

71 Hpwx, Upwx, Ib Hpwx, Upwx, Ib Hpwx, Upwx, Ib

1 VPSRLD1 VPSRAD1 VPSLLD1

72 Hpdwx, Updwx, Ib Hpdwx, Updwx, Ib Hpdwx, Updwx, Ib

1 VPSRLQ1 VPSRLDQ1 VPSLLQ1 VPSLLDQ1

73 Hpqwx, Upqwx, Ib Hpbx, Upbx, Ib Hpqwx, Upqwx, Ib Hpbx, Upbx, Ib

1
AE VLDMXCSR Md VSTMXCSR Md

2 BLSR BLSMSK BLSI
F3 By, Ey By, Ey By, Ey

Note: 1. Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.

ModRM ByteGroup

12

13

14

15

17

01

01

01

00

00

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 0x-7x . . .
VPMACSSWW VPMACSSWD VPMACSSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSWW VPMACSWD VPMACSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPCMOV VPPERM VPMADCSSWD
Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wo,Lo (W=0) Vo,Ho,Wo,Lo
Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wo (W=1)

VPMADCSWD
Vo,Ho,Wo,Lo

VPROTB VPROTW VPROTD VPROTQ
Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib

. . . Dx-Fx . . .

Ax

8x

9x

Bx

Cx00

00

00

00

00

Opcode and Operand Encodings 545

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh]

Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-07x . . .
VPMACSSDD VPMACSSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSDD VPMACSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

. . . Ax-Bx . . .
VPCOMccB1 VPCOMccW1 VPCOMccD1 VPCOMccQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

VPCOMccUB1 VPCOMccUW1 VPCOMccUD1 VPCOMccUQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

00

Note 1: The condition codes are LT, LE, GT, GE, EQ, NEQ, FALSE, and TRUE. They are encoded via Ib, using 00...07h.

Fx

00

00

00

00

00

8x

9x

Cx

Dx

Ex

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 2x-7x . . .
VFRCZPS VFRCZPD VFRCZSS VFRCZSD

Vx,Wx Vx,Wx Vq,Wss Vq,Wsd

VPROTB VPROTW VPROTD VPROTQ VPSHLB VPSHLW VPSHLD VPSHLQ
Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . Ax-Bx . . .
VPHADDBW VPHADDBD VPHADDBQ VPHADDWD VPHADDWQ

Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHADDUBWD VPHADDUBD VPHADDUBQ VPHADDUWD VPHADDUWQ
Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHSUBBW VPHSUBWD VPHSUBDQ
Vo,Wo Vo,Wo Vo,Wo

. . . Fx . . .

00

00

00

00

00

XOP group #1 XOP group #2

XOP group #3

00

00

Cx

Dx

Ex

0x

1x

8x

9x

546 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh]

Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h]

Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh]

Table A-31. XOP Opcode Groups

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-8x . . .
VPSHAB VPSHAW VPSHAD VPSHAQ

Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . Ax-Bx . . .
VPHADDDQ

Vo,Wo

VPHADDUDQ
Vo,Wo

. . . Ex-Fx . . .

00

00

00

9x

Cx

Dx

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 0x . . .
BEXTR XOP group #4

Gy,Ey,Id

. . . 2x-Fx . . .

1x00

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

0x-Fxn/a

Opcodes Reserved

/0 /1 /2 /3 /4 /5 /6 /7
XOP BLCFILL BLSFILL BLCS TZMSK BLCIC BLSIC T1MSKC

9 By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey
01

XOP BLCMSK BLCI
9 By,Ey By,Ey
02

XOP LLWPCB SLWPCB
9 Ry Ry
12

XOP LWPINS LWPVAL
A By,Ed,Id By,Ed,Id
12

ModRM.reg

#1

#2

#3

#4

Group

Opcode and Operand Encodings 547

24594—Rev. 3.32—March 2021 AMD64 Technology

A.2 Operand Encodings

An operand is data that affects or is affected by the execution of an instruction. Operands may be
located in registers, memory, or I/O ports. For some instructions, the location of one or more operands
is implicitly specified based on the opcode alone. However, for most instructions, operands are
specified using bytes that immediately follow the opcode byte. These bytes are designated the mode-
register-memory (ModRM) byte, the scale-index-base (SIB) byte, the displacement byte(s), and the
immediate byte(s). The presence of the SIB, displacement, and immediate bytes are optional
depending on the instruction, and, for instructions that reference memory, the memory addressing
mode.

The following sections describe the encoding of the ModRM and SIB bytes in various processor
modes.

A.2.1 ModRM Operand References

Figure A-2 below shows the format of the ModRM byte. There are three fields—mod, reg, and r/m.
The reg field is normally used to specify a register-based operand. The mod and r/m fields together
provide a 5-bit field, augmented in 64-bit mode by the R and B bits of a REX, VEX, or XOP prefix,
normally used to specify the location of a second memory- or register-based operand and, for a
memory-based operand, the addressing mode.

As described in “Encoding Extensions Using the ModRM Byte” on page 517, certain instructions use
either the reg field, the r/m field, or the entire ModRM byte to extend the opcode byte in the encoding
of the instruction operation.

Figure A-2. ModRM-Byte Format

The two sections below describe the ModRM operand encodings, first for 16-bit references and then
for 32-bit and 64-bit references.

16-Bit Register and Memory References. Table A-32 shows the notation and encoding
conventions for register references using the ModRM reg field. This table is comparable to Table A-34
on page 550 but applies only when the address-size is 16-bit. Table A-33 on page 548 shows the

mod

REX.R, VEX.R or XOP.R
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

reg r/m ModRM
01234567

548 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

notation and encoding conventions for 16-bit memory references using the ModRM byte. This table is
comparable to Table A-35 on page 551.

Table A-32. ModRM reg Field Encoding, 16-Bit Addressing

Mnemonic
Notation

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

reg8 AL CL DL BL AH CH DH BH

reg16 AX CX DX BX SP BP SI DI

reg32 EAX ECX EDX EBX ESP EBP ESI EDI

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

ymm YMM0 YMM1 YMM2 YMM3 YMM4 YMM5 YMM6 YMM7

sReg ES CS SS DS FS GS invalid invalid

cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

Table A-33. ModRM Byte Encoding, 16-Bit Addressing

Effective Address

ModRM
mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

[BX] + [SI]

00

00 08 10 18 20 28 30 38 000

[BX] + [DI] 01 09 11 19 21 29 31 39 001

[BP] + [SI] 02 0A 12 1A 22 2A 32 3A 010

[BP] + [DI] 03 0B 13 1B 23 2B 33 3B 011

[SI] 04 0C 14 1C 24 2C 34 3C 100

[DI] 05 0D 15 1D 25 2D 35 3D 101

disp16 06 0E 16 1E 26 2E 36 3E 110

[BX] 07 0F 17 1F 27 2F 37 3F 111

Notes:
1. See Table A-32 for complete specification of ModRM “reg” field.

Opcode and Operand Encodings 549

24594—Rev. 3.32—March 2021 AMD64 Technology

Register and Memory References for 32-Bit and 64-Bit Addressing. Table A-34 on
page 550 shows the encoding for register references using the ModRM reg field. The first ten rows of
Table A-34 show references when the REX.R bit is cleared to 0, and the last ten rows show references
when the REX.R bit is set to 1. In this table, entries under the Mnemonic Notation heading correspond

[BX] + [SI] + disp8

01

40 48 50 58 60 68 70 78 000

[BX] + [DI] + disp8 41 49 51 59 61 69 71 79 001

[BP] + [SI] + disp8 42 4A 52 5A 62 6A 72 7A 010

[BP] + [DI] + disp8 43 4B 53 5B 63 6B 73 7B 011

[SI] + disp8 44 4C 54 5C 64 6C 74 7C 100

[DI] + disp8 45 4D 55 5D 65 6D 75 7D 101

[BP] + disp8 46 4E 56 5E 66 6E 76 7E 110

[BX] + disp8 47 4F 57 5F 67 6F 77 7F 111

[BX] + [SI] + disp16

10

80 88 90 98 A0 A8 B0 B8 000

[BX] + [DI] + disp16 81 89 91 99 A1 A9 B1 B9 001

[BP] + [SI] + disp16 82 8A 92 9A A2 AA B2 BA 010

[BP] + [DI] + disp16 83 8B 93 9B A3 AB B3 BB 011

[SI] + disp16 84 8C 94 9C A4 AC B4 BC 100

[DI] + disp16 85 8D 95 9D A5 AD B5 BD 101

[BP] + disp16 86 8E 96 9E A6 AE B6 BE 110

[BX] + disp16 87 8F 97 9F A7 AF B7 BF 111

AL/ AX/ EAX/ MMX0/ XMM0/ YMM0

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/ CX/ ECX/ MMX1/ XMM1/ YMM1 C1 C9 D1 D9 E1 E9 F1 F9 001

DL/ DX/ EDX/ MMX2/ XMM2/ YMM2 C2 CA D2 DA E2 EA F2 FA 010

BL/ BX/ EBX/ MMX3/ XMM3/ YMM3 C3 CB D3 DB E3 EB F3 FB 011

AH/ SP/ ESP/ MMX4/ XMM4/ YMM4 C4 CC D4 DC E4 EC F4 FC 100

CH/ BP/ EBP/ MMX5/ XMM5/ YMM5 C5 CD D5 DD E5 ED F5 FD 101

DH/ SI/ ESI/ MMX6/ XMM6/ YMM6 C6 CE D6 DE E6 EE F6 FE 110

BH/ DI/ EDI/ MMX7/ XMM7/ YMM7 C7 CF D7 DF E7 EF F7 FF 111

Table A-33. ModRM Byte Encoding, 16-Bit Addressing (continued)

Effective Address

ModRM
mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

Notes:
1. See Table A-32 for complete specification of ModRM “reg” field.

550 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

to register notation described in “Mnemonic Syntax” on page 52, and the /r notation under the ModRM
reg Field heading corresponds to that described in “Opcode Syntax” on page 55.

Table A-35 on page 551 shows the encoding for 32-bit and 64-bit memory references using the
ModRM byte. This table describes 32-bit and 64-bit addressing, with the REX.B bit set or cleared. The
Effective Address is shown in the two left-most columns, followed by the binary encoding of the
ModRM-byte mod field, followed by the eight possible hex values of the complete ModRM byte (one
value for each binary encoding of the ModRM-byte reg field), followed by the binary encoding of the
ModRM r/m field.

The /0 through /7 notation for the ModRM reg field (bits [5:3]) means that the three-bit field contains a
value from zero (binary 000) to 7 (binary 111).

Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing

Mnemonic
Notation

REX.R Bit
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

reg8

0

AL CL DL BL AH/SPL CH/BPL DH/SIL BH/DIL

reg16 AX CX DX BX SP BP SI DI

reg32 EAX ECX EDX EBX ESP EBP ESI EDI

reg64 RAX RCX RDX RBX RSP RBP RSI RDI

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

ymm YMM0 YMM1 YMM2 YMM3 YMM4 YMM5 YMM6 YMM7

sReg ES CS SS DS FS GS invalid invalid

cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

reg8

1

R8B R9B R10B R11B R12B R13B R14B R15B

reg16 R8W R9W R10W R11W R12W R13W R14W R15W

reg32 R8D R9D R10D R11D R12D R13D R14D R15D

reg64 R8 R9 R10 R11 R12 R13 R14 R15

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15

ymm YMM8 YMM9 YMM10 YMM11 YMM12 YMM13 YMM14 YMM15

sReg ES CS SS DS FS GS invalid invalid

cReg CR8 CR9 CR10 CR11 CR12 CR13 CR14 CR15

dReg DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

Opcode and Operand Encodings 551

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing

Effective Address
ModRM

mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

[rAX] [r8]

00

00 08 10 18 20 28 30 38 000

[rCX] [r9] 01 09 11 19 21 29 31 39 001

[rDX] [r10] 02 0A 12 1A 22 2A 32 3A 010

[rBX] [r11] 03 0B 13 1B 23 2B 33 3B 011

SIB2 SIB2 04 0C 14 1C 24 2C 34 3C 100

[rIP] + disp32 or

disp323
[rIP] + disp32 or

disp323 05 0D 15 1D 25 2D 35 3D 101

[rSI] [r14] 06 0E 16 1E 26 2E 36 3E 110

[rDI] [r15] 07 0F 17 1F 27 2F 37 3F 111

[rAX] + disp8 [r8] + disp8

01

40 48 50 58 60 68 70 78 000

[rCX] + disp8 [r9] + disp8 41 49 51 59 61 69 71 79 001

[rDX] + disp8 [r10] + disp8 42 4A 52 5A 62 6A 72 7A 010

[rBX] + disp8 [r11] + disp8 43 4B 53 5B 63 6B 73 7B 011

[SIB] + disp8 [SIB] + disp8 44 4C 54 5C 64 6C 74 7C 100

[rBP] + disp8 [r13] + disp8 45 4D 55 5D 65 6D 75 7D 101

[rSI] + disp8 [r14] + disp8 46 4E 56 5E 66 6E 76 7E 110

[rDI] + disp8 [r15] + disp8 47 4F 57 5F 67 6F 77 7F 111

[rAX] + disp32 [r8] + disp32

10

80 88 90 98 A0 A8 B0 B8 000

[rCX] + disp32 [r9] + disp32 81 89 91 99 A1 A9 B1 B9 001

[rDX] + disp32 [r10] + disp32 82 8A 92 9A A2 AA B2 BA 010

[rBX] + disp32 [r11] + disp32 83 8B 93 9B A3 AB B3 BB 011

SIB + disp32 SIB + disp32 84 8C 94 9C A4 AC B4 BC 100

[rBP] + disp32 [r13] + disp32 85 8D 95 9D A5 AD B5 BD 101

[rSI] + disp32 [r14] + disp32 86 8E 96 9E A6 AE B6 BE 110

[rDI] + disp32 [r15] + disp32 87 8F 97 9F A7 AF B7 BF 111

Notes:
1. See Table A-34 for complete specification of ModRM “reg” field.
2. If SIB.base = 5, the SIB byte is followed by four-byte disp32 field and addressing mode is absolute.
3. In 64-bit mode, the effective address is [rIP]+disp32. In all other modes, the effective address is disp32. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP]+disp32 effective address is trun-
cated after computation to 32 bits.

552 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.2.2 SIB Operand References

Figure A-3 on page 553 shows the format of a scale-index-base (SIB) byte. Some instructions have an
SIB byte following their ModRM byte to define memory addressing for the complex-addressing
modes described in “Effective Addresses” in Volume 1. The SIB byte has three fields—scale, index,
and base—that define the scale factor, index-register number, and base-register number for 32-bit and
64-bit complex addressing modes. In 64-bit mode, the REX.B and REX.X bits extend the encoding of
the SIB byte’s base and index fields.

AL/rAX/MMX0/XMM0/
YMM0

r8/MMX0/XMM8/
YMM8

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/rCX/MMX1/XMM1/
YMM1

r9/MMX1/XMM9/
YMM9

C1 C9 D1 D9 E1 E9 F1 F9 001

DL/rDX/MMX2/XMM2/
YMM2

r10/MMX2/XMM10/
YMM10

C2 CA D2 DA E2 EA F2 FA 010

BL/rBX/MMX3/XMM3/
YMM3

r11/MMX3/XMM11/
YMM11

C3 CB D3 DB E3 EB F3 FB 011

AH/SPL/rSP/MMX4/
XMM4/YMM4

r12/MMX4/XMM12/
YMM12

C4 CC D4 DC E4 EC F4 FC 100

CH/BPL/rBP/MMX5/
XMM5/YMM5

r13/MMX5/XMM13/
YMM13

C5 CD D5 DD E5 ED F5 FD 101

DH/SIL/rSI/MMX6/
XMM6/YMM6

r14/MMX6/XMM14/
YMM14

C6 CE D6 DE E6 EE F6 FE 110

BH/DIL/rDI/MMX7/
XMM7/YMM7

r15/MMX7/XMM15/
YMM15

C7 CF D7 DF E7 EF F7 FF 111

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing (continued)

Effective Address
ModRM

mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

Notes:
1. See Table A-34 for complete specification of ModRM “reg” field.
2. If SIB.base = 5, the SIB byte is followed by four-byte disp32 field and addressing mode is absolute.
3. In 64-bit mode, the effective address is [rIP]+disp32. In all other modes, the effective address is disp32. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP]+disp32 effective address is trun-
cated after computation to 32 bits.

Opcode and Operand Encodings 553

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure A-3. SIB Byte Format

Table A-36 shows the encodings for the SIB byte’s base field, which specifies the base register for
addressing. Table A-37 on page 554 shows the encodings for the effective address referenced by a
complete SIB byte, including its scale and index fields. The /0 through /7 notation for the SIB base
field means that the three-bit field contains a value between zero (binary 000) and 7 (binary 111).

Table A-36. Addressing Modes: SIB base Field Encoding

REX.B Bit ModRM mod Field
SIB base Field

/0 /1 /2 /3 /4 /5 /6 /7

0

00

[rAX] [rCX] [rDX] [rBX] [rSP]

disp32

[rSI] [rDI]01 [rBP] + disp8

10 [rBP] + disp32

1

00

[r8] [r9] [r10] [r11] [r12]

disp32

[r14] [r15]01 [r13] + disp8

10 [r13] + disp32

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

554 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-37. Addressing Modes: SIB Byte Encoding

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0 rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1 r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

[rAX] + [base] [r8] + [base]

00

000 00 01 02 03 04 05 06 07

[rCX] + [base] [r9] + [base] 001 08 09 0A 0B 0C 0D 0E 0F

[rDX] + [base] [r10] + [base] 010 10 11 12 13 14 15 16 17

[rBX] + [base] [r11] + [base] 011 18 19 1A 1B 1C 1D 1E 1F

[base] [r12] + [base] 100 20 21 22 23 24 25 26 27

[rBP] + [base] [r13] + [base] 101 28 29 2A 2B 2C 2D 2E 2F

[rSI] + [base] [r14] + [base] 110 30 31 32 33 34 35 36 37

[rDI] + [base] [r15] + [base] 111 38 39 3A 3B 3C 3D 3E 3F

[rAX] * 2 + [base] [r8] * 2 + [base]

01

000 40 41 42 43 44 45 46 47

[rCX] * 2 + [base] [r9] * 2 + [base] 001 48 49 4A 4B 4C 4D 4E 4F

[rDX] * 2 + [base] [r10] * 2 + [base] 010 50 51 52 53 54 55 56 57

[rBX] * 2 + [base] [r11] * 2 + [base] 011 58 59 5A 5B 5C 5D 5E 5F

[base] [r12] * 2 + [base] 100 60 61 62 63 64 65 66 67

[rBP] * 2 + [base] [r13] * 2 + [base] 101 68 69 6A 6B 6C 6D 6E 6F

[rSI] * 2 + [base] [r14] * 2 + [base] 110 70 71 72 73 74 75 76 77

[rDI] * 2 + [base] [r15] * 2 + [base] 111 78 79 7A 7B 7C 7D 7E 7F

[rAX] * 4 + [base] [r8] * 4 + [base]

10

000 80 81 82 83 84 85 86 87

[rCX] * 4 + [base] [r9] * 4 + [base] 001 88 89 8A 8B 8C 8D 8E 8F

[rDX] * 4 + [base] [r10] * 4 + [base] 010 90 91 92 93 94 95 96 97

[rBX] * 4 + [base] [r11] * 4 + [base] 011 98 99 9A 9B 9C 9D 9E 9F

[base] [r12] * 4 + [base] 100 A0 A1 A2 A3 A4 A5 A6 A7

[rBP]*4+[base] [r13] * 4 + [base] 101 A8 A9 AA AB AC AD AE AF

[rSI]*4+[base] [r14] * 4 + [base] 110 B0 B1 B2 B3 B4 B5 B6 B7

[rDI]*4+[base] [r15] * 4 + [base] 111 B8 B9 BA BB BC BD BE BF

Notes:
1. See Table A-36 on page 553 for complete specification of SIB base field.

Opcode and Operand Encodings 555

24594—Rev. 3.32—March 2021 AMD64 Technology

[rAX] * 8 + [base] [r8] * 8 + [base]

11

000 C0 C1 C2 C3 C4 C5 C6 C7

[rCX] * 8 + [base] [r9] * 8 + [base] 001 C8 C9 CA CB CC CD CE CF

[rDX] * 8 + [base] [r10] * 8 + [base] 010 D0 D1 D2 D3 D4 D5 D6 D7

[rBX] * 8 + [base] [r11] * 8 + [base] 011 D8 D9 DA DB DC DD DE DF

[base] [r12] * 8 + [base] 100 E0 E1 E2 E3 E4 E5 E6 E7

[rBP] * 8 + [base] [r13] * 8 + [base] 101 E8 E9 EA EB EC ED EE EF

[rSI] * 8 + [base] [r14] * 8 + [base] 110 F0 F1 F2 F3 F4 F5 F6 F7

[rDI] * 8 + [base] [r15] * 8 + [base] 111 F8 F9 FA FB FC FD FE FF

Table A-37. Addressing Modes: SIB Byte Encoding (continued)

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0 rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1 r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

Notes:
1. See Table A-36 on page 553 for complete specification of SIB base field.

556 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

General-Purpose Instructions in 64-Bit Mode 557

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix B General-Purpose Instructions in
64-Bit Mode

This appendix provides details of the general-purpose instructions in 64-bit mode and its differences
from legacy and compatibility modes. The appendix covers only the general-purpose instructions
(those described in Chapter 3, “General-Purpose Instruction Reference”). It does not cover the 128-bit
media, 64-bit media, or x87 floating-point instructions because those instructions are not affected by
64-bit mode, other than in the access by such instructions to extended GPR and XMM registers when
using a REX prefix.

B.1 General Rules for 64-Bit Mode

In 64-bit mode, the following general rules apply to instructions and their operands:

• “Promoted to 64 Bit”: If an instruction’s operand size (16-bit or 32-bit) in legacy and
compatibility modes depends on the CS.D bit and the operand-size override prefix, then the
operand-size choices in 64-bit mode are extended from 16-bit and 32-bit to include 64 bits (with a
REX prefix), or the operand size is fixed at 64 bits. Such instructions are said to be “Promoted to
64 bits” in Table B-1. However, byte-operand opcodes of such instructions are not promoted.

• Byte-Operand Opcodes Not Promoted: As stated above in “Promoted to 64 Bit”, byte-operand
opcodes of promoted instructions are not promoted. Those opcodes continue to operate only on
bytes.

• Fixed Operand Size: If an instruction’s operand size is fixed in legacy mode (thus, independent of
CS.D and prefix overrides), that operand size is usually fixed at the same size in 64-bit mode. For
example, CPUID operates on 32-bit operands, irrespective of attempts to override the operand
size.

• Default Operand Size: The default operand size for most instructions is 32 bits, and a REX prefix
must be used to change the operand size to 64 bits. However, two groups of instructions default to
64-bit operand size and do not need a REX prefix: (1) near branches and (2) all instructions, except
far branches, that implicitly reference the RSP. See Table B-5 on page 587 for a list of all
instructions that default to 64-bit operand size.

• Zero-Extension of 32-Bit Results: Operations on 32-bit operands in 64-bit mode zero-extend the
high 32 bits of 64-bit GPR destination registers.

• No Extension of 8-Bit and 16-Bit Results: Operations on 8-bit and 16-bit operands in 64-bit
mode leave the high 56 or 48 bits, respectively, of 64-bit GPR destination registers unchanged.

• Shift and Rotate Counts: When the operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count, allowing 64-bit shifts and rotates.

• Immediates: The maximum size of immediate operands is 32 bits, except that 64-bit immediates
can be MOVed into 64-bit GPRs. Immediates that are less than 64 bits are a maximum of 32 bits,
and are sign-extended to 64 bits during use.

558 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

• Displacements and Offsets: The maximum size of an address displacement or offset is 32 bits,
except that 64-bit offsets can be used by specific MOV opcodes that read or write AL or rAX.
Displacements and offsets that are less than 64 bits are a maximum of 32 bits, and are sign-
extended to 64 bits during use.

• Undefined High 32 Bits After Mode Change: The processor does not preserve the upper 32 bits
of the 64-bit GPRs across switches from 64-bit mode to compatibility or legacy modes. In
compatibility or legacy mode, the upper 32 bits of the GPRs are undefined and not accessible to
software.

B.2 Operation and Operand Size in 64-Bit Mode

Table B-1 lists the integer instructions, showing operand size in 64-bit mode and the state of the high
32 bits of destination registers when 32-bit operands are used. Opcodes, such as byte-operand versions
of several instructions, that do not appear in Table B-1 are covered by the general rules described in
“General Rules for 64-Bit Mode” on page 557.

Table B-1. Operations and Operands in 64-Bit Mode

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

AAA - ASCII Adjust after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

37

AAD - ASCII Adjust AX before Division
INVALID IN 64-BIT MODE (invalid-opcode exception)

D5

AAM - ASCII Adjust AX after Multiply
INVALID IN 64-BIT MODE (invalid-opcode exception)

D4

AAS - ASCII Adjust AL after Subtraction
INVALID IN 64-BIT MODE (invalid-opcode exception)

3F

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 559

24594—Rev. 3.32—March 2021 AMD64 Technology

ADC—Add with Carry

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

11

13

15

81 /2

83 /2

ADD—Signed or Unsigned Add

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

01

03

05

81 /0

83 /0

AND—Logical AND

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

21

23

25

81 /4

83 /4

ARPL - Adjust Requestor Privilege Level
OPCODE USED as MOVSXD in 64-BIT MODE

63

BOUND - Check Array Against Bounds
INVALID IN 64-BIT MODE (invalid-opcode exception)

62

BSF—Bit Scan Forward
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F BC

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

560 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

BSR—Bit Scan Reverse
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F BD

BSWAP—Byte Swap
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Swap all 8 bytes
of a 64-bit GPR.0F C8 through 0F CF

BT—Bit Test
Promoted to
64 bits.

32 bits No GPR register results.0F A3

0F BA /4

BTC—Bit Test and Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F BB

0F BA /7

BTR—Bit Test and Reset
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F B3

0F BA /6

BTS—Bit Test and Set
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F AB

0F BA /5

CALL—Procedure Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

E8
Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /2
Promoted to
64 bits.

64 bits Can’t encode.6

RIP = 64-bit
offset from
register or
memory.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 561

24594—Rev. 3.32—March 2021 AMD64 Technology

CALL—Procedure Call Far See “Branches to 64-Bit Offsets” in Volume 1.

9A INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /3
Promoted to
64 bits.

32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

CBW, CWDE, CDQE—Convert Byte to
Word, Convert Word to Doubleword,
Convert Doubleword to Quadword

Promoted to
64 bits.

32 bits

(size of desti-
nation regis-

ter)

CWDE: Converts
word to
doubleword.

Zero-extends
EAX to RAX.

CDQE (new
mnemonic):
Converts
doubleword to
quadword.

RAX = sign-
extended EAX.

98

CDQ see CWD, CDQ, CQO

CDQE (new mnemonic) see CBW, CWDE, CDQE

CDWE see CBW, CWDE, CDQE

CLC—Clear Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F8

CLD—Clear Direction Flag Same as
legacy mode.

Not relevant. No GPR register results.
FC

CLFLUSH—Cache Line Invalidate Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /7

CLGI—Clear Global Interrupt Same as
legacy mode

Not relevant No GPR register results.
0F 01 DD

CLI—Clear Interrupt Flag Same as
legacy mode.

Not relevant. No GPR register results.
FA

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

562 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

CLTS—Clear Task-Switched Flag in
CR0 Same as

legacy mode.
Not relevant. No GPR register results.

0F 06

CMC—Complement Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F5

CMOVcc—Conditional Move

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.
This occurs even
if the condition is
false.

0F 40 through 0F 4F

CMP—Compare

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

39

3B

3D

81 /7

83 /7

CMPS, CMPSW, CMPSD, CMPSQ—
Compare Strings

Promoted to
64 bits.

32 bits

CMPSD:
Compare String
Doublewords.

See footnote5

CMPSQ (new
mnemonic):
Compare String
Quadwords

See footnote5
A7

CMPXCHG—Compare and Exchange
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F B1

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 563

24594—Rev. 3.32—March 2021 AMD64 Technology

CMPXCHG8B—Compare and
Exchange Eight Bytes

Same as
legacy mode.

32 bits.
Zero-extends
EDX and EAX to
64 bits.

CMPXCHG16B
(new mne-

monic): Com-
pare and

Exchange 16
Bytes.

0F C7 /1

CPUID—Processor Identification
Same as
legacy mode.

Operand size
fixed at 32

bits.

Zero-extends 32-bit register results
to 64 bits. 0F A2

CQO (new mnemonic) see CWD, CDQ, CQO

CWD, CDQ, CQO—Convert Word to
Doubleword, Convert Doubleword to
Quadword, Convert Quadword to Double
Quadword

Promoted to
64 bits.

32 bits

(size of desti-
nation regis-

ter)

CDQ: Converts
doubleword to
quadword.

Sign-extends
EAX to EDX.
Zero-extends
EDX to RDX.
RAX is
unchanged.

CQO (new
mnemonic):
Converts
quadword to
double
quadword.

Sign-extends
RAX to RDX.
RAX is
unchanged.

99

DAA - Decimal Adjust AL after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

27

DAS - Decimal Adjust AL after
Subtraction INVALID IN 64-BIT MODE (invalid-opcode exception)

2F

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

564 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

DEC—Decrement by 1

FF /1
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

48 through 4F OPCODE USED as REX PREFIX in 64-BIT MODE

DIV—Unsigned Divide

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /6

ENTER—Create Procedure Stack
Frame Promoted to

64 bits.
64 bits Can’t encode6

C8

HLT—Halt Same as
legacy mode.

Not relevant. No GPR register results.
F4

IDIV—Signed Divide

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 565

24594—Rev. 3.32—March 2021 AMD64 Technology

IMUL - Signed Multiply

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX = RAX
* reg/mem64
(i.e., 128-bit
result)

F7 /5

0F AF
reg64 = reg64 *
reg/mem64

69
reg64 =
reg/mem64 *
imm32

6B
reg64 =
reg/mem64 *
imm8

IN—Input From Port
Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.

E5

ED

INC—Increment by 1
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.FF /0

40 through 47 OPCODE USED as REX PREFIX in 64-BIT MODE

INS, INSW, INSD—Input String
Same as
legacy mode.

32 bits

INSD: Input String Doublewords.

No GPR register results.

See footnote56D

INT n—Interrupt to Vector

Promoted to
64 bits.

Not relevant.
See “Long-Mode Interrupt Control
Transfers” in Volume 2.

CD

INT3—Interrupt to Debug Vector

CC

INTO - Interrupt to Overflow Vector
INVALID IN 64-BIT MODE (invalid-opcode exception)

CE

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

566 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

INVD—Invalidate Internal Caches Same as
legacy mode.

Not relevant. No GPR register results.
0F 08

INVLPG—Invalidate TLB Entry Promoted to
64 bits.

Not relevant. No GPR register results.
0F 01 /7

INVLPGA—Invalidate TLB Entry in a
Specified ASID

Same as
legacy mode.

Not relevant. No GPR register results.

IRET, IRETD, IRETQ—Interrupt Return

Promoted to
64 bits.

32 bits

IRETD: Interrupt
Return
Doubleword.

See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

IRETQ (new
mnemonic):
Interrupt Return
Quadword.

See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

CF

Jcc—Jump Conditional See “Near Branches in 64-Bit Mode” in Volume 1.

70 through 7F

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

0F 80 through 0F 8F

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

JCXZ, JECXZ, JRCXZ—Jump on
CX/ECX/RCX Zero

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5
E3

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 567

24594—Rev. 3.32—March 2021 AMD64 Technology

JMP—Jump Near See “Near Branches in 64-Bit Mode” in Volume 1.

EB

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

E9

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /4

RIP = 64-bit
offset from
register or
memory.

JMP—Jump Far See “Branches to 64-Bit Offsets” in Volume 1.

EA INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /5
Promoted to
64 bits.

32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

LAHF - Load Status Flags into AH
Register Same as leg-

acy mode.
Not relevant.

9F

LAR—Load Access Rights Byte
Same as
legacy mode.

32 bits
Zero-extends 32-
bit register
results to 64 bits. 0F 02

LDS - Load DS Far Pointer
INVALID IN 64-BIT MODE (invalid-opcode exception)

C5

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

568 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

LEA—Load Effective Address
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.8D

LEAVE—Delete Procedure Stack Frame Promoted to
64 bits.

64 bits Can’t encode6
C9

LES - Load ES Far Pointer
INVALID IN 64-BIT MODE (invalid-opcode exception)

C4

LFENCE—Load Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /5

LFS—Load FS Far Pointer Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B4

LGDT—Load Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Loads 8-byte base and 2-byte limit.
0F 01 /2

LGS—Load GS Far Pointer Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B5

LIDT—Load Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Loads 8-byte base and 2-byte limit.
0F 01 /3

LLDT—Load Local Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 16

bits.

No GPR register results.

References 16-byte descriptor to
load 64-bit base.0F 00 /2

LMSW—Load Machine Status Word
Same as
legacy mode.

Operand size
fixed at 16

bits.
No GPR register results.

0F 01 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 569

24594—Rev. 3.32—March 2021 AMD64 Technology

LODS, LODSW, LODSD, LODSQ—
Load String

Promoted to
64 bits.

32 bits

LODSD: Load
String
Doublewords.
Zero-extends 32-
bit register
results to 64 bits.

See footnote5

LODSQ (new
mnemonic): Load
String
Quadwords.

See footnote5
AD

LOOP—Loop

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5

E2

LOOPZ, LOOPE—Loop if Zero/Equal

E1

LOOPNZ, LOOPNE—Loop if Not
Zero/Equal

E0

LSL—Load Segment Limit Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F 03

LSS —Load SS Segment Register Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B2

LTR—Load Task Register
Promoted to
64 bits.

Operand size
fixed at 16

bits.

No GPR register results.

References 16-byte descriptor to
load 64-bit base.0F 00 /3

LZCNT—Count Leading Zeros
F3 0F BD

Promoted to
64 bits.

32 bits
Zero-extends 32-bit register results
to 64 bits.

MFENCE—Memory Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /6

MONITOR—Setup Monitor Address
0F 01 C8

Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

570 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

MOV—Move

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.

89

8B

C7
32-bit immediate
is sign-extended
to 64 bits.

B8 through BF 64-bit immediate.

A1 (moffset) Zero-extends 32-
bit register
results to 64 bits.

Memory offsets
are address-
sized and default
to 64 bits.

Memory offsets
are address-
sized and default
to 64 bits. A3 (moffset)

MOV—Move to/from Segment Registers

Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.8C

8E
Operand size
fixed at 16
bits.

No GPR register results.

MOV(CRn)—Move to/from Control
Registers Promoted to

64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of control registers
differ in their writability and reserved
status. See “System Resources” in
Volume 2 for details.

0F 22

0F 20

MOV(DRn)—Move to/from Debug
Registers

Promoted to
64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of debug registers
differ in their writability and reserved
status. See “Debug and
Performance Resources” in
Volume 2 for details.

0F 21

0F 23

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 571

24594—Rev. 3.32—March 2021 AMD64 Technology

MOVD—Move Doubleword or
Quadword

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F 6E

0F 7E

66 0F 6E Zero-extends 32-
bit register
results to 128
bits.

Zero-extends 64-
bit register
results to 128
bits.

66 0F 7E

MOVNTI—Move Non-Temporal
Doubleword Promoted to

64 bits.
32 bits No GPR register results.

0F C3

MOVS, MOVSW, MOVSD, MOVSQ—
Move String

Promoted to
64 bits.

32 bits

MOVSD: Move
String
Doublewords.

See footnote5

MOVSQ (new
mnemonic):
Move String
Quadwords.

See footnote5
A5

MOVSX—Move with Sign-Extend

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F BE
Sign-extends
byte to
quadword.

0F BF
Sign-extends
word to
quadword.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

572 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

MOVSXD—Move with Sign-Extend
Doubleword

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is ARPL
instruction.)

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Sign-extends
doubleword to
quadword.63

MOVZX—Move with Zero-Extend

Zero-extends 32-
bit register
results to 64 bits.

0F B6

Promoted to
64 bits.

32 bits

Zero-extends
byte to
quadword.

0F B7
Zero-extends
word to
quadword.

MUL—Multiply Unsigned
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX=RAX *
quadword in
register or
memory.

F7 /4

MWAIT—Monitor Wait

0F 01 C9
Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

NEG—Negate Two’s Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.F7 /3

NOP—No Operation Same as
legacy mode.

Not relevant. No GPR register results.
90

NOT—Negate One’s Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.F7 /2

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 573

24594—Rev. 3.32—March 2021 AMD64 Technology

OR—Logical OR

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

09

0B

0D

81 /1

83 /1

OUT—Output to Port
Same as
legacy mode.

32 bits No GPR register results.E7

EF

OUTS, OUTSW, OUTSD—Output String
Same as
legacy mode.

32 bits

Writes doubleword to I/O port.

No GPR register results.

See footnote56F

PAUSE—Pause Same as
legacy mode.

Not relevant. No GPR register results.
F3 90

POP—Pop Stack
Promoted to
64 bits.

64 bits Cannot encode6 No GPR register
results.

8F /0

58 through 5F

POP—Pop (segment register from)
Stack Same as

legacy mode.
64 bits Cannot encode6 No GPR register

results.0F A1 (POP FS)

0F A9 (POP GS)

1F (POP DS)

INVALID IN 64-BIT MODE (invalid-opcode exception)07 (POP ES)

17 (POP SS)

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

574 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

POPA, POPAD—Pop All to GPR Words
or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

61

POPCNT—Bit Population Count

F3 0F B8
Promoted to
64 bits.

32 bits
Zero-extends 32-bit register results
to 64 bits.

POPF, POPFD, POPFQ—Pop to
rFLAGS Word, Doublword, or Quadword

Promoted to
64 bits.

64 bits Cannot encode6

POPFQ (new
mnemonic): Pops
64 bits off stack,
writes low 32 bits
into EFLAGS and
zero-extends the
high 32 bits of
RFLAGS.

9D

PREFETCH—Prefetch L1 Data-Cache
Line Same as

legacy mode.
Not relevant. No GPR register results.

0F 0D /0

PREFETCHlevel—Prefetch Data to
Cache Level level Same as

legacy mode.
Not relevant. No GPR register results.

0F 18 /0-3

PREFETCHW—Prefetch L1 Data-Cache
Line for Write Same as

legacy mode.
Not relevant. No GPR register results.

0F 0D /1

PUSH—Push onto Stack

Promoted to
64 bits.

64 bits Cannot encode6

FF /6

50 through 57

6A

68

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 575

24594—Rev. 3.32—March 2021 AMD64 Technology

PUSH—Push (segment register) onto
Stack Promoted to

64 bits.
64 bits Cannot encode6

0F A0 (PUSH FS)

0F A8 (PUSH GS)

0E (PUSH CS)

INVALID IN 64-BIT MODE (invalid-opcode exception)
1E (PUSH DS)

06 (PUSH ES)

16 (PUSH SS)

PUSHA, PUSHAD - Push All to GPR
Words or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

60

PUSHF, PUSHFD, PUSHFQ—Push
rFLAGS Word, Doubleword, or
Quadword onto Stack

Promoted to
64 bits.

64 bits Cannot encode6

PUSHFQ (new
mnemonic):
Pushes the 64-bit
RFLAGS
register. 9C

RCL—Rotate Through Carry Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /2

D3 /2

C1 /2

RCR—Rotate Through Carry Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /3

D3 /3

C1 /3

RDMSR—Read Model-Specific Register
Same as
legacy mode.

Not relevant.

RDX[31:0] contains MSR[63:32],
RAX[31:0] contains MSR[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 32

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

576 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

RDPMC—Read Performance-
Monitoring Counters Same as

legacy mode.
Not relevant.

RDX[31:0] contains PMC[63:32],
RAX[31:0] contains PMC[31:0].
Zero-extends 32-bit register results
to 64 bits. 0F 33

RDTSC—Read Time-Stamp Counter
Same as
legacy mode.

Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 31

RDTSCP—Read Time-Stamp Counter
and Processor ID

Same as
legacy mode.

Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
RCX[31:0] contains the TSC_AUX
MSR C000_0103h[31:0]. Zero-
extends 32-bit register results to 64
bits.

0F 01 F9

REP INS—Repeat Input String Same as
legacy mode.

32 bits
Reads doubleword I/O port.

See footnote5F3 6D

REP LODS—Repeat Load String
Promoted to
64 bits.

32 bits

Zero-extends
EAX to 64 bits.

See footnote5
See footnote5

F3 AD

REP MOVS—Repeat Move String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 A5

REP OUTS—Repeat Output String to
Port Same as

legacy mode.
32 bits

Writes doubleword to I/O port.

No GPR register results.

See footnote5F3 6F

REP STOS—Repeat Store String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 AB

REPx CMPS —Repeat Compare String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 A7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 577

24594—Rev. 3.32—March 2021 AMD64 Technology

REPx SCAS —Repeat Scan String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 AF

RET—Return from Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

C2 Promoted to
64 bits.

64 bits Cannot encode.6
No GPR register
results. C3

RET—Return from Call Far
Promoted to
64 bits.

32 bits
See “Control Transfers” in Volume 1
and “Control-Transfer Privilege
Checks” in Volume 2.

CB

CA

ROL—Rotate Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /0

D3 /0

C1 /0

ROR—Rotate Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /1

D3 /1

C1 /1

RSM—Resume from System
Management Mode

New SMM
state-save
area.

Not relevant.
See “System-Management Mode” in
Volume 2.

0F AA

SAHF—Store AH into Flags Same as leg-
acy mode.

Not relevant. No GPR register results.
9E

SAL—Shift Arithmetic Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

578 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

SAR—Shift Arithmetic Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /7

D3 /7

C1 /7

SBB—Subtract with Borrow

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

19

1B

1D

81 /3

83 /3

SCAS, SCASW, SCASD, SCASQ—
Scan String

Promoted to
64 bits.

32 bits

SCASD: Scan
String
Doublewords.

Zero-extends 32-
bit register
results to 64 bits.

See footnote5

SCASQ (new
mnemonic): Scan
String
Quadwords.

See footnote5
AF

SFENCE—Store Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /7

SGDT—Store Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Stores 8-byte base and 2-byte limit.
0F 01 /0

SHL—Shift Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 579

24594—Rev. 3.32—March 2021 AMD64 Technology

SHLD—Shift Left Double
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F A4

0F A5

SHR—Shift Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /5

D3 /5

C1 /5

SHRD—Shift Right Double
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F AC

0F AD

SIDT—Store Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Stores 8-byte base and 2-byte limit.
0F 01 /1

SKINIT—Secure Init and Jump with
Attestation

0F 01 DE

Same as
legacy mode.

Not relevant
Zero-extends 32-
bit register
results to 64 bits.

SLDT—Store Local Descriptor Table
Register Same as

legacy mode.
32

Zero-extends 2-byte LDT selector to
64 bits.

0F 00 /0

SMSW—Store Machine Status Word
Same as
legacy mode.

32
Zero-extends 32-
bit register
results to 64 bits.

Stores 64-bit
machine status

word (CR0).0F 01 /4

STC—Set Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F9

STD—Set Direction Flag Same as
legacy mode.

Not relevant. No GPR register results.
FD

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

580 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

STGI—Set Global Interrupt Flag Same as
legacy mode.

Not relevant.
No GPR register results.

0F 01 DC

STI - Set Interrupt Flag Same as
legacy mode.

Not relevant. No GPR register results.
FB

STOS, STOSW, STOSD, STOSQ- Store
String

Promoted to
64 bits.

32 bits

STOSD: Store
String
Doublewords.

See footnote5

STOSQ (new
mnemonic):
Store String
Quadwords.

See footnote5
AB

STR—Store Task Register Same as
legacy mode.

32
Zero-extends 2-byte TR selector to
64 bits. 0F 00 /1

SUB—Subtract

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

29

2B

2D

81 /5

83 /5

SWAPGS—Swap GS Register with
KernelGSbase MSR

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is invalid.)

Not relevant.
See “SWAPGS Instruction” in
Volume 2.

0F 01 /7

SYSCALL—Fast System Call Promoted to
64 bits.

Not relevant.
See “SYSCALL and SYSRET
Instructions” in Volume 2 for details.0F 05

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 581

24594—Rev. 3.32—March 2021 AMD64 Technology

SYSENTER—System Call
INVALID IN LONG MODE (invalid-opcode exception)

0F 34

SYSEXIT—System Return
INVALID IN LONG MODE (invalid-opcode exception)

0F 35

SYSRET—Fast System Return Promoted to
64 bits.

32 bits
See “SYSCALL and SYSRET
Instructions” in Volume 2 for details.0F 07

TEST—Test Bits

Promoted to
64 bits.

32 bits No GPR register results.
85

A9

F7 /0

UD2—Undefined Operation Same as
legacy mode.

Not relevant. No GPR register results.
0F 0B

VERR—Verify Segment for Reads
Same as
legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /4

VERW—Verify Segment for Writes
Same as
legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /5

VMLOAD—Load State from VMCB Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 DA

VMMCALL—Call VMM Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 D9

VMRUN—Run Virtual Machine Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 D8

VMSAVE—Save State to VMCB Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 DB

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

582 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

WAIT—Wait for Interrupt Same as
legacy mode.

Not relevant. No GPR register results.
9B

WBINVD—Writeback and Invalidate All
Caches Same as

legacy mode.
Not relevant. No GPR register results.

0F 09

WRMSR—Write to Model-Specific
Register Same as

legacy mode.
Not relevant.

No GPR register results.

MSR[63:32] = RDX[31:0]
MSR[31:0] = RAX[31:0]0F 30

XADD—Exchange and Add
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F C1

XCHG—Exchange Register/Memory
with Register Promoted to

64 bits.
32 bits

Zero-extends 32-
bit register
results to 64 bits.

87

90

XOR—Logical Exclusive OR

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

31

33

35

81 /6

83 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 583

24594—Rev. 3.32—March 2021 AMD64 Technology

B.3 Invalid and Reassigned Instructions in 64-Bit Mode

Table B-2 lists instructions that are illegal in 64-bit mode. Attempted use of these instructions
generates an invalid-opcode exception (#UD).

Table B-2. Invalid Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

AAA 37 ASCII Adjust After Addition

AAD D5 ASCII Adjust Before Division

AAM D4 ASCII Adjust After Multiply

AAS 3F ASCII Adjust After Subtraction

BOUND 62 Check Array Bounds

CALL (far) 9A Procedure Call Far (far absolute)

DAA 27 Decimal Adjust after Addition

DAS 2F Decimal Adjust after Subtraction

INTO CE Interrupt to Overflow Vector

JMP (far) EA Jump Far (absolute)

LDS C5 Load DS Far Pointer

LES C4 Load ES Far Pointer

POP DS 1F Pop Stack into DS Segment

POP ES 07 Pop Stack into ES Segment

POP SS 17 Pop Stack into SS Segment

POPA, POPAD 61 Pop All to GPR Words or Doublewords

PUSH CS 0E Push CS Segment Selector onto Stack

PUSH DS 1E Push DS Segment Selector onto Stack

PUSH ES 06 Push ES Segment Selector onto Stack

PUSH SS 16 Push SS Segment Selector onto Stack

PUSHA,
PUSHAD

60 Push All to GPR Words or Doublewords

Redundant Grp1 82 /2
Redundant encoding of group1 Eb,Ib
opcodes

SALC D6 Set AL According to CF

584 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

Table B-3 lists instructions that are reassigned to different functions in 64-bit mode. Attempted use of
these instructions generates the reassigned function.

Table B-4 lists instructions that are illegal in long mode. Attempted use of these instructions generates
an invalid-opcode exception (#UD).

B.4 Instructions with 64-Bit Default Operand Size

In 64-bit mode, two groups of instructions default to 64-bit operand size without the need for a REX
prefix:

• Near branches —CALL, Jcc, JrCX, JMP, LOOP, and RET.

• All instructions, except far branches, that implicitly reference the RSP—CALL, ENTER, LEAVE,
POP, PUSH, and RET (CALL and RET are in both groups of instructions).

Table B-5 lists these instructions.

Table B-3. Reassigned Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

ARPL 63
Opcode for MOVSXD instruction in 64-bit
mode. In all other modes, this is the Adjust
Requestor Privilege Level instruction opcode.

DEC and INC 40-4F
REX prefixes in 64-bit mode. In all other
modes, decrement by 1 and increment by 1.

LDS C5
VEX Prefix. Introduces the VEX two-byte
instruction encoding escape sequence.

LES C4
VEX Prefix. Introduces the VEX three-byte
instruction encoding escape sequence.

Table B-4. Invalid Instructions in Long Mode

Mnemonic
Opcode

(hex)
Description

SYSENTER 0F 34 System Call

SYSEXIT 0F 35 System Return

General-Purpose Instructions in 64-Bit Mode 585

24594—Rev. 3.32—March 2021 AMD64 Technology

The 64-bit default operand size can be overridden to 16 bits using the 66h operand-size override.
However, it is not possible to override the operand size to 32 bits because there is no 32-bit operand-
size override prefix for 64-bit mode. See “Operand-Size Override Prefix” on page 7 for details.

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values, as described in “REX Prefix” on page 14.
Therefore, these single-byte opcodes for INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The functionality of these INC and DEC instructions
is still available in 64-bit mode, however, using the ModRM forms of those instructions (opcodes FF/0
and FF/1).

Table B-5. Instructions Defaulting to 64-Bit Operand Size

Mnemonic
Opcode

(hex)

Implicitly
Reference

RSP
Description

CALL E8, FF /2 yes Call Procedure Near

ENTER C8 yes Create Procedure Stack Frame

Jcc many no Jump Conditional Near

JMP E9, EB, FF /4 no Jump Near

LEAVE C9 yes Delete Procedure Stack Frame

LOOP E2 no Loop

LOOPcc E0, E1 no Loop Conditional

POP reg/mem 8F /0 yes Pop Stack (register or memory)

POP reg 58-5F yes Pop Stack (register)

POP FS 0F A1 yes Pop Stack into FS Segment Register

POP GS 0F A9 yes Pop Stack into GS Segment Register

POPF, POPFD, POPFQ 9D yes Pop to rFLAGS Word, Doubleword, or Quadword

PUSH imm8 6A yes Push onto Stack (sign-extended byte)

PUSH imm32 68 yes Push onto Stack (sign-extended doubleword)

PUSH reg/mem FF /6 yes Push onto Stack (register or memory)

PUSH reg 50-57 yes Push onto Stack (register)

PUSH FS 0F A0 yes Push FS Segment Register onto Stack

PUSH GS 0F A8 yes Push GS Segment Register onto Stack

PUSHF, PUSHFD,
PUSHFQ

9C yes
Push rFLAGS Word, Doubleword, or Quadword
onto Stack

RET C2, C3 yes Return From Call (near)

586 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

B.6 NOP in 64-Bit Mode

Programs written for the legacy x86 architecture commonly use opcode 90h (the XCHG EAX, EAX
instruction) as a one-byte NOP. In 64-bit mode, the processor treats opcode 90h specially in order to
preserve this legacy NOP use. Without special handling in 64-bit mode, the instruction would not be a
true no-operation. Therefore, in 64-bit mode the processor treats XCHG EAX, EAX as a true NOP,
regardless of operand size.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two byte form of XCHG to
exchange a register with itself will not result in a no-operation because the default operation size is 32
bits in 64-bit mode.

B.7 Segment Override Prefixes in 64-Bit Mode

In 64-bit mode, the CS, DS, ES, SS segment-override prefixes have no effect. These four prefixes are
no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they are
treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS and GS prefixes cause their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

General-Purpose Instructions in 64-Bit Mode 587

24594—Rev. 3.32—March 2021 AMD64 Technology

588 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

Differences Between Long Mode and Legacy Mode 589

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix C Differences Between Long Mode and
Legacy Mode

Table C-1 summarizes the major differences between 64-bit mode and legacy protected mode. The
third column indicates differences between 64-bit mode and legacy mode. The fourth column indicates
whether that difference also applies to compatibility mode.

Table C-1. Differences Between Long Mode and Legacy Mode

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Application
Programming

Addressing RIP-relative addressing available

no

Data and Address
Sizes

Default data size is 32 bits

REX Prefix toggles data size to 64 bits

Default address size is 64 bits

Address size prefix toggles address size to 32 bits

Instruction
Differences

Various opcodes are invalid or changed in 64-bit
mode (see Table B-2 on page 585 and Table B-3 on
page 586)

Various opcodes are invalid in long mode (see
Table B-4 on page 586)

yes

MOV reg,imm32 becomes MOV reg,imm64 (with
REX operand size prefix)

no

REX is always enabled

Direct-offset forms of MOV to or from accumulator
become 64-bit offsets

MOVD extended to MOV 64 bits between MMX
registers and long GPRs (with REX operand-size
prefix)

590 Differences Between Long Mode and Legacy Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

System
Programming

x86 Modes Real and virtual-8086 modes not supported yes

Task Switching Task switching not supported yes

Addressing

64-bit virtual addresses

yes4-level paging structures

PAE must always be enabled

Segmentation

CS, DS, ES, SS segment bases are ignored

noCS, DS, ES, FS, GS, SS segment limits are ignored

CS, DS, ES, SS Segment prefixes are ignored

Exception and
Interrupt Handling

All pushes are 8 bytes

yes

16-bit interrupt and trap gates are illegal

32-bit interrupt and trap gates are redefined as 64-bit
gates and are expanded to 16 bytes

SS is set to null on stack switch

SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

yes

16-bit call gates are illegal

32-bit call gate type is redefined as 64-bit call gate
and is expanded to 16 bytes.

SS is set to null on stack switch

System-Descriptor
Registers

GDT, IDT, LDT, TR base registers expanded to 64
bits

yes

System-Descriptor
Table Entries and
Pseudo-descriptors

LGDT and LIDT use expanded 10-byte pseudo-
descriptors. no

LLDT and LTR use expanded 16-byte table entries.

Table C-1. Differences Between Long Mode and Legacy Mode (continued)

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Instruction Subsets and CPUID Feature Flags 591

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix D Instruction Subsets and CPUID
Feature Flags

This appendix provides information that can be used to determine if a specific instruction within the
AMD64 instruction-set architecture (ISA) is supported on a processor.

Originally the x86 ISA was composed of a set of instructions from the general-purpose and system
instruction groups. This set forms the base of the AMD64 ISA. As the ISA expanded over time, new
instructions were added. Each addition constituted either a single instruction or a set of instructions
and each addition was assigned a specific processor feature flag.

Although most current processor products support the entire ISA, support for each added instruction or
instruction subset is optional and must be confirmed by testing the corresponding feature flag. The
presence of a particular instruction or subset is indicated by the corresponding feature flag being set. A
feature flag is a single bit value located at a specific bit position within the 32-bit value returned in a
register as a result of executing the CPUID instruction.

For more information on using the CPUID instruction, see the instruction reference page for CPUID
on page 160. For a comprehensive list of processor feature flags accessed using the CPUID
instruction, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction” on
page 597.

592 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

D.1 Instruction Set Overview

The AMD64 ISA can be organized into five instruction groups:

1. General-purpose instructions

These instructions operate on the general-purpose registers (GP registers) and can be used at all
privilege levels. This group includes instructions to load and store the contents of a GP register to
and from memory, move values between the GP registers, and perform arithmetic and logical
operations on the contents of the registers.

2. System instructions

These instructions provide the means to manipulate the processor operating mode, access
processor resources, handle program and system errors, and manage system memory. Many of
these instructions require privilege level 0 to execute.

3. x87 instructions

These instructions are available at all privilege levels and include legacy floating-point
instructions that use the ST(0)–ST(7) stack registers (FPR0–FPR7 physical registers) and
internally use extended precision (80-bit) binary floating-point representation and operations.

4. 64-bit media Instructions

These instructions are available at all privilege levels and perform vector operations on packed
integer and floating-point values held in the 64-bit MMX™ registers. The MMX register set
overlays the FPR0–FPR7 physical registers. This group is composed of the MMX and 3DNow!™
instruction subsets and was subsequently expanded by the MMX and 3DNow! extensions subsets.

5. SSE instructions

The SSE instructions operate on packed integer and floating-point values held in the XMM / YMM
registers. SSE includes the original Streaming SIMD Extensions, all the subsequent named SSE
subsets, and the AVX, XOP, and AES instructions.

Figure D-1 on page 593 represents the relationship between the five major instruction groups and the
named instruction subsets. Circles represent the instruction subsets. These include the base instruction
set labeled “Base Instructions” in the diagram and the named subsets. The diagram omits individual
optional instructions and some of the minor named instruction subsets. Dashed-line polygons
represent the instruction groups.

Note that the 128-bit and 256-bit media instructions are referred to collectively as the Streaming SIMD
Extensions (SSE). This is also the name of the original SSE subset. In the diagram the original SSE
subset is labeled “SSE1 Instructions.” Collectively the 64-bit media and the SSE instructions make up
the single instruction / multiple data (SIMD) group (labeled “SIMD Instructions” in the diagram).

The overlapping of the SSE and 64-bit media instruction subsets indicates that these subsets share
some common mnemonics. However, these common mnemonics either have distinct opcodes for each
subset or they take operands in both the MMX and XMM register sets.

The horizontal axis of Figure D-1 shows how the subsets have evolved over time.

Instruction Subsets and CPUID Feature Flags 593

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure D-1. AMD64 ISA Instruction Subsets

AMD 3DNow!™
Instructions

MMX™

x87 Instructions

Instructions

General-Purpose Instructions

x87 Instructions

System Instructions

AMD Extension
to

3DNow!™
Instructions

SSE1
Instructions

SSE3
Instructions

128-Bit Media
Instructions

64-Bit Media
Instructions

Time of Introduction

Dashed-line boxes show instruction groups.
Circles show major named instruction subsets.
(Minor instruction subsets are not shown.)

Base
Instructions

Long-Mode
Instructions

SSE4A
Instructions

AMD Extensions
to MMX™

Instructions

SVM
Instructions

SSE2
Instructions

AVX
Instructions

XOP
Instructions

256-Bit Media
Instructions

SIMD Instructions

Streaming SIMD Extensions

594 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

D.2 CPUID Feature Flags Related to Instruction Support

Only a subset of the CPUID feature flags provides information related to instruction support.

The feature flags related to supported instruction subsets are accessed via the standard function
number 0000_0001h, the extended function number 8000_0001h, and the structured extended
function number 0000_0007h.

The following table lists all flags related to instruction support. Entries for each flag provide the
instruction or instruction subset corresponding to the flag, the CPUID function that must be executed
to access the flag, and the bit position of the flag in the return value.

Table D-1. Feature Flags for Instruction / Instruction Subset Support

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

3DNow 3DNow! extended EDX[31]

3DNowExt 3DNow! Extensions extended EDX[30]

3DNowPrefetch
PREFETCH /
PREFETCHW

extended ECX[8], EDX[29], or EDX[31]

ABM LZCNT extended ECX[5]

ADX ADCX, ADOX 0000_0007_0 EBX[19]

AES AES standard ECX[25]

AVX AVX standard ECX[28]

AVX2 AVX2 0000_0007_0 EBX[5]

BASE Base Instruction set — —

BMI1 Bit Manipulation, group 1 0000_0007_0 EBX[3]

BMI2 Bit Manipulation, group 2 0000_0007_0 EBX[8]

CET_SS

Shadow Stack,
CLRSSBSY, INCSSP,
RDSSP, RSTORSSP,
SAVEPREVSSP,
SETSSBSY, WRSS,
WRUSS

0000_0007_0 ECX[7]

CLFLOPT CLFLUSHOPT 0000_0007_0 EBX[23]

CLFSH CLFLUSH, CLWB standard EDX[19]

CLWB CLWB 0000_0007_0 EBX[24]

CLZERO CLZERO 8000_0008 EBX[0]

CMPXCHG8B CMPXCHG8B both EDX[8]

CMPXCHG16B CMPXCHG16B standard ECX[13]

CMOV CMOVcc both EDX[15]

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

Instruction Subsets and CPUID Feature Flags 595

24594—Rev. 3.32—March 2021 AMD64 Technology

F16C
16-bit floating-point
conversion

standard ECX[29]

FMA FMA standard ECX[12]

FMA4 FMA4 extended ECX[16]

FPU x87 both EDX[0]

FSGSBASE
FS and GS base read
and write

0000_0007_0 EBX[0]

FXSR FXSAVE / FXRSTOR both EDX[24]

INVLPGB INVLPGB, TLBSYNC 8000_0008 EBX[3]

INVPCID INVPCID 0000_0007_0 EBX[10]

LahfSahf LAHF / SAHF extended ECX[0]

LM Long Mode extended EDX[29]

MCOMMIT MCOMMIT 8000_0008 EBX[8]

MMX MMX both EDX[23]

MmxExt MMX Extensions extended EDX[22]

MONITOR MONITOR / MWAIT standard ECX[3]

MONITORX MONITORX / MWAITX extended ECX[29]

MOVBE MOVBE standard ECX[22]

MSR RDMSR / WRMSR both EDX[5]

OSPKE RDPKRU, WRPKRU 0000_0007_0 ECX[4]

PCLMULQDQ PCLMULQDQ standard ECX[1]

POPCNT POPCNT standard ECX[23]

RDPID RDPID 0000_0007_0 ECX[22]

RDPRU RDPRU 8000_0008 EBX[4]

RDRAND RDRAND standard ECX[30]

RDTSCP RDTSCP extended EDX[27]

RDSEED RDSEED 0000_0007_0 EBX[18]

SevEs VMGEXIT 8000_001F EAX[3]

SHA SHA 0000_0007_0 EBX[29]

SKINIT SKINIT / STGI extended ECX[12]

SMAP CLAC, STAC 0000_0007_0 EBX[20]

SNP
PSMASH, PVALIDATE,
RMPADJUST,
RMPUPDATE

8000_001F EAX[4]

SSE SSE1 standard EDX[25]

SSE2 SSE2 standard EDX[26]

Table D-1. Feature Flags for Instruction / Instruction Subset Support (continued)

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

596 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

SSE3 SSE3 standard ECX[0]

SSSE3 SSSE3 standard ECX[9]

SSE4A SSE4A extended ECX[6]

SSE41 SSE4.1 standard ECX[19]

SSE42 SSE4.2 standard ECX[20]

SVM Secure Virtual Machine extended ECX[2]

SysCallSysRet SYSCALL / SYSRET extended EDX[11]

SysEnterSysExit SYSENTER / SYSEXIT standard EDX[11]

TBM Trailing bit manipulation extended ECX[21]

TSC RDTSC both EDX[4]

VAES VAES 256-bit instructions 0000_0007_0 ECX[9]

VPCMULQDQ
VPCMULQDQ 256-bit
instructions

0000_0007_0 ECX[10]

WBNOINVD WBNOINVD 8000_0008 EBX[9]

x87 && CMOV FCMOVcc3 both EDX[0] && EDX[15]

XGETBV w/ ECX=1 XGETBV w/ ECX=1 0000_000D_1 EAX[2]

XOP XOP extended ECX[11]

XSAVE XSAVE / XRSTOR4 standard ECX[26]

XSAVEC XSAVEC 0000_000D_1 EAX[1]

XSAVEOPT XSAVEOPT 0000_000D_1 EAX[0]

XSAVES/XRSTORS XSAVES / XRSTORS 0000_000D_1 EAX[3]

Table D-1. Feature Flags for Instruction / Instruction Subset Support (continued)

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

Obtaining Processor Information Via the CPUID Instruction 597

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix E Obtaining Processor Information Via
the CPUID Instruction

This appendix specifies the information that software can obtain about the processor on which it is
running by executing the CPUID instruction. The information in this appendix supersedes the con-
tents of the CPUID Specification, order #25481, which is now obsolete.

The CPUID instruction is described on page 160. This appendix does not replace the CPUID
instruction reference information presented there.

The CPUID instruction behaves much like a function call. Parameters are passed to the instruction via
registers and on execution the instruction loads specific registers with return values. These return
values can be interpreted by software based on the field definitions and their assigned meanings.

The first input parameter is the function number which is passed to the instruction via the EAX
register. Some functions also accept a second input parameter passed via the ECX register. Values are
returned via the EAX, EBX, ECX, and EDX registers. Software should not assume that any values
written to these registers prior to the execution of CPUID instruction will be retained after the
instruction executes (even those that are marked reserved).

The description of each return value breaks the value down into one or more named fields which
represent a bit position or contiguous range of bits. All bit positions that are not defined as fields are
reserved. The value of bits within reserved ranges cannot be relied upon to be zero. Software must
mask off all reserved bits in the return value prior to making any value comparisons of represented
information.

This appendix applies to all AMD processors with a family designation of 0Fh or greater.

E.1 Special Notational Conventions

The following special notation conventions are used in this appendix:

• The notation (standard throughout this APM) for representing the function number, optional input
parmeter, and the information returned is as follows:

CPUID FnXXXX_XXXX_RRR[FieldName]_xYYY.

Where:

- XXXX_XXXX is the function number represented in hexadecimal (passed to the instruction in
EAX).

- RRR is one of {EDX, ECX, EBX, EAX} and represents a register holding a return value.

- YYY represents the optional input parameter passed in the ECX register expressed as a
hexadecimal number. If this parameter is not used, the characters represented by _xYYY are
ommitted from the notation.

598 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

- FieldName identifies a specific named element of processor information represented by a
specific bit range (1 or more bits wide) within the RRR register.

• The notation CPUID FnXXXX_XXXX _RRR is used when refering to one of the registers that holds
information returned by the instruction.

• The notation CPUID FnXXXX_XXXX or FnXXXX_XXXX is used to refer to a specific function
number.

• Most one-bit fields indicate support or non-support of a specific processor feature. By convention,
(unless otherwise noted) a value of 1 means that the feature is supported by the processor and a
value of 0 means that the feature is not supported by the processor.

E.2 Standard and Extended Function Numbers

The CPUID instruction supports two sets or ranges of function numbers: standard and extended.

• The smallest function number of the standard function range is Fn0000_0000. The largest function
number of the standard function range, for a particular implementation, is returned in CPUID
Fn0000_0000_EAX.

• The smallest function number of the extended function range is Fn8000_0000. The largest
function number of the extended function range, for a particular implementation, is returned in
CPUID Fn8000_0000_EAX.

E.3 Standard Feature Function Numbers

This section describes each of the defined CPUID functions in the standard range.

E.3.1 Function 0h—Maximum Standard Function Number and Vendor String

This function number provides information about the maximum standard function number supported
on this processor and a string that identifies the vendor of the product.

The value returned in EAX provides the largest standard function number supported by this processor.

The values returned in EBX, EDX, and ECX together provide a 12-character string identifying the
vendor of this processor. Each register supplies 4 characters. The leftmost character of each substring

CPUID Fn0000_0000_EAX Largest Standard Function Number

Bits Field Name Description

31:0 LFuncStd
Largest standard function. The largest CPUID standard function input value
supported by the processor implementation.

CPUID Fn0000_0000_E[D,C,B]X Processor Vendor

Obtaining Processor Information Via the CPUID Instruction 599

24594—Rev. 3.32—March 2021 AMD64 Technology

is stored in the least significant bit position in the register. The string is the concatenation of the
contents of EBX, EDX, and ECX in left to right order. No null terminator is included in the string.

CPUID Fn8000_0000_E[D,C,B]X return the same values as this function.

E.3.2 Function 1h—Processor and Processor Feature Identifiers

This function number identifies the processor family, model, and stepping and provides feature
support information.

The value returned in EAX provides the family, model, and stepping identifiers. Three values are used
by software to identify a processor: Family, Model, and Stepping.

The processor Family identifies one or more processors as belonging to a group that possesses some
common definition for software or hardware purposes. The Model specifies one instance of a
processor family. The Stepping identifies a particular version of a specific model. Therefore, Family,
Model and Stepping, when taken together, form a unique identification or signature for a processor.

The Family is an 8-bit value and is defined as: Family[7:0] = ({0000b,BaseFamily[3:0]} +
ExtFamily[7:0]). For example, if BaseFamily[3:0] = Fh and ExtFamily[7:0] = 01h, then Family[7:0] =

Bits Field Name Description

31:0 Vendor
Four characters of the 12-byte character string (encoded in ASCII)
“AuthenticAMD”. See Table E-1 below.

Table E-1. CPUID Fn0000_0000_E[D,C,B]X values

Register Value Description

CPUID Fn0000_0000_EBX 6874_7541h The ASCII characters “h t u A”.

CPUID Fn0000_0000_ECX 444D_4163h The ASCII characters “D M A c”.

CPUID Fn0000_0000_EDX 6974_6E65h The ASCII characters “i t n e”.

CPUID Fn0000_0001_EAX Family, Model, Stepping Identifiers

Bits Field Name Description

31:28 — Reserved.

27:20 ExtFamily Processor extended family. See above for definition of Family[7:0].

19:16 ExtModel Processor extended model. See above for definition of Model[7:0].

15:12 — Reserved.

11:8 BaseFamily Base processor family. See above for definition of Family[7:0].

7:4 BaseModel Base processor model. See above for definition of Model[7:0].

3:0 Stepping Processor stepping. Processor stepping (revision) for a specific model.

600 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

10h. If BaseFamily[3:0] is less than Fh, then ExtFamily is reserved and Family is equal to
BaseFamily[3:0].

Model is an 8-bit value and is defined as: Model[7:0] = {ExtModel[3:0],BaseModel[3:0]}. For
example, if ExtModel[3:0] = Eh and BaseModel[3:0] = 8h, then Model[7:0] = E8h. If BaseFamily[3:0]
is less than 0Fh, then ExtModel is reserved and Model is equal to BaseModel[3:0].

The value returned by CPUID Fn8000_0001_EAX is equivalent to CPUID Fn0000_0001_EAX.

The value returned in EBX provides miscellaneous information regarding the processor brand, the
number of logical threads per processor socket, the CLFLUSH instruction, and APIC.

The value returned in ECX contains the following miscellaneous feature identifiers:

CPUID Fn0000_0001_EBX LocalApicId, LogicalProcessorCount, CLFlush

Bits Field Name Description

31:24 LocalApicId

Initial local APIC physical ID. The 8-bit value assigned to the local APIC physical ID
register at power-up. Some of the bits of LocalApicId represent the core within a
processor and other bits represent the processor ID. See the APIC20 “APIC ID”
register in the processor BKDG or PPR for details.

23:16
LogicalProcessor
Count

Logical processor count.

If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number
of logic processors per package.

If CPUID Fn0000_0001_EDX[HTT] = 0 then LogicalProcessorCount is reserved.

See E.5.1 [Legacy Method].

15:8 CLFlush
CLFLUSH size. Specifies the size of a cache line in quadwords flushed by the
CLFLUSH instruction. See “CLFLUSH” in APM3.

7:0 8BitBrandId

8-bit brand ID. This field, in conjunction with CPUID Fn8000_0001_EBX[BrandId],
is used by the system firmware to generate the processor name string. See the
appropriate processor revision guide for how to program the processor name
string.

CPUID Fn0000_0001_ECX Feature Identifiers

Bits Field Name Description

31 — RAZ. Reserved for use by hypervisor to indicate guest status.

30 RDRAND RDRAND instruction support.

29 F16C
Half-precision convert instruction support. See "Half-Precision Floating-Point
Conversion" in APM1 and listings for individual F16C instructions in APM5.

28 AVX AVX instruction support. See APM4.

27 OSXSAVE XSAVE (and related) instructions are enabled. See “OSXSAVE” in APM2. .

26 XSAVE
XSAVE (and related) instructions are supported by hardware. See
“XSAVE/XRSTOR Instructions” in APM2.

Obtaining Processor Information Via the CPUID Instruction 601

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EDX contains the following miscellaneous feature identifiers:

25 AES AES instruction support. See “AES Instructions” in APM4.

24 — Reserved.

23 POPCNT POPCNT instruction. See “POPCNT” in APM3.

22 MOVBE: MOVBE instruction support.

21 — Reserved.

20 SSE42
SSE4.2 instruction support. "Determining Media and x87 Feature Support" in
APM2 and individual SSE4.2 instruction listings in APM4.

19 SSE41 SSE4.1 instruction support. See individual instruction listings in APM4. .

18:14 — Reserved.

13 CMPXCHG16B CMPXCHG16B instruction support. See “CMPXCHG16B” in APM3.

12 FMA FMA instruction support.

11:10 — Reserved.

9 SSSE3 Supplemental SSE3 instruction support.

8:4 — Reserved.

3 MONITOR MONITOR/MWAIT instructions. See “MONITOR” and “MWAIT” in APM3.

2 — Reserved.

1 PCLMULQDQ
PCLMULQDQ instruction support. See instruction reference page for the
PCLMULQDQ / VPCLMULQDQ instruction in APM4.

0 SSE3
SSE3 instruction support. See Appendix D “Instruction Subsets and CPUID
Feature Sets” in APM3 for the list of instructions covered by the SSE3 feature bit.
See APM4 for the definition of the SSE3 instructions.

CPUID Fn0000_0001_EDX Feature Identifiers

Bits Field Name Description

31:29 — Reserved.

28 HTT
Hyper-threading technology. Indicates either that there is more than one thread per
core or more than one core per compute unit.See “Legacy Method” on page 636.

27 — Reserved.

26 SSE2 SSE2 instruction support. See Appendix D “CPUID Feature Sets” in APM3.

25 SSE
SSE instruction support. See Appendix D “CPUID Feature Sets” in APM3 appendix
and “64-Bit Media Programming” in APM1.

24 FXSR FXSAVE and FXRSTOR instructions. See “FXSAVE” and “FXRSTOR” in APM5.

23 MMX
MMX™ instructions. See Appendix D “CPUID Feature Sets” in APM3 and “128-Bit
Media and Scientific Programming” in APM1.

22:20 — Reserved.

19 CLFSH CLFLUSH instruction support. See “CLFLUSH” in APM3.

Bits Field Name Description

602 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.3.3 Functions 2h–4h—Reserved

These function numbers are reserved.

E.3.4 Function 5h—Monitor and MWait Features

This function provides feature identifiers for the MONITOR and MWAIT instructions. For more
information see the description of the MONITOR instruction on page 392 and the MWAIT instruction
on page 398.

18 — Reserved.

17 PSE36
Page-size extensions. The PDE[20:13] supplies physical address [39:32]. See
“Page Translation and Protection” in APM2.

16 PAT Page attribute table. See “Page-Attribute Table Mechanism” in APM2.

15 CMOV Conditional move instructions. See “CMOV”, “FCMOV” in APM3.

14 MCA Machine check architecture. See “Machine Check Mechanism” in APM2.

13 PGE Page global extension. See “Page Translation and Protection” in APM2.

12 MTRR Memory-type range registers. See “Page Translation and Protection” in APM2.

11 SysEnterSysExit SYSENTER and SYSEXIT instructions. See “SYSENTER”, “SYSEXIT“ in APM3.

10 — Reserved.

9 APIC
Avanced programmable interrupt controller. Indicates APIC exists and is enabled.
See “Exceptions and Interrupts” in APM2.

8 CMPXCHG8B CMPXCHG8B instruction. See “CMPXCHG8B” in APM3.

7 MCE Machine check exception. See “Machine Check Mechanism” in APM2.

6 PAE
Physical-address extensions. Indicates support for physical addresses ³ 32b.
Number of physical address bits above 32b is implementation specific. See “Page
Translation and Protection” in APM2.

5 MSR
AMD model-specific registers. Indicates support for AMD model-specific registers
(MSRs), with RDMSR and WRMSR instructions. See “Model Specific Registers” in
APM2.

4 TSC
Time stamp counter. RDTSC and RDTSCP instruction support. See “Debug and
Performance Resources” in APM2.

3 PSE Page-size extensions. See “Page Translation and Protection” in APM2.

2 DE Debugging extensions. See “Debug and Performance Resources” in APM2.

1 VME
Virtual-mode enhancements. CR4.VME, CR4.PVI, software interrupt indirection,
expansion of the TSS with the software, indirection bitmap, EFLAGS.VIF,
EFLAGS.VIP. See “System Resources” in APM2.

0 FPU x87 floating point unit on-chip. See “x87 Floating Point Programming” in APM1.

CPUID Fn0000_000[4:2] Reserved

Bits Field Name Description

Obtaining Processor Information Via the CPUID Instruction 603

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EAX provides the following information:

The value returned in EBX provides the following information:

The value returned in ECX provides the following information:

The value returned in EDX is undefined and is reserved.

E.3.5 Function 6h—Power Management Related Features

This function provides information about the local APIC timer timebase and the effective frequency
interface for the processor.

The value returned in EAX is undefined and is reserved.

CPUID Fn0000_0005_EAX Monitor/MWait

Bits Field Name Description

31:16 — Reserved.

15:0 MonLineSizeMin Smallest monitor-line size in bytes.

CPUID Fn0000_0005_EBX Monitor/MWait

Bits Field Name Description

31:16 — Reserved.

15:0 MonLineSizeMax Largest monitor-line size in bytes.

CPUID Fn0000_0005_ECX Monitor/MWait

Bits Field Name Description

31:2 — Reserved.

1 IBE
Interrupt break-event. Indicates MWAIT can use ECX bit 0 to allow interrupts to
cause an exit from the monitor event pending state, even if EFLAGS.IF=0.

0 EMX
Enumerate MONITOR/MWAIT extensions: Indicates enumeration
MONITOR/MWAIT extensions are supported.

CPUID Fn0000_0005_EDX Monitor/MWait

CPUID Fn0000_0006_EAX Local APIC Timer Invariance

604 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EBX is undefined and is reserved.

The value returned in ECX indicates support of the processor effective frequency interface. For more
information on this feature, see "Determining Processor Effective Frequency" in APM2.

The value returned in EDX is undefined and is reserved.

E.3.6 Function 7h—Structured Extended Feature Identifiers

Bits Field Name Description

31:3 — Reserved.

2 ARAT
If set, indicates that the timebase for the local APIC timer is not affected by
processor p-state.

1:0 — Reserved.

CPUID Fn0000_0006_EBX Reserved

CPUID Fn0000_0006_ECX Effective Processor Frequency Interface

Bits Field Name Description

31:1 — Reserved.

0 EffFreq
Effective frequency interface support. If set, indicates presence of MSR0000_00E7
(MPERF) and MSR0000_00E8 (APERF).

CPUID Fn0000_0006_EDX Reserved

CPUID Fn0000_0007_EAX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:0 MaxSubFn Returns the number of subfunctions supported.

CPUID Fn0000_0007_EBX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:30 — Reserved.

29 SHA Secure Hash Algorithm instruction extension.

28:25 — Reserved.

24 CLWB CLWB instruction support.

23 CLFLUSHOPT CLFLUSHOPT instruction support.

22 RDPID RDPID instruction and TSC_AUX MSR support.

21 — Reserved.

Obtaining Processor Information Via the CPUID Instruction 605

24594—Rev. 3.32—March 2021 AMD64 Technology

E.3.7 Functions 8h–Ah—Reserved

E.3.8 Function Bh — Extended Topology Enumeration

20 SMAP Supervisor mode access prevention.

19 ADX ADCX, ADOX instruction support.

18 RDSEED RDSEED instruction support.

17:9 — Reserved.

8 BMI2 Bit manipulation group 2 instruction support.

7 SMEP Supervisor mode execution prevention.

6 — Reserved.

5 AVX2 AVX2 instruction subset support.

4 — Reserved.

3 BMI1 Bit manipulation group 1 instruction support.

2:1 — Reserved.

0 FSGSBASE FS and GS base read/write instruction support.

CPUID Fn0000_0007_ECX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:11 — Reserved.

10 VPCMULQDQ Support for VPCLMULQDQ 256-bit instruction.

9 VAES Support for VAES 256-bit instructions.

8 — Reserved.

7 CET_SS Shadow Stacks supported.

6:5 — Reserved.

4 OSPKE
OS has enabled Memory Protection Keys and use of the RDPKRU/WRPKRU
instructions by setting CR4.PKE=1.

3 PKU Memory Protection Keys supported.

2 UMIP User mode instruction prevention support.

1:0 — Reserved.

CPUID Fn0000_0007_EDX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:0 — Reserved.

Bits Field Name Description

606 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

CPUID Fn0000_000B enumerates each level in the processor’s topological hierarchy. The level
number is specified by the input value passed in the ECX register.

If this function is executed with an unimplemented level (passed in ECX), the instruction returns all
zeros in the EAX register.

Subfunction 0 of Fn0000_000B - Thread Level

Subfunction 0 provides information about the thread-level topology.

Subfunction 1 of Fn0000_000B - Core Level

CPUID Fn0000_000B_EAX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:5 — Reserved.

4:0 ThreadMaskWidth Number of bits to shift x2APIC_ID right to get to the topology ID of the next level

CPUID Fn0000_000B_EBX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:16 — Reserved.

15:0 Number of threads in a core

CPUID Fn0000_000B_ECX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:16 — Reserved.

15:8 level number returns ‘1’ indicating thread level

7:0 ECX input value returns ‘0’

CPUID Fn0000_000B_EDX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:0 x2APIC_ID 32-bit Extended APIC_ID

Obtaining Processor Information Via the CPUID Instruction 607

24594—Rev. 3.32—March 2021 AMD64 Technology

Subfunction 1 provides information about the core-level topology.

E.3.9 Function Ch—Reserved

E.3.10 Function Dh—Processor Extended State Enumeration

The XSAVE / XRSTOR instructions are used to save and restore x87/MMX FPU and SSE processor
state. These instructions allow processor state associated with specific architected features to be
selectively saved and restored. This function provides information about extended state support and
save area size requirements.

The function has a number of subfunctions specified by the input value passed to the CPUID
instruction in the ECX register. If CPUID Fn0000_000D is executed with an unimplemented
subfunction (passed in ECX), the instruction returns all zeros in the EAX, EBX, ECX, and EDX
registers.

CPUID Fn0000_000B_EAX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:5 — Reserved.

4:0 CoreMaskWidth Number of bits to shift x2APIC_ID right to get to the topology ID of the next level

CPUID Fn0000_000B_EBX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:16 — Reserved.

15:0 Number of logical cores in socket

CPUID Fn0000_000B_ECX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:16 — Reserved.

15:8 level numbers returns ‘2’, indicating core-level

7:0 ECX input value returns ‘1’

CPUID Fn0000_000B_EDX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:0 x2APIC_ID 32-bit Extended APIC_ID

608 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

Subfunction 0 of Fn0000_000D

Subfunction 0 provides information about features within the extended processor state management
architecture that are supported by the processor.

The value returned in EAX provides a bit mask specifying which of the features defined by the
extended processor state architecture are supported by the processor.

The value returned in EBX gives the save area size requirement in bytes based on the features
currently enabled in the XFEATURE_ENABLED_MASK (XCR0).

The value returned in ECX gives the save area size requirement in bytes for all extended state
management features supported by the processor (whether enabled or not).

The value returned in EDX provides a bit mask specifying which of the features defined by the
extended processor state architecture are supported by the processor.

CPUID Fn0000_000D_EAX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedMask[31:0]
Reports the valid bit positions for the lower 32 bits of the
XFeatureEnabledMask register. If a bit is set, the corresponding
feature is supported. See “XSAVE/XRSTOR Instructions” in APM2.

CPUID Fn0000_000D_EBX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureEnabledSizeMax
Size in bytes of XSAVE/XRSTOR area for the currently enabled features in
XCR0.

CPUID Fn0000_000D_ECX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedSizeMax
Size in bytes of XSAVE/XRSTOR area for all features that the logical
processor supports. See XFeatureEnabledSizeMax.

CPUID Fn0000_000D_EDX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedMask[63:32]
Reports the valid bit positions for the upper 32 bits of the
XFeatureEnabledMask register. If a bit is set, the corresponding
feature is supported.

Obtaining Processor Information Via the CPUID Instruction 609

24594—Rev. 3.32—March 2021 AMD64 Technology

See “XSAVE/XRSTOR Instructions” in APM2 and reference pages for the individual instructions in
APM4.

Subfunction 1 of Fn0000_000D

Subfunction 1 provides additional information about features within the extended processor state
management architecture that are supported by the processor.

The value returned on EBX represents the fixed size of the save area (240h) plus the state size of each
enabled extended feature:

EBX = 0240h
+ ((XCR0[AVX] == 1) ? 0000_0100h : 0)
+ ((XCR0[MPK] == 1) ? 0000_0008h : 0)
+ ((XSS[CET_U] == 1) ? 0000_0010h : 0)
+ ((XSS[CET_S] == 1) ? 0000_0018h : 0)

The value returned on ECX returns a "1" for each bit that is settable in the XSS MSR. The following
bits are defined:

CPUID Fn0000_000D_EAX_x1 Processor Extended State Enumeration (ECX=1)

Bits Field Name Description

31:4 Reserved.

3 XSAVES XSAVES, XRSTOR, and XSS are supported.

2 XGETBV XGETBV with ECX = 1 supported.

1 XSAVEC XSAVEC and compact XRSTOR supported.

0 XSAVEOPT XSAVEOPT is available.

CPUID Fn0000_000D_EBX_x1 Processor Extended State Enumeration (ECX=1)

CPUID Fn0000_000D_ECX_x1 Processor Extended State Enumeration (ECX=1)

Bits Field Name Description

31:13 — Reserved.

12 CET_S CET supervisor.

11 CET_U CET user state.

10:0 — Reserved

CPUID Fn0000_000D_EDX_x1 Processor Extended State Enumeration (ECX=1)

610 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EDX for subfunction 1 is undefined and reserved.

Subfunction 2 of Fn0000_000D

Subfunction 2 provides information about the size and offset of the 256-bit SSE vector floating point
processor unit state save area.

The value returned in EAX provides information about the size of the 256-bit SSE vector floating
point processor unit state save area.

The value returned in EBX provides information about the offset of the 256-bit SSE vector floating
point processor unit state save area from the base of the extended state (XSAVE/XRSTOR) save area.

The values returned in ECX and EDX for subfunction 2 are undefined and are reserved.

Subfunction 11 of Fn0000_000D

Subfunction 11 provides information about the CET user state save area.

The value returned in EAX, EBX, ECX and EDX provides information about the CET user state save
area.

CPUID Fn0000_000D_EAX_x2 Processor Extended State Enumeration (ECX=2)

Bits Field Name Description

31:0 YmmSaveStateSize YMM state save size. The state save area size in bytes for The YMM registers.

CPUID Fn0000_000D_EBX_x2 Processor Extended State Enumeration (ECX=2)

Bits Field Name Description

31:0 YmmSaveStateOffset
YMM state save offset. The offset in bytes from the base of the extended state
save area of the YMM register state save area.

CPUID Fn0000_000D_E[D,C]X_x2 Processor Extended State Enumeration (ECX=2)

CPUID Fn0000_000D_E[A, B, C, D]X_x11 Processor Extended State Emulation (ECX=11)

Register Bits Field Name Description

EAX 31:0 CetUserSize CET user state save size in bytes

EBX 31:0 CetUserOffset CET user state offset from the base of the extended state save area

ECX 0 U/S Set to '1', indicating a supervisor state component

ECX 31:0 — Cleared to 0

EDX 31:0 — Unused, cleared to 0

Obtaining Processor Information Via the CPUID Instruction 611

24594—Rev. 3.32—March 2021 AMD64 Technology

Subfunction 12 of Fn0000_000D

Subfunction 12 provides information about the CET supervisor state save area.

The value returned in EAX, EBX, ECX and EDX provides information about the CET supervisor state
save area.

Subfunction 3Eh of Fn0000_000D

Subfunction 3Eh provides information about the size and offset of the Lightweight Profiling (LWP)
unit state save area.

The value returned in EAX provides the size of the Lightweight Profiling (LWP) unit state save area.

The value returned in EBX provides the offset of the Lightweight Profiling (LWP) unit state save area
from the base of the extended state (XSAVE/XRSTOR) save area.

CPUID Fn0000_000D_E[A, B, C, D]X_x12 Processor Extended State Emulation (ECX=12)

Register Bits Field Name Description

EAX 31:0 CetSupervisorSize CET supervisor state save size in bytes

EBX 31:0 CetSupervisorOffset
CET supervisor state offset from the base of the extended state save
area

ECX 0 U/S Set to '1', indicating a supervisor state component

ECX 31:0 — Cleared to 0

EDX 31:0 — Unused, cleared to 0

CPUID Fn0000_000D_EAX_x3E Processor Extended State Enumeration (ECX=62)

Bits Field Name Description

31:0 LwpSaveStateSize
LWP state save area size. The size of the save area for LWP state in bytes. See
“Lightweight Profiling” in APM2.

CPUID Fn0000_000D_EBX_x3E Processor Extended State Enumeration (ECX=62)

612 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in ECX and EDX for subfunction 3Eh are undefined and are reserved.

Subfunctions of Fn0000_000D greater than 3Eh

For CPUID Fn0000_000D, if the subfunction (specified by contents of ECX) passed as input to the
instruction is greater than 3Eh, the instruction returns zero in the EAX, EBX, ECX, and EDX registers.

E.3.11 Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use

These function numbers are reserved for use by the virtual machine monitor.

E.4 Extended Feature Function Numbers

This section describes each of the defined CPUID functions in the extended range.

E.4.1 Function 8000_0000h—Maximum Extended Function Number and Vendor
String

This function provides information about the maximum extended function number supported on this
processor and a string that identifies the vendor of the product.

The value returned in EAX provides the largest extended function number supported by the processor.

The values returned in EBX, ECX, and EDX together provide a 12-character string identifying the
vendor of this processor. The output string is the same as the one returned by Fn0000_0000. See
CPUID Fn0000_0000_E[D,C,B]X on page 598 for more details.

Bits Field Name Description

31:0 LwpSaveStateOffset
LWP state save byte offset. The offset in bytes from the base of the extended
state save area of the state save area for LWP. See “Lightweight Profiling” in
APM2.

CPUID Fn0000_000D_E[D,C]X_x3E Processor Extended State Enumeration (ECX=62)

CPUID Fn4000_00[FF:00] Reserved

CPUID Fn8000_0000_EAX Largest Extended Function Number

Bits Field Name Description

31:0 LFuncExt
Largest extended function. The largest CPUID extended function input value
supported by the processor implementation.

CPUID Fn8000_0000_E[D,C,B]X Processor Vendor

Obtaining Processor Information Via the CPUID Instruction 613

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.2 Function 8000_0001h—Extended Processor and Processor Feature Identifiers

The value returned in EAX provides the family, model, and stepping identifiers. Three values are used
by software to identify a processor: Family, Model, and Stepping. The value returned in EAX is the
same as the value returned in EAX for Fn0000_0001. See CPUID Fn0000_0001_EAX on page 599
for more details on the field definitions.

The value returned in EBX provides package type and a 16-bit processor name string identifiers.

For processor families 10h and greater, PkgType is described in the BIOS and Kernel Developer’s
Guide for the product.

This function contains the following miscellaneous feature identifiers:

Bits Field Name Description

31:0 Vendor
Four characters of the 12-byte character string (encoded in ASCII)
“AuthenticAMD”. See Table E-2 below.

Table E-2. CPUID Fn8000_0000_E[D,C,B]X values

Register Value Description

CPUID Fn8000_0000_EBX 6874_7541h The ASCII characters “h t u A”.

CPUID Fn8000_0000_ECX 444D_4163h The ASCII characters “D M A c”.

CPUID Fn8000_0000_EDX 6974_6E65h The ASCII characters “i t n e”.

CPUID Fn8000_0001_EAX AMD Family, Model, Stepping

Bits Field Names Description

31:0 Family, Model, Stepping See: CPUID Fn0000_0001_EAX.

CPUID Fn8000_0001_EBX BrandId Identifier

Bits Field Name Description

31:28 PkgType
Package type. If (Family[7:0] >= 10h), this field is valid. If (Family[7:0]<10h), this
field is reserved.

27:16 — Reserved.

15:0 BrandId
Brand ID. This field, in conjunction with CPUID Fn0000_0001_EBX[8BitBrandId], is
used by system firmware to generate the processor name string. See your
processor revision guide for how to program the processor name string.

CPUID Fn8000_0001_ECX Feature Identifiers

614 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

Bits Field Name Description

31 — Reserved.

30 AddrMaskExt Breakpoint Addressing masking extended to bit 31.

29 MONITORX Support for MWAITX and MONITORX instructions.

28 PerfCtrExtLLC Support for L3 performance counter extension.

27 PerfTsc
Performance time-stamp counter. Indicates support for MSRC001_0280
[Performance Time Stamp Counter].

26 DataBkptExt
Data access breakpoint extension. Indicates support for MSRC001_1027 and
MSRC001_101[B:9].

25 — Reserved

24 PerfCtrExtNB
NB performance counter extensions support. Indicates support for
MSRC001_024[6,4,2,0] and MSRC001_024[7,5,3,1].

23 PerfCtrExtCore
Processor performance counter extensions support. Indicates support for
MSRC001_020[A,8,6,4,2,0] and MSRC001_020[B,9,7,5,3,1].

22
TopologyExtensio
ns

Topology extensions support. Indicates support for CPUID
Fn8000_001D_EAX_x[N:0]-CPUID Fn8000_001E_EDX.

21 TBM Trailing bit manipulation instruction support.

20 — Reserved.

19 — Reserved.

18 — Reserved.

17 — Reserved.

16 FMA4 Four-operand FMA instruction support.

15 LWP
Lightweight profiling support. See “Lightweight Profiling” in APM2 and reference
pages for individual LWP instructions in APM3.

14 — Reserved.

13 WDT
Watchdog timer support. See APM2 and APM3. Indicates support for
MSRC001_0074.

12 SKINIT
SKINIT and STGI are supported. Indicates support for SKINIT and STGI,
independent of the value of MSRC000_0080[SVME]. See APM2 and APM3.

11 XOP Extended operation support.

10 IBS Instruction based sampling. See “Instruction Based Sampling” in APM2.

9 OSVW
OS visible workaround. Indicates OS-visible workaround support. See “OS Visible
Work-around (OSVW) Information” in APM2.

8 3DNowPrefetch
PREFETCH and PREFETCHW instruction support. See “PREFETCH” and
“PREFETCHW” in APM3.

7 MisAlignSse
Misaligned SSE mode. See “Misaligned Access Support Added for SSE
Instructions” in APM1.

6 SSE4A
EXTRQ, INSERTQ, MOVNTSS, and MOVNTSD instruction support. See
“EXTRQ”, “INSERTQ”, “MOVNTSS”, and “MOVNTSD” in APM4.

5 ABM Advanced bit manipulation. LZCNT instruction support. See “LZCNT” in APM3.

4 AltMovCr8 LOCK MOV CR0 means MOV CR8. See “MOV(CRn)” in APM3.

Obtaining Processor Information Via the CPUID Instruction 615

24594—Rev. 3.32—March 2021 AMD64 Technology

This function contains the following miscellaneous feature identifiers:

3 ExtApicSpace
Extended APIC space. This bit indicates the presence of extended APIC register
space starting at offset 400h from the “APIC Base Address Register,” as specified
in the BKDG.

2 SVM Secure virtual machine. See “Secure Virtual Machine” in APM2.

1 CmpLegacy Core multi-processing legacy mode. See “Legacy Method” on page 636.

0 LahfSahf
LAHF and SAHF instruction support in 64-bit mode. See “LAHF” and “SAHF” in
APM3.

CPUID Fn8000_0001_EDX Feature Identifiers

Bits Field Name Description

31 3DNow
3DNow!™ instructions. See Appendix D “Instruction Subsets and CPUID Feature
Sets” in APM3.

30 3DNowExt
AMD extensions to 3DNow! instructions. See Appendix D “Instruction Subsets and
CPUID Feature Sets” in APM3.

29 LM Long mode. See “Processor Initialization and Long-Mode Activation” in APM2.

28 — Reserved.

27 RDTSCP RDTSCP instruction. See “RDTSCP” in APM3.

26 Page1GB 1-GB large page support. See “1-GB Paging Support” in APM2.

25 FFXSR
FXSAVE and FXRSTOR instruction optimizations. See “FXSAVE” and “FXRSTOR”
in APM5.

24 FXSR FXSAVE and FXRSTOR instructions. Same as CPUID Fn0000_0001_EDX[FXSR].

23 MMX MMX™ instructions. Same as CPUID Fn0000_0001_EDX[MMX].

22 MmxExt
AMD extensions to MMX instructions. See Appendix D “Instruction Subsets and
CPUID Feature Sets” in APM3 and “128-Bit Media and Scientific Programming” in
APM1.

21 — Reserved.

20 NX No-execute page protection. See “Page Translation and Protection” in APM2.

19:18 — Reserved.

17 PSE36 Page-size extensions. Same as CPUID Fn0000_0001_EDX[PSE36].

16 PAT Page attribute table. Same as CPUID Fn0000_0001_EDX[PAT].

15 CMOV Conditional move instructions. Same as CPUID Fn0000_0001_EDX[CMOV].

14 MCA Machine check architecture. Same as CPUID Fn0000_0001_EDX[MCA].

13 PGE Page global extension. Same as CPUID Fn0000_0001_EDX[PGE].

12 MTRR Memory-type range registers. Same as CPUID Fn0000_0001_EDX[MTRR].

11 SysCallSysRet SYSCALL and SYSRET instructions. See “SYSCALL” and “SYSRET” in APM3.

10 — Reserved.

Bits Field Name Description

616 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.3 Functions 8000_0002h–8000_0004h—Extended Processor Name String

The three extended functions from Fn8000_0002 to Fn8000_0004 are programmed to return a null
terminated ASCII string up to 48 characters in length corresponding to the processor name.

The 48 character maximum includes the terminating null character. The 48 character string is ordered
first to last (left to right) as follows:

Fn8000_0002[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],...,
ECX[31:24],EDX[7:0],..., EDX[31:24]],
Fn8000_0003[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],..., ECX[31:24],
EDX[7:0],..., EDX[31:24]],
Fn8000_0004[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],..., ECX[31:24],
EDX[7:0],..., EDX[31:24]].

The extended processor name string is programmed by system firmware. See your processor revision
guide for information about how to display the extended processor name string.

E.4.4 Function 8000_0005h—L1 Cache and TLB Information

This function provides first level cache TLB characteristics for the processor that executes the
instruction.

The value returned in EAX provides information about the L1 TLB for 2-MB and 4-MB pages.

9 APIC
Advanced programmable interrupt controller. Same as CPUID
Fn0000_0001_EDX[APIC].

8 CMPXCHG8B CMPXCHG8B instruction. Same as CPUID Fn0000_0001_EDX[CMPXCHG8B].

7 MCE Machine check exception. Same as CPUID Fn0000_0001_EDX[MCE].

6 PAE Physical-address extensions. Same as CPUID Fn0000_0001_EDX[PAE].

5 MSR AMD model-specific registers. Same as CPUID Fn0000_0001_EDX[MSR].

4 TSC Time stamp counter. Same as CPUID Fn0000_0001_EDX[TSC].

3 PSE Page-size extensions. Same as CPUID Fn0000_0001_EDX[PSE].

2 DE Debugging extensions. Same as CPUID Fn0000_0001_EDX[DE].

1 VME Virtual-mode enhancements. Same as CPUID Fn0000_0001_EDX[VME].

0 FPU x87 floating-point unit on-chip. Same as CPUID Fn0000_0001_EDX[FPU].

CPUID Fn8000_000[4:2]_E[D,C,B,A]X Processor Name String Identifier

Bits Field Name Description

31:0 ProcName Four characters of the extended processor name string.

CPUID Fn8000_0005_EAX L1 TLB 2M/4M Information

Bits Field Name Description

Obtaining Processor Information Via the CPUID Instruction 617

24594—Rev. 3.32—March 2021 AMD64 Technology

The associativity fields (L1DTlb2and4MAssoc and L1ITlb2and4MAssoc) are encoded as follows:

The value returned in EBX provides information about the L1 TLB for 4-KB pages.

The associativity fields (L1DTlb4KAssoc and L1ITlb4KAssoc) are encoded as specified in Table E-3
on page 617.

The value returned in ECX provides information about the first level data cache.

Bits Field Name Description

31:24 L1DTlb2and4MAssoc
Data TLB associativity for 2-MB and 4-MB pages. Encoding is per Table E-3
below.

23:16 L1DTlb2and4MSize

Data TLB number of entries for 2-MB and 4-MB pages. The value returned is
for the number of entries available for the 2-MB page size; 4-MB pages require
two 2-MB entries, so the number of entries available for the 4-MB page size is
one-half the returned value.

15:8 L1ITlb2and4MAssoc
Instruction TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-3 below.

7:0 L1ITlb2and4MSize

Instruction TLB number of entries for 2-MB and 4-MB pages. The value
returned is for the number of entries available for the 2-MB page size; 4-MB
pages require two 2-MB entries, so the number of entries available for the 4-MB
page size is one-half the returned value.

Table E-3. L1 Cache and TLB Associativity Field Encodings

Associativity
[7:0]

Definition

00h Reserved

01h 1 way (direct mapped)

02h–FEh n-way associative. (field encodes n)

FFh Fully associative

CPUID Fn8000_0005_EBX L1 TLB 4K Information

Bits Field Name Description

31:24 L1DTlb4KAssoc Data TLB associativity for 4 KB pages. Encoding is per Table E-3 above.

23:16 L1DTlb4KSize Data TLB number of entries for 4 KB pages.

15:8 L1ITlb4KAssoc Instruction TLB associativity for 4 KB pages. Encoding is per Table E-3 above.

7:0 L1ITlb4KSize Instruction TLB number of entries for 4 KB pages.

CPUID Fn8000_0005_ECX L1 Data Cache Information

618 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The associativity field (L1DcAssoc) is encoded as specified in Table E-3 on page 617.

The value returned in EDX provides information about the first level instruction cache.

The associativity field (L1IcAssoc) is encoded as specified in Table E-3 on page 617.

E.4.5 Function 8000_0006h—L2 Cache and TLB and L3 Cache Information

This function provides the second level cache and TLB characteristics for the logical processor that
executes the instruction. The EDX register returns the processor’s third level cache characteristics that
are shared by all logical processors in the package.

The value returned in EAX provides information about the L2 TLB for 2-MB and 4-MB pages.

Bits Field Name Description

31:24 L1DcSize L1 data cache size in KB.

23:16 L1DcAssoc L1 data cache associativity. Encoding is per Table E-3.

15:8 L1DcLinesPerTag L1 data cache lines per tag.

7:0 L1DcLineSize L1 data cache line size in bytes.

CPUID Fn8000_0005_EDX L1 Instruction Cache Information

Bits Field Name Description

31:24 L1IcSize L1 instruction cache size KB.

23:16 L1IcAssoc L1 instruction cache associativity. Encoding is per Table E-3.

15:8 L1IcLinesPerTag L1 instruction cache lines per tag.

7:0 L1IcLineSize L1 instruction cache line size in bytes.

CPUID Fn8000_0006_EAX L2 TLB 2M/4M Information

Bits Field Name Description

31:28 L2DTlb2and4MAssoc
L2 data TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-4 below.

27:16 L2DTlb2and4MSize

L2 data TLB number of entries for 2-MB and 4-MB pages. The value returned
is for the number of entries available for the 2 MB page size; 4 MB pages
require two 2 MB entries, so the number of entries available for the 4 MB page
size is one-half the returned value.

Obtaining Processor Information Via the CPUID Instruction 619

24594—Rev. 3.32—March 2021 AMD64 Technology

The associativity fields (L2DTlb2and4MAssoc and L2ITlb2and4MAssoc) are encoded as follows:

The value returned in EBX provides information about the L2 TLB for 4-KB pages.

The associativity fields (L2DTlb4KAssoc and L2ITlb4KAssoc) are encoded per Table E-4 above.

15:12 L2ITlb2and4MAssoc
L2 instruction TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-4 below.

11:0 L2ITlb2and4MSize

L2 instruction TLB number of entries for 2-MB and 4-MB pages. The value
returned is for the number of entries available for the 2 MB page size; 4 MB
pages require two 2 MB entries, so the number of entries available for the 4
MB page size is one-half the returned value.

Table E-4. L2/L3 Cache and TLB Associativity Field Encoding

Associativity
[3:0]

Definition

0h L2/L3 cache or TLB is disabled.

1h Direct mapped.

2h 2-way associative.

3h 3-way associative.

4h 4-way associative.

5h 6-way associative.

6h 8-way associative.

8h 16-way associative.

9h Value for all fields should be determined from
Fn8000_001D

Ah 32-way associative.

Bh 48-way associative.

Ch 64-way associative.

Dh 96-way associative.

Eh 128-way associative.

Fh Fully associative.

All other encodings are reserved.

CPUID Fn8000_0006_EBX L2 TLB 4K Information

Bits Field Name Description

31:28 L2DTlb4KAssoc L2 data TLB associativity for 4-KB pages. Encoding is per Table E-4 above.

27:16 L2DTlb4KSize L2 data TLB number of entries for 4-KB pages.

15:12 L2ITlb4KAssoc L2 instruction TLB associativity for 4-KB pages. Encoding is per Table E-4 above.

11:0 L2ITlb4KSize L2 instruction TLB number of entries for 4-KB pages.

620 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in ECX provides information about the L2 cache.

The associativity field (L2Assoc) is encoded per Table E-4 on page 619.

The value returned in EDX provides the third level cache characteristics shared by all logical
processors in the package.

The associativity field (L3Assoc) is encoded per Table E-4 on page 619.

E.4.6 Function 8000_0007h—Processor Power Management and RAS Capabilities

This function provides information about the power management, power reporting, and RAS
capabilities of the processor that executes the instruction.There may be other processor-specific
features and reporting capabilities not covered here. Refer to the BIOS and Kernel Developer’s Guide
for your specific product to otain more information.

CPUID Fn8000_0006_ECX L2 Cache Information

Bits Field Name Description

31:16 L2Size L2 cache size in KB.

15:12 L2Assoc L2 cache associativity. Encoding is per Table E-4 on page 619.

11:8 L2LinesPerTag L2 cache lines per tag.

7:0 L2LineSize L2 cache line size in bytes.

CPUID Fn8000_0006_EDX L3 Cache Information

Bits Field Name Description

31:18 L3Size
Specifies the L3 cache size range:

(L3Size[31:18] * 512KB) L3 cache size < ((L3Size[31:18]+1) * 512KB).

17:16 — Reserved.

15:12 L3Assoc L3 cache associativity. Encoded per Table E-4 on page 619.

11:8 L3LinesPerTag L3 cache lines per tag.

7:0 L3LineSize L3 cache line size in bytes.

CPUID Fn8000_0007_EAX Reserved

Bits Field Name Description

31:0 — Reserved.

CPUID Fn8000_0007_EBX RAS Capabilities

Obtaining Processor Information Via the CPUID Instruction 621

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EBX provides information about RAS features that allow system software to
detect specific hardware errors.

The value returned in ECX provides information about the implementation of the processor power
monitoring interface.

The value returned in EDX provides information about the advanced power management and power
reporting features available. Refer to the BIOS and Kernel Developer’s Guide for your specific product
for a detailed description of the definition of each power management feature.

Bits Field Name Description

31:3 — Reserved.

2 HWA Hardware assert supported. Indicates support for MSRC001_10[DF:C0].

1 SUCCOR

Software uncorrectable error containment and recovery capability.

The processor supports software containment of uncorrectable errors through
context synchronizing data poisoning and deferred error interrupts; see APM2,
Chapter 9, “Determining Machine-Check Architecture Support.”

0 McaOverflowRecov

MCA overflow recovery support. If set, indicates that MCA overflow conditions
(MCi_STATUS[Overflow]=1) are not fatal; software may safely ignore such
conditions. If clear, MCA overflow conditions require software to shut down the
system. See APM2, Chapter 9, “Handling Machine Check Exceptions.”

CPUID Fn8000_0007_ECX Processor Power Monitoring Interface

Bits Field Name Description

31:0 CpuPwrSampleTimeRatio
Specifies the ratio of the compute unit power accumulator sample
period to the TSC counter period. Returns a value of 0 if not applicable
for the system.

CPUID Fn8000_0007_EDX Advanced Power Management Features

Bits Field Name Description

31:13 — Reserved.

12 ProcPowerReporting Processor power reporting interface supported.

11 ProcFeedbackInterface
Processor feedback interface. Value: 1. 1=Indicates support for processor
feedback interface. Note: This feature is deprecated.

10 EffFreqRO

Read-only effective frequency interface. 1=Indicates presence of
MSRC000_00E7 [Read-Only Max Performance Frequency Clock Count
(MPerfReadOnly)] and MSRC000_00E8 [Read-Only Actual Performance
Frequency Clock Count (APerfReadOnly)].

9 CPB Core performance boost.

622 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.7 Function 8000_0008h—Processor Capacity Parameters and Extended Feature
Identification

This function provides the size or capacity of various architectural parameters that vary by
implementation, as well as an extension to the Fn8000_0001 feature identifiers.

The value returned in EAX provides information about the maximum host and guest physical and
linear address width (in bits) supported by the processor.

The address width reported is the maximum supported in any mode. For long mode capable proces-
sors, the size reported is independent of whether long mode is enabled. See “Processor Initialization
and Long-Mode Activation” in APM2.

The value returned in EBX is an extension to the Fn8000_0001 feature flags and indicates the presence
of various ISA extensions.

8 TscInvariant

TSC invariant. The TSC rate is ensured to be invariant across all P-States, C-
States, and stop grant transitions (such as STPCLK Throttling); therefore the
TSC is suitable for use as a source of time. 0 = No such guarantee is made
and software should avoid attempting to use the TSC as a source of time.

7 HwPstate
Hardware P-state control. MSRC001_0061 [P-state Current Limit],
MSRC001_0062 [P-state Control] and MSRC001_0063 [P-state Status] exist.

6 100MHzSteps 100 MHz multiplier Control.

5 — Reserved.

4 TM Hardware thermal control (HTC).

3 TTP THERMTRIP.

2 VID Voltage ID control. Function replaced by HwPstate.

1 FID Frequency ID control. Function replaced by HwPstate.

0 TS Temperature sensor.

CPUID Fn8000_0008_EAX Long Mode Size Identifiers

Bits Field Name Description

31:24 — Reserved.

23:16 GuestPhysAddrSize

Maximum guest physical address size in bits. This number applies only to guests
using nested paging. When this field is zero, refer to the PhysAddrSize field for
the maximum guest physical address size. See “Secure Virtual Machine” in
APM2.

15:8 LinAddrSize Maximum linear address size in bits.

7:0 PhysAddrSize
Maximum physical address size in bits. When GuestPhysAddrSize is zero, this
field also indicates the maximum guest physical address size.

CPUID Fn8000_0008_EBX Extended Feature Identifiers

Obtaining Processor Information Via the CPUID Instruction 623

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in ECX provides information about the number of cores supported by the
processor, the width of the APIC ID, and the width of the performance time-stamp counter.

Bit Field Name Description

31:22 — Reserved

21 INVLPGBnestedPages INVLPGB support for invalidating guest nested translations

20 EferLmsleUnsupported EFER.LMSLE is unsupported.

19:14 — Reserved

13 INT_WBINVD WBINVD/WBNOINVD are interruptible.

12:10 — Reserved

9 WBNOINVD WBNOINVD instruction supported

8 MCOMMIT MCOMMIT instruction supported

7:5 — Reserved

4 RDPRU RDPRU instruction supported

3 INVLPGB INVLPGB and TLBSYNC instruction supported

2 RstrFpErrPtrs FP Error Pointers Restored by XRSTOR

1 InstRetCntMsr Instruction Retired Counter MSR available

0 CLZERO CLZERO instruction supported

CPUID Fn8000_0008_ECX Size Identifiers

Bits Field Name Description

31:16 — Reserved.

17:16 PerfTscSize

Performance time-stamp counter size. Indicates the size of
MSRC001_0280[PTSC].

Bits Description

00b 40 bits

01b 48 bits

10b 56 bits

11b 64 bits

624 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EDX identifies the maximum recognized register identifier for the RDPRU
instruction.

E.4.8 Function 8000_0009h—Reserved

This function is reserved.

E.4.9 Function 8000_000Ah—SVM Features

This function provides information about the SVM features that the processory supports. If SVM is
not supported (CPUID Fn8000_0001_ECX[SVM] = 0), this function is reserved.

15:12 ApicIdSize

APIC ID size. The number of bits in the initial APIC20[ApicId] value that indicate
logical processor ID within a package. The size of this field determines the
maximum number of logical processors (MNLP) that the package could
theoretically support, and not the actual number of logical processors that are
implemented or enabled in the package, as indicated by CPUID
Fn8000_0008_ECX[NC]. A value of zero indicates that legacy methods must be
used to determine the maximum number of logical processors, as indicated by
CPUID Fn8000_0008_ECX[NC].

if (ApicIdSize[3:0] == 0) {

// Used by legacy dual-core/single-core processors

MNLP = CPUID Fn8000_0008_ECX[NC] + 1;

} else {

// use ApicIdSize[3:0] field

MNLP = (2 raised to the power of ApicIdSize[3:0]);

}

11:8 — Reserved.

7:0 NT
Number of physical threads - 1. The number of threads in the processor is NT+1
(e.g., if NT = 0, then there is one thread). See “Legacy Method” on page 636.

CPUID Fn8000_0008_EDX RDPRU Register Identifier Range

Bits Field Name Description

63:32 — Reserved.

31:16 MaxRdpruID The maximum ECX value recognized by RDPRU.

15:0 InvlpgbCountMax Maximum page count for INVLPGB instruction.

CPUID Fn8000_0009 Reserved

Bits Field Name Description

Obtaining Processor Information Via the CPUID Instruction 625

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EAX provides the SVM revision number. I

The value returned in EBX provides the number of address space identifiers (ASIDs) that the
processor supports.

The value returned in ECX for this function is undefined and is reserved.

The value returned in EDX provides Secure Virtual Machine architecture feature information. All
cross references in the table below are to sections within the Secure Virtual Machine chapter of APM2.

CPUID Fn8000_000A_EAX SVM Revision and Feature Identification

Bits Field Name Description

31:8 — Reserved.

7:0 SvmRev SVM revision number.

CPUID Fn8000_000A_EBX SVM Revision and Feature Identification

Bits Field Name Description

31:0 NASID Number of available address space identifiers (ASID).

CPUID Fn8000_000A_ECX Reserved

CPUID Fn8000_000A_EDX SVM Feature Identification

Bits Field Name Description

31:25 — Reserved.

24 TlbiCtl
Support for INVLPGB/TLBSYNC hypervisor enable in VMCB and
TLBSYNC intercept.

23 HOST_MCE_OVERRIDE
When host CR4.MCE=1 and guest CR4.MCE=0, machine check
exceptions (#MC) in a guest do not cause shutdown and are always
intercepted.

22:21 — Reserved.

20 SpecCtrl SPEC_CTRL virtualization.

19 SSSCheck
SVM supervisor shadow stack restrictions. See “Supervisor Shadow Stack
Restrictions” in Volume 2.

18 — Reserved.

17 GMET Guest Mode Execution Trap.

16 VGIF Virtualize the Global Interrupt Flag. See "Nested Virtualization"

15 VMSAVEvirt VMSAVE and VMLOAD virtualization. See "Nested Virtualization"

14 — Reserved.

626 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.10 Functions 8000_000Bh–8000_0018h—Reserved

These functions are reserved.

E.4.11 Function 8000_0019h—TLB Characteristics for 1GB pages

This function provides information about the TLB for 1 GB pages for the processor that executes the
instruction.

The value returned in EAX provides information about the L1 TLB for 1 GB pages.

13 AVIC
Support for the AMD advanced virtual interrupt controller. See “Advanced
Virtual Interrupt Controller.”

12 PauseFilterThreshold
PAUSE filter threshold. Indicates support for the PAUSE filter cycle count
threshold. See "Pause Intercept Filtering” in Volume 2.

11 — Reserved.

10 PauseFilter
Pause intercept filter. Indicates support for the pause intercept filter. See
“Pause Intercept Filtering.”

9:8 — Reserved.

7 DecodeAssists
Decode assists. Indicates support for the decode assists. See “Decode
Assists.”

6 FlushByAsid
Flush by ASID. Indicates that TLB flush events, including CR3 writes and
CR4.PGE toggles, flush only the current ASID's TLB entries. Also indicates
support for the extended VMCB TLB_Control. See “TLB Control.”

5 VmcbClean
VMCB clean bits. Indicates support for VMCB clean bits. See “VMCB
Clean Bits.”

4 TscRateMsr
MSR based TSC rate control. Indicates support for MSR TSC ratio
MSRC000_0104. See “TSC Ratio MSR (C000_0104h).”

3 NRIPS
NRIP save. Indicates support for NRIP save on #VMEXIT. See “State
Saved on Exit.”

2 SVML SVM lock. Indicates support for SVM-Lock. See “Enabling SVM.”

1 LbrVirt
LBR virtualization. Indicates support for LBR Virtualization. See “Enabling
LBR Virtualization.”

0 NP Nested paging. Indicates support for nested paging. See “Nested Paging.”

CPUID Fn8000_00[18:0B] Reserved

CPUID Fn8000_0019_EAX L1 TLB 1G Information

Bits Field Name Description

Obtaining Processor Information Via the CPUID Instruction 627

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EBX provides information about the L2 TLB for 1 GB pages.

The values returned in ECX and EDX for this function are undefined and reserved for future use.

E.4.12 Function 8000_001Ah—Instruction Optimizations

This function returns performance related information. For more details on how to use these bits to optimize
software, see the Software Optimization Guide applicable to your product.

Bits Field Name Description

31:28 L1DTlb1GAssoc L1 data TLB associativity for 1 GB pages. See Table E-4 on page 619.

27:16 L1DTlb1GSize L1 data TLB number of entries for 1 GB pages.

15:12 L1ITlb1GAssoc L1 instruction TLB associativity for 1 GB pages. See Table E-4 on page 619.

11:0 L1ITlb1GSize L1 instruction TLB number of entries for 1 GB pages.

CPUID Fn8000_0019_EBX L2 TLB 1G Information

Bits Field Name Description

31:28 L2DTlb1GAssoc L2 data TLB associativity for 1 GB pages. See Table E-4 on page 619.

27:16 L2DTlb1GSize L2 data TLB number of entries for 1 GB pages.

15:12 L2ITlb1GAssoc L2 instruction TLB associativity for 1 GB pages. See Table E-4 on page 619.

11:0 L2ITlb1GSize L2 instruction TLB number of entries for 1 GB pages.

CPUID Fn8000_0019_E[D,C]X Reserved

CPUID Fn8000_001A_EAX Performance Optimization Identifiers

Bits Field Name Description

31:3 — Reserved.

2 FP256
256-bit AVX instructions are executed with full-width internal operations and
pipelines rather than decomposing them into internal 128-bit suboperations. This
may impact how software performs instruction selection and scheduling.

1 MOVU
MOVU SSE nstructions are more efficient and should be preferred to SSE
MOVL/MOVH. MOVUPS is more efficient than MOVLPS/MOVHPS. MOVUPD is
more efficient than MOVLPD/MOVHPD.

0 FP128

128-bit SSE (multimedia) instructions are executed with full-width internal
operations and pipelines rather than decomposing them into internal 64-bit
suboperations. This may impact how software performs instruction selection and
scheduling.

CPUID Fn8000_001A_E[D,C,B]X Reserved

628 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in EBX, ECX, and EDX are undefined for this function and are reserved.

Obtaining Processor Information Via the CPUID Instruction 629

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.13 Function 8000_001Bh—Instruction-Based Sampling Capabilities

If instruction-based sampling (IBS) is supported (CPUID Fn8000_0001_ECX[IBS] = 1), this CPUID
function can be used to obtain IBS feature information. If IBS is not supported (CPUID
Fn8000_0001_ECX[IBS] = 0), this function number is reserved. For more information on using IBS,
see “Instruction-Based Sampling” in APM2.

The value returned in EAX provides the following information about the specific features of IBS that
the processor supports:

The values returned in EBX, ECX, and EDX are undefined and are reserved.

E.4.14 Function 8000_001Ch—Lightweight Profiling Capabilities

If lightweight profilling (LWP) is supported (CPUID Fn8000_0001_ECX[LWP] = 1), this CPUID
function can be used to obtain information about LWP features supported by the processor. If LWP is
not supported (CPUID Fn8000_0001_ECX[LWP] = 0), this function number is reserved. For more
information on using LWP, see “Lightweight Profiling” in APM2.

CPUID Fn8000_001B_EAX Instruction-Based Sampling Feature Indicators

Bits Field Name Description

31:9 Reserved.

8 OpBrnFuse Fused branch micro-op indication supported.

7 RipInvalidChk Invalid RIP indication supported.

6 OpCntExt IbsOpCurCnt and IbsOpMaxCnt extend by 7 bits.

5 BrnTrgt Branch target address reporting supported.

4 OpCnt Op counting mode supported.

3 RdWrOpCnt Read write of op counter supported.

2 OpSam IBS execution sampling supported.

1 FetchSam IBS fetch sampling supported.

0 IBSFFV IBS feature flags valid.

CPUID Fn8000_001B_E[D,C,B]X Reserved

630 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EAX provides the following information about LWP capabilities supported by
the processor:

The value returned in EBX provides the following additional information about LWP capabilities
supported by the processor:

The value returned in ECX provides the following additional information about LWP capabilities
supported by the processor:

CPUID Fn8000_001C_EAX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpInt Interrupt on threshold overflow available.

30 LwpPTSC Performance time stamp counter in event record is available.

29 LwpCont Sampling in continuous mode is available.

28:7 — Reserved.

6 LwpRNH Core reference clocks not halted event available.

5 LwpCNH Core clocks not halted event available.

4 LwpDME DC miss event available.

3 LwpBRE Branch retired event available.

2 LwpIRE Instructions retired event available.

1 LwpVAL LWPVAL instruction available.

0 LwpAvail The LWP feature is available.

CPUID Fn8000_001C_EBX Lightweight Profiling Capabilities 0

Bits Field Name Description

31:24 LwpEventOffset Offset in bytes from the start of the LWPCB to the EventInterval1 field.

23:16 LwpMaxEvents Maximum EventId value supported.

15:8 LwpEventSize Event record size. Size in bytes of an event record in the LWP event ring buffer.

7:0 LwpCbSize Control block size. Size in quadwords of the LWPCB.

CPUID Fn8000_001C_ECX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpCacheLatency Cache latency filtering supported. Cache-related events can be filtered by latency.

30 LwpCacheLevels
Cache level filtering supported. Cache-related events can be filtered by the cache
level that returned the data.

29 LwpIpFiltering IP filtering supported.

28
LwpBranchPredict
ion

Branch prediction filtering supported. Branches Retired events can be filtered
based on whether the branch was predicted properly.

Obtaining Processor Information Via the CPUID Instruction 631

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EDX provides the following additional information about LWP capabilities
supported by the processor:

E.4.15 Function 8000_001Dh—Cache Topology Information

CPUID Fn8000_001D_E[D,C,B,A]X reports cache topology information for the cache enumerated by
the value passed to the instruction in ECX, referred to as Cache n in the following description. To
gather information for all cache levels, software must repeatedly execute CPUID with 8000_001Dh in
EAX and ECX set to increasing values beginning with 0 until a value of 00h is returned in the field
CacheType (EAX[4:0]) indicating no more cache descriptions are available for this processor.

If CPUID Fn8000_0001_ECX[TopologyExtensions] = 0, then CPUID Fn8000_001Dh is reserved.
Any value in ECX which does not select an existing cache will return a Null cache type in EAX[4:0].

27:24 — Reserved.

23:16 LwpMinBufferSize
Event ring buffer size. Minimum size of the LWP event ring buffer, in units of 32
event records.

15:9 LwpVersion Version of LWP implementation.

8:6 LwpLatencyRnd Amount by which cache latency is rounded.

5 LwpDataAddress Data cache miss address valid. Address is valid for cache miss event records.

4:0 LwpLatencyMax Latency counter size. Size in bits of the cache latency counters.

CPUID Fn8000_001C_EDX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpInt Interrupt on threshold overflow supported.

30 LwpPTSC Performance time stamp counter in event record is supported.

29 LwpCont Sampling in continuous mode is supported.

28:7 — Reserved.

6 LwpRNH Core reference clocks not halted event is supported.

5 LwpCNH Core clocks not halted event is supported.

4 LwpDME DC miss event is supported.

3 LwpBRE Branch retired event is supported.

2 LwpIRE Instructions retired event is supported.

1 LwpVAL LWPVAL instruction is supported.

0 LwpAvail Lightweight profiling is supported.

Bits Field Name Description

632 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

CPUID Fn8000_001D_EAX_x[N:0] Cache Properties

Bits Field Name Description

31:26 — Reserved.

25:14 NumSharingCache

Specifies the number of logical processors sharing the cache enumerated by N,
the value passed to the instruction in ECX. The number of logical processors
sharing this cache is the value of this field incremented by 1. To determine which
logical processors are sharing a cache, determine a Share Id for each processor
as follows:

ShareId = LocalApicId >> log2(NumSharingCache+1)

Logical processors with the same ShareId then share a cache. If
NumSharingCache+1 is not a power of two, round it up to the next power of two.

13:10 — Reserved.

9 FullyAssociative
Fully associative cache. When set, indicates that the cache is fully associative. If
0 is returned in this field, the cache is set associative.

8 SelfInitialization
Self-initializing cache. When set, indicates that the cache is self initializing;
software initialization not required. If 0 is returned in this field, hardware does not
initialize this cache.

7:5 CacheLevel

Cache level. Identifies the level of this cache. Note that the enumeration value is
not necessarily equal to the cache level.

Bits Description

000b Reserved.

001b Level 1

010b Level 2

011b Level 3

111b-100b Reserved.

4:0 CacheType

Cache type. Identifies the type of cache.

Bits Description

00h Null; no more caches.

01h Data cache

02h Instruction cache

03h Unified cache

1Fh-04h Reserved.

Obtaining Processor Information Via the CPUID Instruction 633

24594—Rev. 3.32—March 2021 AMD64 Technology

See CPUID Fn8000_001D_EAX_x[N:0].

See CPUID Fn8000_001D_EAX_x[N:0].

See CPUID Fn8000_001D_EAX_x[N:0].

E.4.16 Function 8000_001Eh—Processor Topology Information

If CPUID Fn8000_0001_ECX[TopologyExtensions] = 0, this function number is reserved.

CPUID Fn8000_001D_EBX_x[N:0] Cache Properties

Bits Field Name Description

31:22 CacheNumWays
Number of ways for this cache. The number of ways is the value returned in this
field incremented by 1.

21:12 CachePhysPartitions
Number of physical line partitions. The number of physical line partitions is the
value returned in this field incremented by 1.

11:0 CacheLineSize
Cache line size. The cache line size in bytes is the value returned in this field
incremented by 1.

CPUID Fn8000_001D_ECX_x[N:0] Cache Properties

Bits Field Name Description

31:0 CacheNumSets
Number of ways for set associative cache. Number of ways is the value returned in
this field incremented by 1. Only valid for caches that are not fully associative
(Fn8000_001D_EAX_xn[FullyAssociative] = 0).

CPUID Fn8000_001D_EDX_x[N:0] Cache Properties

Bits Field Name Description

31:2 — Reserved.

1 CacheInclusive
Cache inclusivity. A value of 0 indicates that this cache is not inclusive of lower
cache levels. A value of 1 indicates that the cache is inclusive of lower cache
levels.

0 WBINVD

Write-Back Invalidate/Invalidate execution scope. A value of 0 returned in this field
indicates that the WBINVD/INVD instruction invalidates all lower level caches of
non-originating logical processors sharing this cache. When set, this field indicates
that the WBINVD/INVD instruction is not guaranteed to invalidate all lower level
caches of non-originating logical processors sharing this cache.

CPUID Fn8000_001E_EAX Extended APIC ID

Bits Field Name Description

31:0 ExtendedApicId Extended APIC ID. If MSR0000_001B[ApicEn] = 0, this field is reserved..

634 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

See CPUID Fn8000_001E_EAX.

See CPUID Fn8000_001E_EAX.

The value returned in EDX is undefined and is reserved.

E.4.17 Function 8000_001Fh—Encrypted Memory Capabilities

CPUID Fn8000_001E_EBX Compute Unit Identifiers

Bits Field Name Description

31:16 — Reserved.

15:8 ThreadsPerComputeUnit

Threads per compute unit (zero-based count). The actual number of threads
per compute unit is the value of this field + 1. To determine which logical
processors (threads) belong to a given Compute Unit, determine a ShareId
for each processor as follows:

ShareId = LocalApicId >> log2(ThreadsPerComputeUnit+1)

Logical processors with the same ShareId then belong to the same Compute
Unit. (If ThreadsPerComputeUnit+1 is not a power of two, round it up to the
next power of two).

7:0 ComputeUnitId
Compute unit ID. Identifies a Compute Unit, which may be one or more
physical cores that each implement one or more logical processors.

CPUID Fn8000_001E_ECX Node Identifiers

Bits Field Name Description

31:0 — Reserved.

10:8 NodesPerProcessor
Specifies the number of nodes in the package/socket in which this logical
processor resides. Node in this context corresponds to a processor die.
Encoding is N-1, where N is the number of nodes present in the socket.

7:0 NodeId
Specifies the ID of the node containing the current logical processor. NodeId
values are unique across the system..

CPUID Fn8000_001E_EDX Reserved

CPUID Fn8000_001F_EAX Secure Encryption

Bits Field Name Description

31:17 — Reserved.

16 VTE Virtual Transparent Encryption supported

15 PreventHostIbs Disallowing IBS use by the host supported

14 DebugSwap Full debug state swap supported for SEV-ES guests

13 AlternateInjection Alternate Injection supported

Obtaining Processor Information Via the CPUID Instruction 635

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.18 Function 8000_0020—Reserved

E.4.19 Function 8000_0021—Extended Feature Identification 2

12 RestrictedInjection Restricted Injection supported

11 64BitHost SEV guest execution only allowed from a 64-bit host

10 HwEnfCacheCoh Hardware cache coherency across encryption domains enforced

9:6 — Reserved.

5 VMPL VM Permission Levels supported

4 SEV-SNP SEV Secure Nested Paging supported

3 SEV-ES SEV Encrypted State supported

2 PageFlushMsr Page Flush MSR available

1 SEV Secure Encrypted Virtualization supported

0 SME Secure Memory Encryption supported

CPUID Fn8000_001F_EBX Secure Encryption

Bits Field Name Description

31:16 — Reserved.

15:12 NumVMPL Number of VM Permission Levels supported

11:6 PhysAddrReduction Physical Address bit reduction

5:0 CbitPosition C-bit location in page table entry

CPUID Fn8000_001F_ECX Secure Encryption

Bits Field Name Description

31:0 NumEncryptedGuests Number of encrypted guests supported simultaneously

CPUID Fn8000_001F_EDX Minimum ASID

Bits Field Name Description

31:0 MinSevNoEsAsid Minimum ASID value for an SEV enabled, SEV-ES disabled guest

CPUID Fn8000_0021_EAX Extended Feature 2

Bits Field Name Description

636 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in EBX, ECX, and EDX are undefined and are reserved.

E.5 Multiple Processor Calculation
Operating systems may use one of two possible methods to calculate the actual number of logical processors
per package (NC), and the maximum possible number of logical processors per package (MNLP). The
extended method is recommended, but a legacy method is also available.

E.5.1 Legacy Method
The CPUID identification of total number of logical processors per package is derived from information
returned by the following fields:

• CPUID Fn0000_0001_EBX[LogicalProcessorCount]
• CPUID Fn0000_0001_EDX[HTT] (Hyper-Threading Technology)
• CPUID Fn8000_0001_ECX[CmpLegacy]
• CPUID Fn8000_0008_ECX[NC]

Table E-5 defines LogicalProcessorCount, HTT, CmpLegacy, and NC as a function of the number of
logical processors per package (n).

When HTT = 0, LogicalProcessorCount is reserved and the package contains one logical processor.

When HTT = 1 and CmpLegacy = 1, LogicalProcessorCount represents the number of logical processors per
package (n).

Bits Field Name Description

31:14 — Reserved

13 PrefetchCtlMsr
Prefetch control MSR supported. See Core::X86::Msr::PrefetchControl in
BKDG or PPR for details

12:7 — Reserved

6 NullSelectClearsBase
Null segment selector loads also clear the destination segment register
base and limit

5:4 — Reserved

3 SmmPgCfgLock SMM paging configuration lock supported.

2 LFenceAlwaysSerializing LFENCE is always dispatch serializing.

1 — Reserved

0 NoNestedDataBp Processor ignores nested data breakpoints

CPUID Fn8000_0021_E[B,C,D]X Reserved

Obtaining Processor Information Via the CPUID Instruction 637

24594—Rev. 3.32—March 2021 AMD64 Technology

The use of CmpLegacy and LogicalProcessorCount for determining the number of logical processors is depre-
cated. Instead, use NC to determine the number of logical processors per package.

E.5.2 Extended Method (Recommended)
The CPUID identification of total number of logical processors per package is derived from information
returned by the CPUID Fn8000_0008_ECX[ApicIdSize[3:0]]. This field indicates the number of least signifi-
cant bits in the CPUID Fn0000_0001_EBX[LocalApicId] that indicates logical processor ID within the pack-
age. The size of this field determines the maximum number of logical processors (MNLP) that the package
could theoretically support, and not the actual number of logical processors that are implemented or enabled in
the package, as indicated by CPUID Fn8000_0008_ECX[NC].

A value of zero for ApicIdSize[3:0] indicates that the legacy method (section E5.1) should be used to derive
the maximum number of logical processors:

 MNLP = CPUID Fn8000_0008_ECX[NC] + 1.

And for non-zero values of ApicIdSize[3:0]:

 MNLP = 2 raised to the power of ApicIdSize[3:0]

Table E-5. LogicalProcessorCount, CmpLegacy, HTT, and NC

Logical Processors per package CmpLegacy HTT LogicalProcessorCount NC

1 0 0 Reserved 0

2 or more 1 1 n n-1

638 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

Instruction Effects on RFLAGS 639

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix F Instruction Effects on RFLAGS

The flags in the RFLAGS register are described in “Flags Register” in Volume 1 and “RFLAGS
Register” in Volume 2. Table F-1 summarizes the effect that instructions have on these flags. The table
includes all instructions that affect the flags. Instructions not shown have no effect on RFLAGS.

The following codes are used within the table:

• 0—The flag is always cleared to 0.

• 1—The flag is always set to 1.

• AH—The flag is loaded with value from AH register.

• Mod—The flag is modified, depending on the results of the instruction.

• Pop—The flag is loaded with value popped off of the stack.

• Tst—The flag is tested.

• U—The effect on the flag is undefined.

• Gray shaded cells indicate that the flag is not affected by the instruction.

Table F-1. Instruction Effects on RFLAGS

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

AAA
AAS

U U U
Tst

Mod
U Mod

AAD
AAM

Mod Mod U Mod UU

ADC Mod Mod Mod Mod Mod
Tst

Mod

ADD Mod Mod Mod Mod Mod Mod

AND 0 Mod Mod U Mod 0

ARPL Mod

BSF
BSR

U U Mod U U U

BT
BTC
BTR
BTS

U U U U U Mod

BZHI 0 Mod Mod U U Mod

CLC 0

CLD 0

CLI Mod TST Mod

CMC Mod

CMOVcc Tst Tst Tst Tst Tst

CMP Mod Mod Mod Mod Mod Mod

640 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.32—March 2021

CMPSx Mod Tst Mod Mod Mod Mod Mod

CMPXCHG Mod Mod Mod Mod Mod Mod

CMPXCHG8B Mod

CMPXCHG16B Mod

COMISD
COMISS

0 0 Mod 0 Mod Mod

DAA
DAS

U Mod Mod
Tst

Mod
Mod

Tst
Mod

DEC Mod Mod Mod Mod Mod

DIV U U U U U U

FCMOVcc Tst Tst Tst

FCOMI
FCOMIP
FUCOMI

FUCOMIP

Mod Mod Mod

IDIV U U U U U U

IMUL Mod U U U U Mod

INC Mod Mod Mod Mod Mod

IN Tst

INSx Tst Tst

INT
INT 3

Mod Mod
Tst

Mod
0 Mod Tst Mod 0

INTO Mod
Tst

Mod
0 Mod Tst Tst Mod Mod

IRETx Pop Pop Pop Pop
Tst
Pop

Pop
Tst
Pop

Tst
Pop

Pop Pop Pop Pop Pop Pop Pop Pop Pop

Jcc Tst Tst Tst Tst Tst

LAR Mod

LODSx Tst

LOOPE
LOOPNE

Tst

LSL Mod

LZCNT U U Mod U U Mod

MOVSx Tst

MUL Mod U U U U Mod

NEG Mod Mod Mod Mod Mod Mod

OR 0 Mod Mod U Mod 0

OUT Tst

OUTSx Tst Tst

PSMASH Mod Mod Mod Mod Mod

PVALIDATE Mod Mod Mod Mod Mod Mod

POPCNT 0 0 Mod 0 0 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

Instruction Effects on RFLAGS 641

24594—Rev. 3.32—March 2021 AMD64 Technology

POPFx Pop Tst Mod Pop Tst 0 Pop
Tst
Pop

Pop Pop Pop Pop Pop Pop Pop Pop Pop

RCL 1 Mod
Tst

Mod

RCL count U
Tst

Mod

RCR 1 Mod
Tst

Mod

RCR count U
Tst

Mod

RMPADJUST Mod Mod Mod Mod Mod

RMPUPDATE Mod Mod Mod Mod Mod

ROL 1 Mod Mod

ROL count U Mod

ROR 1 Mod Mod

ROR count U Mod

RSM Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

SAHF AH AH AH AH AH

SHL/SAL 1 Mod Mod Mod U Mod Mod

SHL/SAL count U Mod Mod U Mod Mod

SAR 1 Mod Mod Mod U Mod Mod

SAR count U Mod Mod U Mod Mod

SBB Mod Mod Mod Mod Mod
Tst

Mod

SCASx Mod Tst Mod Mod Mod Mod Mod

SETcc Tst Tst Tst Tst Tst

SHLD 1
SHRD 1

Mod Mod Mod U Mod Mod

SHLD count
SHRD count

U Mod Mod U Mod Mod

SHR 1 Mod Mod Mod U Mod Mod

SHR count U Mod Mod U Mod Mod

STC 1

STD 1

STI Mod Tst Mod

STOSx Tst

SUB Mod Mod Mod Mod Mod Mod

SYSCALL Mod Mod Mod Mod 0 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

SYSENTER 0 0 0

SYSRET Mod Mod Mod Mod 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

TEST 0 Mod Mod U Mod 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

642 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.32—March 2021

UCOMISD
UCOMISS

0 0 Mod 0 Mod Mod

VERR
VERW

Mod

XADD Mod Mod Mod Mod Mod Mod

XOR 0 Mod Mod U Mod 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

Index 643

24594—Rev. 3.32—March 2021 AMD64 Technology

Numerics

0F_38h opcode map... 521
0F_3Ah opcode map .. 521

A

addressing
effective address........................... 548, 551, 552, 554

AMD64 Instruction-set Architecture........................ 591
AMD64 ISA.. 591

B

base field.. 553, 554

C

CMOVcc .. 516
condition codes

rFLAGS.. 516, 536
count .. 557
CPUID

feature flags ... 594

D

DEC ... 587

E

effective address 548, 551, 552, 554

F

FCMOVcc .. 536

I

immediate operands ... 557
INC .. 587
index field ... 554
instructions

effects on rFLAGS ... 635
invalid in 64-bit mode... 585
invalid in long mode ... 586
reassigned in 64-bit mode.................................... 586

J

Jcc .. 516

M

mod field... 551
mode-register-memory (ModRM) 547
modes ... 589

64-bit... 589

compatibility .. 589
long ... 589

ModRM .. 547
ModRM byte .. 517, 527, 547

N

NOP.. 588

O

one-byte opcodes ... 508
opcode

two-byte... 510
opcode map

0F_38h .. 521
0F_3Ah.. 521
primary .. 508
secondary... 510

opcode maps.. 508
opcodes

3DNow!™ ... 524
group 1 .. 517
group 10 .. 519
group 12 .. 519
group 13 .. 519
group 14 .. 519
group 16 .. 520
group 17 .. 520
group 1a... 518
group 2 .. 518
group 3 .. 518
group 4 .. 518
group 5 .. 518
group 6 .. 519
group 7 .. 519
group 8 .. 519
group 9 .. 519
group P .. 520
groups.. 517
ModRM byte.. 517
one-byte... 508
x87 opcode map ... 527

operands
immediate .. 557
size... 557, 558, 586

P

primary opcode map... 508

R

r/m field .. 517

Index

644 Index

AMD64 Technology 24594—Rev. 3.32—March 2021

reg field .. 517, 548, 550, 551
registers

rFLAGS.. 516, 536, 635
REX prefixe .. 547
REX.B bit .. 551, 553
REX.R bit ... 550
rFLAGS conditions codes................................ 516, 536
rFLAGS register .. 635
rotate count ... 557

S

scale field.. 554
scale-index-base (SIB) ... 547
secondary opcode map ... 510
segment prefixes.. 588
SETcc ... 516
shift count ... 557
SIB... 547
SIB byte.. 552

T

two-byte opcode .. 510

V

VEX prefix ... 547

X

XOP prefix.. 547

Z

zero-extension ... 557

	AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	The following section Notational Conventions describes notational conventions used in this volume and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed by a Definitions section which lists a number of terms u...
	Definitions
	Registers
	Endian Order

	Related Documents

	1 Instruction Encoding
	1.1 Instruction Encoding Overview
	1.1.1 Encoding Syntax
	1.1.2 Representation in Memory

	1.2 Instruction Prefixes
	1.2.1 Summary of Legacy Prefixes
	1.2.2 Operand-Size Override Prefix
	1.2.3 Address-Size Override Prefix
	1.2.4 Segment-Override Prefixes
	1.2.5 Lock Prefix
	1.2.6 Repeat Prefixes
	1.2.7 REX Prefix
	1.2.8 VEX and XOP Prefixes

	1.3 Opcode
	1.4 ModRM and SIB Bytes
	1.4.1 ModRM Byte Format
	1.4.2 SIB Byte Format
	1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes
	1.4.4 Operand Addressing in 64-bit Mode

	1.5 Displacement Bytes
	1.6 Immediate Bytes
	1.7 RIP-Relative Addressing
	1.7.1 Encoding
	1.7.2 REX Prefix and RIP-Relative Addressing
	1.7.3 Address-Size Prefix and RIP-Relative Addressing

	1.8 Encoding Considerations Using REX
	1.8.1 Byte-Register Addressing
	1.8.2 Special Encodings for Registers

	1.9 Encoding Using the VEX and XOP Prefixes
	1.9.1 Three-Byte Escape Sequences
	1.9.2 Two-Byte Escape Sequence

	2 Instruction Overview
	2.1 Instruction Groups
	2.2 Reference-Page Format
	2.3 Summary of Registers and Data Types
	2.3.1 General-Purpose Instructions
	2.3.2 System Instructions
	2.3.3 SSE Instructions
	2.3.4 64-Bit Media Instructions
	2.3.5 x87 Floating-Point Instructions

	2.4 Summary of Exceptions
	2.5 Notation
	2.5.1 Mnemonic Syntax
	2.5.2 Opcode Syntax
	2.5.3 Pseudocode Definition

	3 General-Purpose Instruction Reference
	AAA
	AAD
	AAM
	AAS
	ADC
	ADCX
	ADD
	ADOX
	AND
	ANDN
	BEXTR (register form)
	BEXTR (immediate form)
	BLCFILL
	BLCI
	BLCIC
	BLCMSK
	BLCS
	BLSFILL
	BLSI
	BLSIC
	BLSMSK
	BLSR
	BOUND
	BSF
	BSR
	BSWAP
	BT
	BTC
	BTR
	BTS
	BZHI
	CALL (Near)
	CALL (Far)
	CBW CWDE CDQE
	CWD CDQ CQO
	CLC
	CLD
	CLFLUSH
	CLFLUSHOPT
	CLZERO
	CMC
	CMOVcc
	CMP
	CMPS CMPSB CMPSW CMPSD CMPSQ
	CMPXCHG
	CMPXCHG8B CMPXCHG16B
	CPUID
	Testing for the CPUID Instruction
	Standard Function 0 and Extended Function 8000_0000h

	CRC32
	DAA
	DAS
	DEC
	DIV
	ENTER
	IDIV
	IMUL
	IN
	INC
	INS INSB INSW INSD
	INT
	INTO
	Jcc
	JCXZ JECXZ JRCXZ
	JMP (Near)
	JMP (Far)
	LAHF
	LDS LES LFS LGS LSS
	LEA
	LEAVE
	LFENCE
	LLWPCB
	LODS LODSB LODSW LODSD LODSQ
	LOOP LOOPE LOOPNE LOOPNZ LOOPZ
	LWPINS
	LWPVAL
	LZCNT
	MCOMMIT
	MFENCE
	MONITORX
	MOV
	MOVBE
	Instruction Encoding

	MOVD
	MOVMSKPD
	MOVMSKPS
	MOVNTI
	MOVS MOVSB MOVSW MOVSD MOVSQ
	MOVSX
	MOVSXD
	MOVZX
	MUL
	MULX
	MWAITX
	NEG
	NOP
	NOT
	OR
	OUT
	OUTS OUTSB OUTSW OUTSD
	PAUSE
	PDEP
	PEXT
	POP
	POPA POPAD
	POPCNT
	POPF POPFD POPFQ
	PREFETCH PREFETCHW
	PREFETCHlevel
	PUSH
	PUSHA PUSHAD
	PUSHF PUSHFD PUSHFQ
	RCL
	RCR
	RDFSBASE RDGSBASE
	RDPID
	RDPRU
	RDRAND
	RDSEED
	RET (Near)
	RET (Far)
	ROL
	ROR
	RORX
	SAHF
	SAL SHL
	SAR
	SARX
	SBB
	SCAS SCASB SCASW SCASD SCASQ
	SETcc
	SFENCE
	SHL
	SHLD
	SHLX
	SHR
	SHRD
	SHRX
	SLWPCB
	STC
	STD
	STOS STOSB STOSW STOSD STOSQ
	SUB
	T1MSKC
	TEST
	TZCNT
	TZMSK
	UD0, UD1, UD2
	WRFSBASE WRGSBASE
	XADD
	XCHG
	XLAT
	XLATB
	XOR

	4 System Instruction Reference
	ARPL
	CLAC
	CLGI
	CLI
	CLTS
	CLRSSBSY
	HLT
	INCSSP
	INT 3
	INVD
	INVLPG
	INVLPGA
	INVLPGB
	INVPCID
	IRET IRETD IRETQ
	LAR
	LGDT
	LIDT
	LLDT
	LMSW
	LSL
	LTR
	MONITOR
	MOV CRn
	MOV DRn
	MWAIT
	PSMASH
	PVALIDATE
	RDMSR
	RDPKRU
	RDPMC
	RDSSP
	RDTSC
	RDTSCP
	RMPADJUST
	RMPUPDATE
	RSM
	RSTORSSP
	SAVEPREVSSP
	SETSSBSY
	SGDT
	SIDT
	SKINIT
	SLDT
	SMSW
	STAC
	STI
	STGI
	STR
	SWAPGS
	SYSCALL
	SYSENTER
	SYSEXIT
	SYSRET
	TLBSYNC
	VERR
	VERW
	VMLOAD
	VMMCALL
	VMGEXIT
	VMRUN
	VMSAVE
	WBINVD
	WBNOINVD
	WRMSR
	WRPKRU
	WRSS
	WRUSS

	Appendix A Opcode and Operand Encodings
	A.1 Opcode Maps
	A.1.1 Legacy Opcode Maps
	Primary Opcode Map
	Secondary Opcode Map
	rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions
	Encoding Extensions Using the ModRM Byte
	Secondary Opcode Map, ModRM Extensions for Opcode 01h
	0F_38h and 0F_3Ah Opcode Maps

	A.1.2 3DNow!™ Opcodes
	A.1.3 x87 Encodings
	A.1.4 rFLAGS Condition Codes for x87 Opcodes
	A.1.5 Extended Instruction Opcode Maps
	VEX Opcode Maps
	XOP Opcode Maps

	A.2 Operand Encodings
	A.2.1 ModRM Operand References
	16-Bit Register and Memory References
	Register and Memory References for 32-Bit and 64-Bit Addressing

	A.2.2 SIB Operand References

	Appendix B General-Purpose Instructions in 64-Bit Mode
	B.1 General Rules for 64-Bit Mode
	B.2 Operation and Operand Size in 64-Bit Mode
	B.3 Invalid and Reassigned Instructions in 64-Bit Mode
	B.4 Instructions with 64-Bit Default Operand Size
	B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
	B.6 NOP in 64-Bit Mode
	B.7 Segment Override Prefixes in 64-Bit Mode

	Appendix C Differences Between Long Mode and Legacy Mode
	Appendix D Instruction Subsets and CPUID Feature Flags
	D.1 Instruction Set Overview
	D.2 CPUID Feature Flags Related to Instruction Support

	Appendix E Obtaining Processor Information Via the CPUID Instruction
	E.1 Special Notational Conventions
	E.2 Standard and Extended Function Numbers
	E.3 Standard Feature Function Numbers
	E.3.1 Function 0h—Maximum Standard Function Number and Vendor String
	E.3.2 Function 1h—Processor and Processor Feature Identifiers
	E.3.3 Functions 2h–4h—Reserved
	E.3.4 Function 5h—Monitor and MWait Features
	E.3.5 Function 6h—Power Management Related Features
	E.3.6 Function 7h—Structured Extended Feature Identifiers
	E.3.7 Functions 8h–Ah—Reserved
	E.3.8 Function Bh — Extended Topology Enumeration
	E.3.9 Function Ch—Reserved
	E.3.10 Function Dh—Processor Extended State Enumeration
	E.3.11 Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use

	E.4 Extended Feature Function Numbers
	E.4.1 Function 8000_0000h—Maximum Extended Function Number and Vendor String
	E.4.2 Function 8000_0001h—Extended Processor and Processor Feature Identifiers
	E.4.3 Functions 8000_0002h–8000_0004h—Extended Processor Name String
	E.4.4 Function 8000_0005h—L1 Cache and TLB Information
	E.4.5 Function 8000_0006h—L2 Cache and TLB and L3 Cache Information
	E.4.6 Function 8000_0007h—Processor Power Management and RAS Capabilities
	E.4.7 Function 8000_0008h—Processor Capacity Parameters and Extended Feature Identification
	E.4.8 Function 8000_0009h—Reserved
	E.4.9 Function 8000_000Ah—SVM Features
	E.4.10 Functions 8000_000Bh–8000_0018h—Reserved
	E.4.11 Function 8000_0019h—TLB Characteristics for 1GB pages
	E.4.12 Function 8000_001Ah—Instruction Optimizations
	E.4.13 Function 8000_001Bh—Instruction-Based Sampling Capabilities
	E.4.14 Function 8000_001Ch—Lightweight Profiling Capabilities
	E.4.15 Function 8000_001Dh—Cache Topology Information
	E.4.16 Function 8000_001Eh—Processor Topology Information
	E.4.17 Function 8000_001Fh—Encrypted Memory Capabilities
	E.4.18 Function 8000_0020—Reserved
	E.4.19 Function 8000_0021—Extended Feature Identification 2

	E.5 Multiple Processor Calculation
	E.5.1 Legacy Method
	E.5.2 Extended Method (Recommended)

	Appendix F Instruction Effects on RFLAGS
	Index

