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1

1 Introduction; Some Basic Facts from Linear Algebra

Numerical models are growing in size and complexity with increasing computational power being available.
Many of these models ultimately reduce to solving a system of linear equations

Ax = b, A ∈ R
n×n or C

n×n

of large dimension n 1 e.g., > 107. In this course we present a few of the methods devised that can be
efficiently applied to problems of this size.

Fist we recall of some of the most important definitions and results from linear algebra. For further
reading on these basic topics, the texts [2], [15], [22], and [23] can be recommended. The books [13]
and [19] are more specific to the topic of this lecture.

We are mainly concerned with real systems, i.e., real mappings (matrices) A ∈ Rn×n. Most techniques
can be applied to complex problems as well, but these are less ‘prominent’ in practice.

Further material from linear algebra is provided in later chapters, whenever necessary.

1.1 Vector norms and inner products

1. The Euclidean inner product of (column) vectors x, y ∈ Rn is denoted in two alternative ways:

(x, y) ≡ xTy =
n∑

i=1

xi yi

The Hilbert-space denotation (x, y) is usually appropriate for theoretical considerations. The deno-
tation xTy is algorithmically oriented: The inner product is a special case of matrix multiplication
(‘row vector · column vector’).

The norm induced by the Euclidean inner product is the l2-norm,

‖x‖22 = (x, x) = xTx =

n∑

i=1

x2i

which belongs to the family of lp norms defined via

‖x‖p =








n∑

i=1

|xi|p

1/p

if p ∈ [1,∞)

max
i=1...n

|xi| if p = ∞

2. The more general M- inner product

(x, y)M = (Mx, y)2 = xTMy

will also play a prominent role. Here we assume that M is a symmetric positive-definite (SPD)
matrix. 2 We note that, by symmetry of M ,

(x, y)M = (x,My) = (Mx, y) = (y, x)M

and (x, x)M is definite, i.e., (x, x)M > 0 for x 6= 0.

1Facetious definition of ‘large’: the problem, by applying most tricks, barely fits into memory.
2M ∈ Rn×n is symmetric if MT = M ; it is positive semi-definite if xTMx ≥ 0 for all x ∈ Rn; M is positive definite if

xTMx > 0 for all x 6= 0.
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2 1 INTRODUCTION; SOME BASIC FACTS FROM LINEAR ALGEBRA

The M - inner product induces the M -norm

‖x‖2M = (x, x)M

Since in many applications the quantity 1
2
xTMx represents an energy, the M -norm ‖ · ‖M is often

called the energy norm.

3. norms on a vector space V over R, x, y ∈ V satisfy by definition for all x, y ∈ V

a) ‖αx‖ = |α|‖x‖ ∀ α ∈ R (homogeneity)

b) ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0 (definiteness)

c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

We recall that for arbitrary finite-dimensional vector spaces V any two norms ‖ · ‖α, ‖ · ‖β on V are
equivalent in the sense that there exist constants c, C > 0 such that

c‖x‖α ≤ ‖x‖β ≤ C ‖x‖α for all x ∈ V

1.2 Matrix spectra and and matrix norms

1. Let A ∈ Rn×n. A scalar λ ∈ C is called an eigenvalue of A if there exists an eigenvector v ∈ Cn \ {0}
such that Av = λv. The set

σ(A) = {λ ∈ C : λ is an eigenvalue of A}

is called the spectrum of A. If A is symmetric, then the eigenvalues of A are real, and the extremal
eigenvalues satisfy

λmin = min
x 6=0

(Ax, x)

(x, x)
, λmax = max

x 6=0

(Ax, x)

(x, x)

2. Each norm on Rn induces a norm ‖ · ‖ : Rn×n → R on the vector space of n×n matrices via

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

These induced matrix norms are submultiplicative,

‖AB‖ ≤ ‖A‖‖B‖ ∀ A,B ∈ R
n×n

The case of the Euclidean ‖ · ‖2 -norm is particularly prominent. We have

‖AT‖2 = ‖A‖2

‖A‖22 ≤ n max
j

n∑

i=1

|Ai,j|2 and ‖A‖22 = ‖AT‖22 ≤ n max
i

n∑

j=1

|Ai,j|2

3. The spectral radius ρ(A) of A ∈ Rn×n is defined by

ρ(A) = max(σ(A)) = max{|λ| : λ ∈ C is an eigenvalue of A}

If A is symmetric or, more generally, normal, then

‖A‖2 = ρ(A)
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1.2 Matrix spectra and and matrix norms 3

4. The quantity

κp(A) =

{
‖A‖p ‖A−1‖p if A is invertible

∞ if A is singular

is called the lp -condition number of A. In particular, for symmetric positive definite matrices we
have

κ2(A) =
λmax

λmin

(1.1a)

5. For general (nonsymmetric) matrices with positive eigenvalues, the analogous quantity

κσ(A) =
λmax

λmin
(1.1b)

is called the spectral condition number of A. Note that in general this does not equal κ2(A) (except
for SPD matrices).

The spectral radius ρ(A) of a matrix A will be important for the analysis of many iterative methods.
We have (see, e.g., [10, Sec. 2.9]):

Theorem 1.1 Let A ∈ Rn×n or A ∈ Cn×n. Then:

(i) ρ(Am) = ρ(A)m for all m ∈ N.

(ii) For any norm ‖ · ‖ on Rn. (or on Cn if A ∈ Cn×n) we have ρ(A) ≤ ‖A‖.

(iii) For every ε > 0 there exists a norm ‖ · ‖ε on the vector space Rn (or Cn) such that

ρ(A) ≤ ‖A‖ε ≤ ρ(A) + ε

(iv) For any norm ‖ · ‖ on Rn (or on Cn) we have

ρ(A) = lim
m→∞

‖Am‖1/m

Exercise 1.1

a) Let A ∈ R
n×n be normal. Then one can find a norm ‖ · ‖ on R

n such that ρ(A) = ‖A‖. Comment on the
special cases of symmetric and skew-symmetric A.

b) Show that ‖A‖2 =
√

ρ(ATA) .

c) Show that the Hölder-type inequality ‖A‖22 ≤ ‖A‖1 ‖A‖∞ is valid.

d) Give an example of a matrix A 6= 0 such that ρ(A) = 0.
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4 1 INTRODUCTION; SOME BASIC FACTS FROM LINEAR ALGEBRA

1.3 Types of matrices and some matrix decompositions (factorizations)

1. Orthogonal matrices: A matrix A is orthogonal 3 if AAT = ATA = I. This means that the
columns of A are orthonormal to each other (the same is true for the rows of A). Note that this
implies AT = A−1. An important further property of an orthogonal matrix A is that ‖Ax‖2 = ‖x‖2
for all x ∈ R

n i.e., an orthogonal matrix represents an isometric mapping.

The complex analog is a unitary matrix A ∈ Cn×n, characterized by AAH = AHA = I. (Note
AH= ĀT.)

2. QR-decomposition: Let m ≥ n. Every matrix A ∈ Rm×n can be written as A = QR, where
Q ∈ Rm×n has orthonormal columns and R ∈ Rn×n is upper triangular. Actually, this is the ‘reduced’
QR-decomposition, which may be extended to a ‘full’ QR-decomposition with Q ∈ Rm×m, R ∈ Rm×n.

The QR-decomposition can be computed in a finite number of floating point operations, e.g., using
Householder or Givens transformations or a [modified] Gram-Schmidt process (see [2]).

On the contrary, the similarity transformations involved in 3.–6. below which cannot be realized with
a finite number of operations, since knowledge of the spectrum (the eigenvalues) of A is required.

3. Schur form: Every A ∈ Cn×n can be written as A = QRQH , where Q is unitary and R is upper
triangular. Furthermore, the eigenvalues of A appear on the diagonal of R .

4. Orthonormal diagonalization of symmetric matrices: If A ∈ Rn×n is symmetric, then there
exists an orthogonal matrix Q (whose columns are eigenvectors of A) and a diagonal matrix D (whose
entries are the eigenvalues of A) such that A = QDQT (spectral theorem for symmetric matrices).

5. Unitary diagonalization of normal matrices: If A ∈ Rn×n is normal, i.e., ATA = AAT, then
there exists a unitary matrix Q ∈ Cn×n (whose columns are eigenvectors of A) and a diagonal matrix
D ∈ Cn×n (whose entries are the eigenvalues of A) such that A = QDQH .

6. Symmetric positive definite (SPD) matrices: If A ∈ Rn×n is SPD, i.e., if (Ax, x) > 0 for
all x 6= 0, then its spectral decomposition reads A = QDQT with Q orthogonal and D > 0 (all
eigenvalues of an SPD matrix are positive).

– The SPD property is also simply denoted by A > 0.

– With the extremal eigenvalues of an SPD matrix A, we have

‖A‖2 = λmax, ‖A−1‖2 = λ−1
min, and κ2(A) =

λmax

λmin

(see (1.1))

– The matrix square root A
1
2 = QD

1
2 QT satisfying A

1
2A

1
2 = A is well-defined and is also SPD.

For symmetric matrices, the matrix R from 3. is exactly D from 4. We also note that the decompositions
4.–6. are ‘characteristic properties’, i.e., the ‘if’ can be replaced by ‘if and only if’.

7. A nonsymmetric matrix A may also be (positive) definite, i.e. it may satisfy (Ax, x) > 0 for
all x 6= 0. This is the case iff its symmetric, or real part ReA = 1

2
(A+ AT) is SPD, since

((A+ AT)x, x) = (Ax, x) + (x,Ax) = 2(Ax, x)

In this case we say that A is positive definite (in contrast to ’SPD’ which always means that A is also
symmetric). We have

(Ax, x) ≥ λmin(ReA)(x, x)

A general positive definite matrix is invertible, and the norm of its inverse can be estimated by

‖A−1‖2 ≤
1

λmin(ReA)
(1.2)

Exercise 1.2 Prove Assertion 7., in particular the estimate (1.2).

3A more appropriate terminology would be ‘orthonormal’.
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1.4 Cayley-Hamilton Theorem 5

1.4 Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem (see, e.g., [10, Theorem 2.8.4]) states that any square matrix A ∈ Cn×n

satisfies it own characteristic equation, i.e., the characteristic polynomial χ : z 7→ det(zI −A), given by 4

χ(z) = (z − λ1) · · · (z − λn) = zn + c1 z
n−1 + · · ·+ cn−1 z + cn (1.3a)

satisfies
χ(A) = An + c1A

n−1 + . . . + cn−1A + cn I = 0 (1.3b)

A direct consequence of the Cayley-Hamilton theorem is that – provided A is invertible – the inverse A−1

can be expressed as follows (after by multiplying (1.3b) by A−1) :

A−1 = − 1

cn
An−1 − c1

cn
An−2 − . . . − cn−1

cn
I (1.3c)

Note that cn = (−1)n det(A) 6= 0 by assumption. This representation of A−1 in terms of a matrix
polynomial of degree n − 1 (with coefficients depending on the spectrum of A) may be a viewed as a
motivation for the class of Krylov subspace methods which we consider later on.

Remark 1.1 For diagonalizable matrices A, the Cayley-Hamilton Theorem is easy to prove: A = XDX−1

where D is a diagonal matrix with diagonal entries Di,i = λi. For any polynomial π, we compute
π(A) = Xπ(D)X−1, with π(D) = Diag(π(λ1), π(λ2), . . . , π(λn)), which implies the assertion of the Cayley-
Hamilton Theorem.

In the general case, one transforms A to Jordan normal form: A = XJX−1, where the matrix J is block
diagonal, and the diagonal blocks Ji ∈ C

ni×ni, i = 1 . . .m, are upper triangular matrices and have the
eigenvalue λi on its diagonal. The size ni is less than or equal to the multiplicity of the zero λi of the
characteristic polynomial χ. Next, one observes that χ(A) = Xχ(J)X−1, and χ(J) is again block diagonal
with the diagonal blocks being given by χ(Ji). Since for each i we can write χ(z) = πi(z)(z − λi)

ni for
some polynomial πi, the nilpotency property (Ji − λi I)

ni = 0 implies χ(Ji) = 0. Thus, χ(J) = 0.

4The λi are the eigenvalues of A; each eigenvalue with algebraic multiplicity k occurs k times in (1.3a).
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6 2 SPARSE STORAGE

2 Sparse Storage
In the introduction we have pointed out that we are targeting very large problems. One consequence of
considering systems of this type is that the coefficient matrix has a huge number of elements. On the other
hand, the matrices arising in most numerical simulations, for example, those based on Finite Difference
(FD), Finite Element (FEM), or Finite Volume (FV) methods, are sparse, i.e., only few matrix entries
are non-zero, due to the nature of the local approximations employed. (In practice, a matrix A ∈ Rn×n is
called sparse if the number of non-zero entries is O(n).)

The aim of sparse storage is to store only the non-zero elements of these matrices, but to do this in a
manner that still enables efficient computations to be performed, especially matrix-vector products.

The following two standard examples are sparse matrices arising from FD or FEM methods.

Example 2.1 Let Ω = (0, 1), h = 1/(n+1), and xi = ih, i = 0 . . . n+1. The FD discretization of the
two-point boundary value problem (BVP), with ∆u = u′′,

−∆u(x) = f(x) on Ω, u(0) = u(1) = 0 (2.1)

is (with ui ≈ u(xi), fi = f(xi))

−ui−1 + 2ui − ui+1 = h2fi, i = 1 . . . n (2.2)

where we set u0 = un+1 = 0. This is a system of linear equations of the form

Au = b , A ∈ R
n×n, b ∈ R

n

where the matrix A, which approximates −h2∆, is tridiagonal and SPD with λmax = 4 sin2 nπ
2(n+1)

= O(1)

and λmin = 4 sin2 π
2(n+1)

= O(h2), such that the condition number is κ2(A) = O(h−2).

For this problem, all eigenvalues and eigenvectors (eigenmodes; in view of application background: think
of ‘discrete eigenfunctions’) are explicitly known: For i = 1 . . . n, the vectors wi =

(
(wi)1, . . . , (wi)n

)T
with

entries
(wi)j = sin

jiπ

n+1
= sin(iπxj), j = 1 . . . n

are the eigenvectors associated with the eigenvalues λi = 4 sin2 iπ

2(n+1)
, i = 1 . . . n.

Small eigenvalues are associated with slowly varying eigenmodes; larger eigenvalues are associated with
increasingly oscillating eigenmodes. Clearly, the eigenvectors wi are mutually orthogonal since A is sym-
metric.

Example 2.2 Let Ω = (0, 1)2, h = 1/(n+1). Define the nodes Pi,j = (xi,j) = (ih, j h), i, j = 0 . . . n+1.
Consider the BVP (Dirichlet problem) for the 2D Poisson equation

−∆u(x) = f(x) on Ω, u = 0 on ∂Ω (2.3)

The FD approximations ui,j to the values u(xi,j), based on the simplest 5-point discretization of the
Laplacian ∆ (the so-called ‘5-point-stencil’), are the solutions of

−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j = h2fi,j, i, j = 1 . . . n (2.4)

with fi,j = f(xi,j). The boundary conditions are enforced by setting u0,j = un+1,j = 0 for j = 0 . . . n+1
and ui,0 = ui,n+1 = 0 for i = 0 . . . n+1.
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Figure 2.1: Sparsity pattern of the stiffness matrix A of a 2D Poisson problem

The system of equations (2.4) can be written in standard matrix-vector form Aũ = b in the following
way: A simple numbering of the nodes (xi, yj) and the unknowns ui,j, i, j = 1 . . . n, is the ‘lexicographic’
(row-wise) ordering: We set ũ(i−1)n+j = ui,j. Then the matrix A ∈ RN×N , with N = n2, has at most 5
non-zero entries per row and column. An example of the sparsity pattern of A (for the case n = 8) can
be seen in Fig. 2.1. The matrix A is again SPD and the eigenvalue satisfy λmin = 8 sin2 πh

2
= O(h2),

λmax = 8 cos2 πh
2
= O(1), such that κ2(A) = O(h−2).

In order to describe the (mutually orthogonal) eigenvectors of A, it is convenient to use ‘double index’
notation, i.e., the matrix A has entries Aii′,jj′, where i, i

′, j, j′ ∈ {1, . . . , n}. The eigenvectors (discrete
eigenfunctions) are then given by wi,j, i, j = 1 . . . n, with entries

(wi,j)i′,j′ = sin
i i′π

n+1
sin

j j′π

n+1
= sin(iπxi′) sin(jπyj′), i′, j′ ∈ {1, . . . , n} (2.5)

The corresponding eigenvalues are λi,j = 4
(
sin2 iπ

2(n+1)
+ sin2 jπ

2(n+1)

)
, i, j = 1 . . . n.

For a Poisson equation in 3D (over a cube), a similar structure occurs. In this case, the resulting stiffness
matrix A has at most 7 nonzero entries per row and column.

In these Poisson examples, band matrices are involved.5 A few of the more straightforward methods for
storing more general sparse matrices are considered in the following.

2.1 Coordinate format (COO)

The COO format consists of three one-dimensional arrays: 6

AA – an array containing the nonzero elements of A ∈ Rn×n

IR – an integer array containing their row indices

IC – an integer array containing their column indices

5Note, however, that the inverses of these matrices are dense.
6For rectangular matrices A ∈ Rm×n, all formats are defined in an analogous way.
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8 2 SPARSE STORAGE

Example 2.3

A =




2 −1 0 0 9

0 0 0 0 0

0 −2 4 −3 0

0 0 −3 6 −2

0 0 0 −2 4




AA = [ 2 −1 9 −2 4 −3 −3 6 −2 −2 4 ]

IR = [ 1 1 1 3 3 3 4 4 4 5 5 ]

IC = [ 1 2 5 2 3 4 3 4 5 4 5 ]

Here, the entries are stored in row-wise order (‘COOR’; ‘COOC’ can be defined in an analogous way).
We note that the array IR contains quite a lot of repeated entries; the format is easy to handle but
contains redundant information. A more economical way is to use the Compressed Row Storage (CRS) or
the Compressed Column Storage (CCS) format discussed in the following.

2.2 Compressed (sparse) Row [Column] Storage formats (CRS, CCS)

The CRS format consists of three one-dimensional arrays:

AA – an array containing the nonzero elements of A ∈ Rn×n

IC – an integer array containing the column indices of the non-zero entries of A

PR – an array of n+1 integer pointers;

— PR(i) is the position in AA and IC where the i-th row of A starts:

The non-zero entries of the i-th row are AA([PR(i):PR(i+1)–1])

and their column indices are IC([PR(i):PR(i+1)–1])

— If the i-th row of A contains only zeros, then PR(i) = PR(i+1)

— PR(n+1) = nnz+1, where nnz is the total number of non-zero entries of A

For A from Example 2.3 we have

AA = [ 2 −1 9 −2 4 −3 −3 6 −2 −2 4 ]

PR = [ 1 4 4 7 10 12 ]

IC = [ 1 2 5 2 3 4 3 4 5 4 5 ]

This is useful as the matrix vector product y = Ax is simple to express (n is the number of rows in A):

for i = 1:n % MATLAB syntax

k1 = pr(i)

k2 = pr(i+1)-1

y(i) = AA(k1:k2)*x(IC(k1:k2))’ % inner product of row vectors AA and x

% IC(k1:k2) is a vector index

end

In this example, e.g. for i = 1, we have k1 = 1, k2 = 3, AA(k1 : k2) = (2,−1, 9), and IC(k1 : k2) = (1, 2, 5)
such that the first component y1 of y = Ax is evaluated according to

AA(k1:k2)*x(IC(k1:k2))’ =

 2 −1 9







x1

x2

x5
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2.2 Compressed (sparse) Row [Column] Storage formats (CRS, CCS) 9

The storage saving achieved with the CRS format increases with the size of the matrix. For a matrix of
dimension n×n with p or less elements per row it is required to store at most pn real values and (p+1)n
integers, i.e., the storage is proportional to n. For a 1, 000×1, 000 tridiagonal matrix, for instance, the
CRS format requires less than 7,000 elements to be stored, while the full matrix has 1,000,000 elements.

Remark 2.1 Most iterative solution methods are based on the user’s providing the matrix-vector mul-
tiplication x 7→ Ax by means of an appropriate procedure – the coefficient matrix A need not even be
explicitly available for the algorithm to operate. The implication for the storage format is that (only) the
multiplication x 7→ Ax has to be performed efficiently. Typically, one expects the storage format to be
such that the cost of x 7→ Ax is proportional to the number of non-zero entries of A. This is the case for
CRS.

In special cases, in particular constant coefficient problems, no storage of matrix entries at all is required
for evaluation of x 7→ Ax. Rather, this is realized by a simple loop incorporating the constant coefficients,
as is the case for instance for the FD discretization of the 1D and 2D Poisson equation with constant
meshwidth h.

Exercise 2.1 Design analogously to the CRS format the CCS (‘compressed sparse column format’). Formulate

an algorithm that realizes the matrix-vector multiplication x 7→ Ax.

A wide variety of other sparse formats exist, often motivated from the particular structure of a problem
under consideration. A classical example are banded matrices.

Example 2.4 A matrix A ∈ Rn×n is said to be banded with upper bandwidth bu und lower bandwidth
bl, if Ai,j = 0 for j > i + bu and j < i − bl. If b = bu = bl, then b is called the bandwidth of A. The
storage requirement amounts to n(bu + bl + 1) real numbers. Typically, banded matrices are stored by
[off-]diagonals (cf. the diag command in Matlab).

Exercise 2.2 Design a data structure for data-sparse storage of a symmetric tridiagonal matrix and realize

matrix-vector multiplication.

Matlab includes many functions for use with sparse matrices. 7 The internal format is CCS (see
Example 2.1), which is also called the Harwell-Boeing format. To preallocate storage for a sparse ma-
trix A of dimension m×n with k non-zero elements the function A = spalloc(m,n,k) is called. The
non-zero elements of A can then be entered by indexing the elements of A as usual.

The sparsity pattern of the matrix A can be viewed using the function spy(A). In addition all the
Matlab functions can be used with sparse matrices including the standard addition and multiplication
operations. Sparse vectors are also available but less relevant in practice.

Example 2.5

A = gallery(’poisson’,8);

spy(A)

This retrieves the 64×64-matrix A obtained by discretizing the Poisson equation with the 5-point stencil
(see Example 2.2) from the gallery of test matrices, and then plots the sparsity pattern shown in Fig. 2.1
on p.7.

In general, the algorithms discussed from now on will be assumed to be using some appropriate sparse
storage technique. 8

7 see help sparse. Matlab is a trademark of The MathWorks, Inc.
8For an overview of sparse matrix formats, see http://en.wikipedia.org/wiki/Sparse matrix.
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10 3 DIRECT SOLUTION METHODS

3 Direct Solution Methods

For ‘small’ problems, direct methods (i.e., variants of Gaussian elimination) are the method of choice.
While there is no general rule what ‘small’ means, sparse matrices arising from FD or FEM discretizations
with up to 100,000 unknowns are often treated by direct methods. Especially for 2D problems, direct
methods are quite popular. We refer to [8, 5] for a good discussion of such methods. The available solvers
are suitable for nonsymmetric problems and support parallel computer architectures.

Generally speaking, whereas Gaussian elimination of a (full) n×n -matrix requires O(n2) storage and
O(n3) operations, typical sparse matrices can be factored with work O(nα) for some 1 < α < 3 (for 2D
FEM-applications, we expect α = 3/2). Since α = 1 is not really achievable, iterative methods have to be
employed for very large problems.

The main practical issues in direct solvers are

• pivoting (to ensure numerical stability), and

• reordering strategies for the unknowns so as to keep fill-in small.

These two requirements are usually incompatible, and a compromise has to be made, e.g. by allowing non-
optimal pivot elements to some extent. Here we consider the important special case of sparse SPD matrices,
since these can be factored without pivoting in a numerically stable way via the Cholesky algorithm. For
SPD matrices, one may therefore concentrate on reordering strategies to minimize fill-in.

3.1 Fill-in

For an SPD matrix A ∈ Rn×n its envelope (or profile) is defined as the set of double indices

Env(A) = {(i, j) : Ji(A) ≤ j < i}, where Ji(A) = min{j : Ai,j 6= 0}

The envelope corresponds to a variable band structure which contains the indices of all non-zeros entries
of the (strictly) lower part of A. A key feature for sparse direct solvers is the observation that also the
Cholesky factor has non-zero entries only within the envelope of A:

Theorem 3.1 Let A ∈ Rn×n be SPD, and let L ∈ Rn×n be its lower triangular Cholesky factor, i.e.,
LLT = A. Then Li,j = 0 for j < i and (i, j) 6∈ Env(A).

Proof: The proof (an exercise) follows from inspection of the way the Cholesky decomposition is computed; 9

see e.g. [2]. An analogous result holds for LU-decompositions of general matrices (provided the LU-
decomposition can be performed without pivoting). �

Example 3.1 Banded matrices are a special case: Here, Ji(A) = max{1, i − b} for all i, where b is the
bandwidth. The storage requirement is then O(nb). The factorization of A is done with work O(nb2).

Theorem 3.1 shows that the sparsity pattern of a matrix A is roughly inherited by the Cholesky factor.
More precisely, the envelope is inherited. Indices (i, j) ∈ Env(A) for which Ai,j = 0 but Li,j 6= 0 are
called fill-in. Since, generally speaking, the majority of the (i, j) ∈ Env(A) will be filled in during the
factorization, many efficient sparse direct solvers aim at finding a reordering of the unknowns such that
the envelope is small. In other words: they are based on finding a permutation matrix P such that
Env(P TAP ) is small. The Reverse Cuthill-McKee (RCM) ordering (see Sec. 3.2) is a classical example.

9The Cholesky decomposition A = LLT is based on a modified elimination procedure, i.e., A = LU with additional
scaling of columns such that U = LT, and 1 6= Li,i > 0.
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3.1 Fill-in 11

A =




1 1 1

1 2 2

1 3 3

1 2 3 15 18

1 5

1 6

1 2 3 18 5 6 92




L =




1

1

1

1 2 3 1

1

1

1 2 3 4 5 6 1




Â =




92 6 5 18 3 2 1

6 1

5 1

18 15 3 2 1

3 3 1

2 2 1

1 1 1




L̂ =




9.5917

0.6255 0.7802

0.5213 −0.4180 0.7440

1.8766 −1.5047 −2.1601 2.1327

0.3128 −0.2508 −0.3600 0.5899 0.6014

0.2085 −0.1672 −0.2400 0.3933 −0.7075 0.4644

0.1043 −0.0836 −0.1200 0.1966 −0.3538 −0.8444 0.3015




Figure 3.1: Top: arrowhead matrix A ∈ R7×7 and its Cholesky factor L = chol(A)’. Bottom: effect of
reversing the numbering.

Example 3.2 (fill-in) The 7×7 ‘arrowhead matrix’ A shown in Fig. 3.1 has a ‘good’ ordering: Since
all entries of A within the envelope are non-zero, there is no fill-in. Reversing the order of equations
and unknowns, which leads to the matrix Â = P TAP with corresponding permutation P , gives rise to a
disaster: The envelope is the full lower part of Â, an in L̂ shows that complete fill-in has taken place.

A closer look at fill-in for SPD matrices.

Fill-in takes place at (i, j) if Ai,j = 0 but Li,j 6= 0. Due to Theorem 3.1, fill-in can only occur within the
envelope of A. We now determine the fill-in more precisely by means of an inductive procedure describing
Cholesky elimination in a similar way as described in [2]: Let A ∈ Rn×n be SPD. Elementary calculations
then show (with a11 ∈ R, a = A([2 :n], 1) ∈ Rn−1, Ā = A([2 :n], [2 :n]) ∈ R(n−1)×(n−1)) :

A = A(1) =



a11 aT

a Ā


=




√
a11 0
a√
a11

In−1




︸ ︷︷ ︸
=: L1




1 0

0 Ā− aaT

a11︸ ︷︷ ︸
=: A(2)







√
a11

aT√
a11

0 In−1




︸ ︷︷ ︸
= LT

1

(3.1a)

In this way we have eliminated the first row and column, and the rest of the job consists in continuing this
procedure by factoring the matrix 10 A(2) = Ā− 1

a11
aaT ∈ R(n−1)×(n−1) in an analogous way. This gives

A(2) = L2




1 0

0 A(3)


LT

2 , (3.1b)

where A(3) ∈ R(n−2)×(n−2) is again SPD, and L2 ∈ R(n−1)×(n−1) has a structure similar to that of L1. Thus,

A = A(1) = L1︸︷︷︸
=: L̃1




1 0

0 L2




︸ ︷︷ ︸
=: L̃2




1 0 0

0 1 0

0 0 A(3)







1 0

0 L2




T

︸ ︷︷ ︸
= L̃T

2

LT

1︸︷︷︸
= L̃T

1

(3.1c)

10The matrix A(2) is again SPD since L−1
1 AL−T

1 is SPD, see (3.1a).
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12 3 DIRECT SOLUTION METHODS

Proceeding in this way, we obtain a factorization

A = L̃1L̃2 · · · L̃n−1 I L̃
T

n−1 · · · L̃T

2 L̃
T

1 =: LLT, with L = L̃1L̃2 · · · L̃n−1

Remark 3.1 The k-th step corresponds to elimination of the variable xk. The factors L̃i are lower
triangular matrices with a special structure: (L̃k)i,i = 1 for i 6= k, and the only non-trivial column of
L̃k is column k. Clearly, L = L̃1 · · · L̃n−1 is again lower triangular; moreover, we have L(:, k) = L̃k(:, k),
which is analogous to the case of standard LU-decomposition, where the lower factor L is nothing but the
recombination of elementary elimination matrices Lk with one one-trivial column k, see [2].

Constructing the Cholesky decomposition in this way is known as the ‘outer product variant’, since the
updates for the A(k) are expressed by outer (dyadic) vector products; see (3.1a). This is formalized in
Alg. 3.1 representing the explicit algorithmic outcome of the inductive process indicated above.

Algorithm 3.1 Cholesky decomposition – outer product variant

% returns the Cholesky factor L ∈ Rn×n of an SPD matrix A = A(1) ∈ Rn×n

% note: unusual choice of indices (see (3.1)):

% the matrices A(k) ∈ R(n−k+1)×(n−k+1) are of the form (A
(k)
i,j )

n
i,j=k

1: A(1) = A, L = 0 ∈ R
n×n,

2: for k = 1 . . . n−1 do

3: Lk,k =
√
A

(k)
k,k

4: L([k+1:n], k) = 1
Lk,k

· A(k)([k+1:n], k) % column vector

5: A(k+1)([k+1:n], [k+1:n]) =

A(k)([k+1:n], [k+1:n])− L([k+1:n], k) · (L([k+1:n], k))T % outer product
6: end for

We see how fill-in arises: The first column L :,1 =
1

a11
A([2 : n], 1) of the Cholesky factor L has non-zero

entries only where the first column of A(1) = A has non-zero entries, see (3.1a). The second column of L
has non-zero entries where the first column of the submatrix A(2) = Ā− 1

a11
aaT ∈ R(n−1)×(n−1) has non-zero

entries, and so on. In general, we expect Li,k 6= 0 if A
(k)
i,k 6= 0. From the update formula for the matrices

A(k) (see lines 3–5 of Alg. 3.1), we have

A
(k+1)
i,j = A

(k)
i,j − 1

A
(k)
k,k

A
(k)
i,k A

(k)
k,j , i, j = k+1 . . . n

Hence, for i, j ≥ k+1, we have A
(k+1)
i,j 6= 0 if 11

A
(k)
i,j 6= 0 or A

(k)
i,k A

(k)
k,j 6= 0

Another way of putting it is: A
(k+1)
i,j 6= 0 if either A

(k)
i,j 6= 0, or if in A(k) the indices i, j are connected to each

other via the index k, i.e., A
(k)
i,k 6= 0 together with A

(k)
k,j 6= 0. Based on this observation, one can precisely

characterize the fill-in process for the Cholesky decomposition.

11 In a strict sense, this is not an ‘if and only if’ situation since cancellation can take place, i.e., A
(k)
i,j = 1

A
(k)
k,k

A
(k)
i,k A

(k)
k,j . This

(unlikely) cancellation will be ignored.
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3.1 Fill-in 13

Fill-in from a graph theoretical point of view.

An elegant way to study fill-in is done in terms of graphs. A graph G = (V,E) consists of a set V of nodes
and a set of edges E ⊆ V ×V . Edges are denoted as pairs (v, v′) ∈ V ×V with two distinct 12 elements.

The sparsity pattern of a general matrix A can be represented by a graph G = (V,E) with nodes V and
edges E, its so-called adjacency graph. Here,

• the set V of nodes is simply the set of unknowns {xi, i = 1 . . . n} (or the corresponding indices i),

• two nodes xi 6= xj are connected by an edge (xi, xj) ∈ E iff Ai,j 6= 0, i.e. if equation i involves the
unknown xj .

In the general setting of nonsymmetric matrices this gives a directed graph where vertices xi and xj are
connected by a directed edge (xi, xj) if Ai,j 6= 0. A directed edge (xi, xj) is visualized by an arrow pointing
from node xi to node xj .

For a symmetric matrix A we have Ai,j = Aj,i, thus E is symmetric: (xi, xj) ∈ E iff (xj , xi) ∈ E, and
this is represented by {xi, xj}. In other words: We use undirected graphs. An (undirected) edge {xi, xj}
is visualized by a line joining the nodes xi and xj .

The degree degG(v) of a node v ∈ V is the number of edges emanating from v.

In the outer product variant of Cholesky decomposition, we denote by G(k) = (V (k), E(k)) the adjacency
graph of A(k) ∈ R(n−k+1)×(n−k+1). The above discussion shows that the graph G(k+1) for A(k+1) is obtained
from the graph G(k) by

removing the ‘pivot node’ xk, removing the edges emanating from xk, and adding edges {xi, xj} that
connect those nodes xi, xj that have the property that {xi, xk} ∈ E(k) together with {xk, xj} ∈ E(k).

We formalize this in Alg. 3.2. We call the sequence of graphs (G(k))nk=1 the elimination history.

Algorithm 3.2 Elimination pattern via graph transformation

% input: graph G = (V,E)
% output: graph G′ = (V ′, E ′) obtained by eliminating node v ∈ V

1: V ′ = V \ {v}
2: E ′ = {{v1, v2} ∈ V ′×V ′ : {v1, v2} ∈ E or

(
{v1, v} ∈ E and {v, v2} ∈ E

)
}

Example 3.3 (See Fig. 3.2.) Let

A = A(1) =




∗ 0 ∗ ∗ ∗ 0

0 ∗ ∗ 0 0 ∗
∗ ∗ ∗ 0 0 0

∗ 0 0 ∗ 0 0

∗ 0 0 0 ∗ 0

0 ∗ 0 0 0 ∗




withG(1) = (V (1), E(1)), V (1) = {x1, x2, x3, x4, x5, x6}, E(1) = {{x1, x3}, {x1, x4}, {x1, x5}, {x2, x3}, {x2, x6}}.
Elimination of x1 results in the 5×5-submatrix

12We point out that this implies that the graph has no ‘loops’ connecting a node with itself. In other words: Information
about the diagonal entries is not contained in the graph because it is of no interest for the study of fill-in.
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6

5

4

3

2

1

6

5 4

3

2

Figure 3.2: Adjacency graphs G(1) and G(2) from Example 3.3

A(2) =




∗ ∗ 0 0 ∗
∗ ∗ ∗ ∗ 0

0 ∗ ∗ ∗ 0

0 ∗ ∗ ∗ 0

∗ 0 0 0 ∗




withG(2) = (V (2), E(2)), V (2) = {x2, x3, x4, x5, x6}, E(2) = {{x2, x3}, {x2, x6}, {x3, x4} , {x3, x5}, {x4, x5}}.

Here, for instance, elimination of x1 gives rise to fill-in at the position indicated by ∗ in A(2), because

A
(1)
4,1 6= 0 and A

(1)
1,3 6= 0. This, among others, generates the edge {x3, x4} ∈ E(2).

The above discussion shows that the elimination of node xk produces column L(:, k) of the Cholesky
factor L with the property that Li,k 6= 0 iff {xi, xk} ∈ E(k). Hence, the number of non-zero entries in
column L(:, k) is given by the degree of node xk ∈ V (k). The memory requirement to store the Cholesky
factor L is therefore given by

Mem(L) =
n∑

k=1

Mem(L(:, k)) = n+
n−1∑

k=1

degG(k)(xk)

where n represents storage of the diagonal. However, it is generally very difficult to predict what the
precise amount of fill-in will be during the elimination process.

Elimination graph and reordering.

A reordering of the unknowns (and analogous simultaneous reordering of the equations) corresponds to a
permutation of the columns and rows of A, i.e., it leads to the SPD matrix P TAP for some permutation
matrix P . The graph G(1) is (up to labeling of nodes) independent of the permutation P . In terms of
graphs, we note that if we eliminate the permuted nodes one by one (with Alg. 3.2), then we obtain a
sequence of graphs (G(k))nk=1 that corresponds to the Cholesky decomposition of P TAP , and the permu-
tation P describes the order in which the nodes are eliminated. Hence, we arrive at the following result
concerning the fill-in for Cholesky decomposition with any ordering:
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7

6

5 4

3

2

1

Figure 3.3: Here, S = {4, 5} is a separator.

Theorem 3.2 Let G(1) = (V (1), E(1)) be the adjacency graph for an SPD matrix A. Eliminate sequentially
nodes v1, v2, . . . , vn using Alg. 3.2 and denote by G(k), k = 1 . . . n, the graphs obtained in this process. Then
the sequence (G(k))nk=1 represents the elimination history for the Cholesky decomposition of P TAP , where
P is determined by the order in which the nodes are eliminated. The location of the non-zero entries of
the Cholesky factor L of P TAP can be read off (G(k))nk=1 : For i > k there holds Li,k 6= 0 if {vi, vk} ∈ E(k).
The total memory requirement to store L is

n+

n−1∑

k=1

degG(k)(xk) (3.2)

Graph theory terminology.

Neighbors and degree: A neighbor of a node v is another node that is connected to v by an edge. By
Adj(v) we denote the set of all neighbors of v ∈ V . 13 Recall that the degree deg(v) of a node v ∈ V is the
number of edges emanating from v, i.e., deg(v) = |Adj(v)|. More generally, for a subset V ′ ⊆ V , the union
of all nodes outside V ′ connected with some node v′ ∈ V ′ is denoted by

Adj(V ′) =
⋃

v′∈V ′

Adj(v′) \ V ′

Path: A path connecting a node v ∈ V to a node v′ ∈ V is a tuple of nodes vi, i = 1 . . . ℓ+1, with v1 = v
and vℓ+1 = v′ such that each {vi, vi+1} ∈ E.

Connected graph, diameter of a graph: A graph is connected if any two nodes can be connected
by a path. The distance d(v, v′) between two nodes v, v′ is the length of the shortest path connecting v
with v′. The diameter of a connected graph G is diam(G) = maxv,v′∈V d(v, v′), i.e., the longest distance
between two nodes .

Separator: A subset S ⊆ V is called a separator of G, if the graph G′ obtained from G by removing the
nodes of S and the edges emanating from S is not connected. That is, V \S has the form V \S = V1 ∪̇V2,
and every path connecting a node v1 ∈ V1 with a node v2 ∈ V2 intersects the separator S. See Fig. 3.3.

Eccentricity of a node v, peripheral node: The eccentricity e(v) of a node v ∈ V is defined as
e(v) = maxv′∈V d(v, v′). A node v ∈ V with e(v) = diam(G) is called peripheral. A peripheral node is ‘far
outside’ because there exists a path of maximal length emanating from it.

13Note: since we have excluded {v, v} from the set of edges, we have v 6∈ Adj(v).
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replacemen
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i v content of FIFO

1 g h, e, b, f
2 h e, b, f
3 e b, f, c
4 b f, c, j
5 f c, j, a, d
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7 j a, d
8 a d
9 d i
10 i –

Figure 3.4: Example of Cuthill-McKee algorithm with non-peripheral starting node g.

3.2 Standard ordering strategies

As we have seen in Example 3.2, the order in which the unknowns are numbered can have a tremendous
effect on the amount of fill-in, which in turn affects the storage requirement for the Cholesky factor and
the time to compute it. Modern sparse direct solvers analyze the matrix A prior to factorization and aim
at determining a good ordering of the unknowns. Since the problem of finding a permutation matrix P
that minimizes the amount of fill-in is a very hard problem, various heuristic strategies have been devised.
Popular ordering methods are:

1. Reverse Cuthill-McKee: Realized in Matlab as symrcm (symmetric version). This ordering may be
motivated by minimizing the bandwidth of the reordered matrix P TAP .

2. Nested dissection: This ordering originates from FD/FEM applications with substructuring.

3. (Approximate) minimum degree: The approximate minimum degree ordering of [1] is currently the
most popular choice, realized in Matlab as symamd (symmetric version). It aims at minimizing the
amount of fill-in.

We refer to [16, 5, 8] for good surveys on the topic.

[Reverse] Cuthill-McKee.

The Cuthill-McKee (CM) and the Reverse Cuthill-McKee (RCM) orderings can be viewed as attempts to
minimize the bandwidth of a sparse matrix in a cheap way. The underlying heuristic idea is as follows:

In order to obtain a small bandwidth, it is important to assign neighboring nodes in the graph G numbers
that are close together. Hence, as soon as one node is assigned a number, then all its neighbors that have
not been assigned a number yet should be numbered as quickly as possible – see Alg. 3.3.

This is a typical example of a ‘greedy algorithm’ based at a brute force, locally optimal strategy with
the hope that the outcome is also near to optimal in the global sense.

The choice of a starting node is, of course, important. One wishes to choose a peripheral node as a
starting node. Since these are in practice difficult to find, one settles for a pseudo (‘nearly’) peripheral
node, as described in [8].

It has been observed that better orderings are obtained by reversing the Cuthill-McKee ordering. In fact,
it can be shown, [16, p. 119], that RCM is always better than CM in the sense that |Env(P T

RCMAPRCM)| ≤
|Env(P T

CMAPCM)|. The RCM algorithm is shown in Alg. 3.4.
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3.2 Standard ordering strategies 17

Algorithm 3.3 Cuthill-McKee

1: choose a starting node v and put it into a FIFO % ‘first in – first out’ – a queue, or pipe
2: while (FIFO 6= ∅) {
3: take first element v of FIFO and assign it a number
4: let V ′ ⊆ Adj(v) be those neighbors of v that have not been numbered yet;
5: put them into the FIFO in ascending order of degree (ties are broken arbitrarily).
6: }

✁  ✂✞✁ ✆ ! ✞✡✠☎✁  ☞ ! ✆ ✁☛☞ ✠ ✆ ✆☛✞ ✁❞❑ ✂ ✠ ☞

✱   ✂✁ ✆ ✌ ✠ ✻  

1

2

3 4

5

6 7

8

9

10

11

12

13

14 15

✱   ✂✁ ✆ ✌ ✠ ✻ ✁
Reverse Cuthill-McKee ordering.

Figure 3.5: Example of Reverse Cuthill-McKee algorithm (example taken from [19]).

Algorithm 3.4 Reverse Cuthill-McKee

1: choose as a starting node v a peripheral or pseudo-peripheral node
2: determine the CM ordering using Alg. 3.3.
3: reverse the CM ordering to get the RCM ordering.

Nested Dissection.

The key idea of nested dissection is to find a separator S that is small. Recall that a separator S for the
graph G partitions the set of nodes V into three disjoint sets,

V = V1 ∪̇ V2 ∪̇ S

with the property that no edges exist that connect nodes of V1 directly with nodes of V2. If we number
the nodes of V1 first, then the vertices of V2 and the nodes of S last, the matrix A has the following block
structure:

A =




AV1,V1 0 AV1,S

0 AV2,V2 AV2,S

AS,V1 AS,V2 AS,S




Theorem 3.1 tells us that the Cholesky decomposition of A will inherit the two 0-blocks which are outside
Env(A). Therefore it is highly desirable to choose the separator S to be small, because then these 0-blocks
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V1 V2

V3 V4

AV1,V1

AV2,V2

AV3,V3

AV4,V4

ASV

Figure 3.6: left: nested dissection of a square. right: block structure of the resulting matrix.

are large. (In the extreme case S = ∅ the adjacency graph of A is not connected, and A becomes block
diagonal.)

Nested dissection is usually applied recursively to the sets V1 and V2, resulting in a ‘fork-like’ structure
for Env(A) (see, e.g., Fig. 3.7), where the ‘prongs’ are the blocks created by the separators. The nested
dissection Algorithm is specified in Alg. 3.5.

Algorithm 3.5 Nested Dissection

% input: adjacency graph G = (V,E) of A
% output: numbering for the vertices

1: select a separator S and sets V1, V2 such that
a) V = V1 ∪̇V2 ∪̇S,
b) S is small,
c) no node of V1 shares an edge with any node of V2.

2: number the nodes of V by
a) numbering those of V1 first (i.e., recursive call of this algorithm with V1 as input),
b) numbering those of V2 second (i.e., recursive call of this algorithm with V2 as input),
c) numbering those of S last.

The ‘art’ in nested dissection lies in finding good separators. We illustrate that it is a feasible task. In
fact, for the 2D Poisson problem on a square (Example 2.2) the choice of good separators leads to very
little fill-in, namely O(N logN) :

Example 3.4 We consider a uniform mesh as in Example 2.2. For simplicity, we assume that n is a power
of 2 : n = 2m. As indicated in Fig. 3.6, the unit square is split into 4 boxes. By our choice of n, the two
lines that split the square into 4 squares are mesh lines.

In this example, it is better to separate the unknowns into 5 sets V1, V2, V3, V4, and the separator S. This
splitting is done as indicated in Fig 3.6: All nodes in the box V1 are numbered first, then those of the box
V2, then those of the box V3, then those of box V4, and finally those that lie in the separator S. Then the
system matrix A has the block structure depicted in Fig. 3.6. Each of the matrices AV1,V1 , . . . , AV4,V4 has
size ≈ N/4 and is, up to the size, essentially the same as the original matrix A. The last block, ASV is of
size O(

√
N)×N . Since the submatrices AVi,Vi

are similar to A, we can repeat the procedure recursively.
An idea of the structure of the resulting envelope can be obtained from Fig. 3.7, where the sparsity pattern
of the Cholesky factor for the case n = 30 is plotted.
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A careful analysis given in [7] shows for this model problem that with this ordering of the unknowns,
the memory requirement for the Cholesky factor is O(N logN), and the number of arithmetic operations
to compute it is O(N3/2). Thus the fill-in is considerably smaller than for straightforward lexicographic
ordering, where the memory requirement for the Cholesky factor is O(N3/2).

Example 3.5 We again consider the 2D Poisson problem on a square (Example 2.2) with the original
numbering (‘lexicographic’ ordering). We observe that the bandwidth of the matrix A with this ordering
in b = O(n) = O(

√
N). The size of the envelope is then EN = O(Nb) = O(N3/2), which is significantly

larger than that of nested dissection. Fig. 3.7 shows that virtually the full envelope is filled during the
factorization.

Minimum degree ordering

RCM ordering aims at minimizing the bandwidth of a matrix A. The ultimate goal, however, is to minimize
the fill-in rather than the bandwidth. This is the starting point of the minimum degree algorithm. Finding
the ordering that really minimizes the fill-in is a hard problem; the minimum degree algorithm, [20], is a
greedy algorithm that aims at minimizing the fill for each column L:,k of the Cholesky factor separately.

The algorithm proceeds by selecting a starting node v1 of V
(1) and computes G(2); then a node v2 ∈ V (2)

is selected, G(3) is computed, etc. From (3.2), we see that the choice of node vk adds degG(k)(vk) to the
memory requirement for the Cholesky factor. The ‘greedy’ strategy is to select vk (given that v1, . . . , vk−1

have already been selected) such that degG(k)(vk) is minimized, i.e., we choose a node of minimum degree.
This procedure is formalized in Alg. 3.6.

Algorithm 3.6 Minimum degree ordering

1: set up the graph G(1) for the matrix A(1) = A
2: for k = 1:N do
3: select a node of V (k) with minimum degree and label it xk
4: determine the graph G(k+1) obtained from G(k) by eliminating node xk
5: end for

The minimum degree algorithm is quite costly – various cheaper variations such as as the approximate
minimum degree algorithm of [1] are used in practice.

Example 3.6 (fill-in) The matrix A ∈ R900×900 of Example 2.2 with n=30 has 5 non-zero entries per
row. Different orderings have a considerable effect on the amount of fill-in (see Fig. 3.7): Whereas the lower
part of A has 2, 640 non-zero entries, the Cholesky factor of A has 27, 029; using RCM ordering reduces
this to 19, 315. Nested dissection ordering is even better with 13, 853 non-zero entries. The best is the
approximate minimum degree ordering with 10, 042 non-zero entries. see Fig. 3.7. Calculations are done
in Matlab with: A = gallery(’poisson’,30); p = symrcm(A); Lrcm = chol(A(p,p)); (approximate)
minimum degree ordering is obtained by setting p = symamd(A).
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Figure 3.7: Fill-in for gallery(’poisson’,30) and various ordering strategies.
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4 A Fast Poisson Solver Based on FFT

For systems with special structure, fast direct solutions can be designed on the basis of the Fast Fourier
Transform (FFT), a fast implementation of the Discrete Fourier Transform (DFT), see [2]. Classical
examples are systems represented by circulant matrices. Another important class are Toeplitz matrices,
with a constant value along each diagonal. The FD matrices A for the 1D and 2D Poisson equation
(Examples 2.1 and 2.2) are Toeplitz matrices; moreover, their eigenvalues and eigenvectors are explicitly
known. This information can be exploited to design fast solvers for such special problems, which are often
called Fourier-spectral methods.

In this section, the imaginary unit is denoted by i, in contrast to i which is used for indexing.

4.1 The 1D case

The FD matrix from Example 2.1 reads

A =




2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2




(4.1)

Since A is tridiagonal and SPD, the solution of 14 Au = b can be performed in O(n) operations by
straightforward elimination (Cholesky), i,e., with optimal computational effort.

Nevertheless, we consider another fast algorithm, a spectral method, mainly as preparation for the 2D
case. This is based on the spectral decomposition (i.e, the orthonormal diagonalization)

A = QDQT (4.2a)

with 15

Qi,j =
(wj)i
‖wj‖2

= cn sin(jπxi), Di = λi = 4 sin2 iπ

2(n+1)
(4.2b)

Here h = 1/(n+1) is the stepsize and xi = ih = i/(n+1) is the i-th grid point, see p.6. Thus, the solution
of the system Au = b amounts to evaluation of

u = A−1 b = QD−1QTb = QD−1Qb (4.3)

(note that in this example, the matrix Q is not only orthonormal but also symmetric). Here, two matrix-
vector multiplications Q · v are involved, with O(n2) effort if performed in a naive manner. However,
this can be realized in a fast way based on the Discrete Sine Transform related to FFT as explained
in the sequel. This leads to an evaluation algorithm for (4.3) with effort O(n log n) according to the
computational complexity of FFT.

14Here we write u for the discrete solution approximating a continuous function u(x).
15 In (4.2b), the eigenvectors have been normalized such that Q is indeed an orthogonal matrix. Note that

cn ≡ ‖w1‖1 = . . . = ‖wn‖n =

√
2

n+ 1
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The Discrete Sine Transform (DST).

Consider a vector v = (v1, . . . , vn)
T ∈ R

n and v̂ = Qv = (v̂1, . . . , v̂n)
T with Q from (4.2b),

v̂k =
n∑

j=1

Qk,j vj = cn

n∑

j=0

sin(kπxj)vj , k = 1 . . . n
(
cn =

√
2

n+1

)
(4.4)

The transformation (4.4) is called the Discrete Sine Transform (DST); 16 the transformed vector v̂ repre-
sents the expansion coefficients of v w.r.t. the orthonormal basis represented by Q. Here, sin(kπxj) is the
imaginary part of eikπxj , hence

v̂k = cn Im
( n∑

j=0

eikπxj vj

)
, k = 1 . . . n

In the usual notation from the DFT (Discrete Fourier Transform), we write

n∑

j=0

eikπxj vj =

n∑

j=0

ωk j vj , with ω = e
πi

n+1 = e
2πi

2n+2 = (2n+2)-th root of unity

This a ‘half part’ from the sum appearing in the inverse DFT (IDFT) of the extended vector

V = (V0, V1, . . . , V2n+1)
T := (0, v1, . . . , vn, 0, . . . , 0)

T ∈ R
2n+2

Thus
n∑

j=0

ωk j vj =

2n+1∑

j=0

ωk j Vj

With a fast O(n log n) [i]fft implementation of the [I]DFT available, for computing v̂ = Qv we can
proceed in the following way:

– Extend v = (v1, . . . , vn) to V = (V0, V1, . . . , V2n+1) = (0, v1, . . . , vn, 0, . . . , 0)

– Compute V̂ = cn (V̂0, V̂1, . . . , V̂2n+1)

– Set v̂ = Im(V̂1, . . . , V̂n)

This corresponds to the version available in Matlab: dst and its inverse idst for the direct and fast
evaluation of (4.4).

Remark 4.1 As a word of warning, note that the usual implementation of such transformations do not
use orthonormal scaling, This parallels the usual ‘non-orthonormal representation’ of classical Fourier
basis functions, with the main purpose of avoiding computation of square roots like in cn. For instance, in
Matlab, the functions dst and idst carry a different scaling. To use them correctly, you have to check
this in the documentation.

16 The sine transform is identical with its inverse, a property which parallels the fact that Q is symmetric.

The related Discrete Cosine Transform (DCT) is, e.g., also used in image compression algorithms (e.g., underlying the
classical jpg digital image format).

Ed. 2017 Iterative Solution of Large Linear Systems



4.2 The 2D case 23

4.2 The 2D case

For the 1D case above, the spectral solver based on the DST is slightly less efficient than tridiagonal
Cholesky. For the 2D case (Example 2.2), the situation is different. Here, the FD matrix takes the
block-sparse form (see Fig. 2.1)

A =




T −I
−I T −I

. . .
. . .

. . .

. . .
. . .

. . .

−I T −I
−I T




∈ R
N×N , N = n2 (4.5a)

with the tridiagonal n×n blocks

T =




4 −1

−1 4 −1

. . .
. . .

. . .

−1 4 −1

−1 4




∈ R
n×n, I = In×n (4.5b)

The bandwidth of the large matrix A is n, and when applying Cholesky decomposition a certain amount
of fill-in is encountered, even when applying reordering strategies from Sec. 3.

For deriving an alternative direct solution method based on a 2-dimensional DST, we write vectors
v ∈ RN = Rn2

in analogous partitioned form,

v =




v(1)

v(2)

...

...

v(n−1)

v(n)




∈ R
N , with v(i) =




v
(i)
1

v
(i)
2

...

v
(i)
n−1

v
(i)
n




∈ R
n (4.6)

Then, the linear FD system Au = b can be written in the block form

−u(i−1) + Tu(i) − u(i+1) = b(i), i = 1 . . . n (4.7a)

where we set u(0) = u(n+1) = 0. From the 1D case we see that T has the spectral decomposition

T = QS QT

with (see (4.2b))

Qi,j =
(wj)i
‖wj‖2

= cn sin(jπxi), Si =: σi = 2 + 4 sin2 iπ

2(n+1)
, i = 1 . . . n

With y(i) = Qu(i), multiplying the systems (4.7a) by Q gives

−y(i−1) + S y(i) − y(i+1) = Qb(i), i = 1 . . . n (4.7b)

with the diagonal matrix S = diag(σ1, . . . , σn) replacing T from (4.7a).
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7→

Figure 4.1: 2D Poisson system transformed via 1D-DST, followed by reordering of equations and unknowns.

This latter system decouples via reordering the unknowns: Let us permute vectors v ∈ RN = Rn2

from (4.6) according to

v 7→ v̂ =




ṽ(1)

ṽ(2)

...

...

ṽ(n−1)

ṽ(n)




, with ṽ(i) =




v
(1)
i

v
(2)
i

...

v
(n−1)
i

v
(n)
i




∈ R
n

i.e., by switching from lexicographic row-wise to lexicographic column-wise ordering of the unknowns of the
computational grid. Then, the set of linear systems (4.7b) transforms into a set of independent tridiagonal
systems of dimension n×n,

S̃ ỹ(i) = Qb(i), i = 1 . . . n, with S̃ =




σ1 −1

−1 σ2 −1

. . .
. . .

. . .

−1 σn−1 −1

−1 σn




∈ R
n×n (4.7c)

This corresponds to a permutation of the system represented by (4.7b); see Fig. 4.1 for a visualization
The right-hand sides Qb(i) can be evaluated via the 1D-DST in n ·O(n logn) operations, and the resulting
tridiagonal systems are of the same type as for the 1D Poisson case and can be solved by tridiagonal
Cholesky in n · O(n) operations. Finally, the solution vectors ỹ(i) are recombined into the original order,
and the resulting y(i) are transformed back using 1D-DST to yield the solution components u(i) = Qy(i).

If, in the solution step, we replace Cholesky by the 1D spectral method, the outcome is a pure 2D spectral
method applied to A = QDQT, realized by a 2D-DST transform.

The overall computational and memory effort for this fast Poisson solver is O(n2 log n) = O(N logN),
nearly optimal in the problem dimension N = n2. However, one should keep in mind that the reordering
steps may be nontrivial to implement on parallel computer architectures, since global communication takes
place for larger problems. (This challenge is also typical for most FFT-based computational techniques.)

In Matlab, an implementation of this solver is available via the function poisolv contained in the
Partial Differential Equations Toolbox. 3D Poisson solvers of a similar type can also be designed. See
also [12] for a discussion of related methods, e.g., for more general problem geometries.
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5 Basic Iterative Methods

5.1 Linear iterative methods, convergence analysis

We consider solving linear systems of the form 17

Ax = b, A ∈ R
n×n, b ∈ R

n (5.1)

and assume that A is invertible. Many iterative methods18 for solving (5.1) have the form of a fixed point
iteration

xk+1 = Φ(xk; b), k = 0, 1, 2, . . . (5.2)

with some mapping Φ, starting from an initial value x0. Solutions x∗ of equation x∗ = Φ(x∗; b) are called
fixed points of (5.2). Since the iteration mapping Φ is kept fixed, this is also called a stationary iteration.

Definition 5.1 The fixed point iteration (5.2) is said to be

• consistent with the invertible matrix A, if for every b the solution x∗ = A−1 b is a fixed point
of (5.2);

• convergent, if for every b there exists a vector x∗ such that for every starting vector x0 the sequence
(xk) = (xk)

∞
k=0 defined by (5.2) converges to x∗; 19

• linear, if Φ is an affine mapping of the form Φ(x; b) =Mx+N b, i.e.,

xk+1 =Mxk +N b (5.3)

M is called the iteration matrix. 20

The matrices M,N from (5.3) need to satisfy certain conditions in order to ensure consistency with a
given matrix A. We have:

Lemma 5.1 Let A be invertible. Then the fixed point iteration (5.3) is consistent with A if and only if

M = I −NA ⇔ (I −M)−1N = A−1

Proof: With x = Ab the fixed point equation is equivalent to x = Mx +NAx for arbitrary x, and this
is equivalent to I =M +NA. �

We will see that the asymptotic convergence behavior of the iteration (5.3) for k → ∞ is determined by
the spectrum of the iteration matrix M . We start with the following special (linear) variant of the Banach
Fixed Point Theorem:

Theorem 5.1 Let ρ(M) < 1. Then there exists a unique fixed point x∗ of the iteration (5.3),

x∗ = (I −M)−1N b ∈ R
n

and the iteration converges to x∗ for any starting value x0 ∈ R
n.

17The results of this section are easily generalized to the complex case A ∈ Cn×n.
18See also [2, Ch. 7].
19We stress that we require a) convergence and b) a unique limit x∗ – independent of the starting vector x0.
20Later we will see that in typical situations the matrix N should be invertible; N−1 is then called a preconditioner.
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Proof: Since ρ(M) < 1, we conclude 1 /∈ σ(M), i.e., there exists a unique fixed point x∗ = (I −M)−1N b ∈
R

n. By ek we denote the error of the k - th iterate, ek = xk − x∗. By subtracting the equations xk+1 =
Mxk +N b and x∗ =Mx∗ +N b, we obtain a recursion for the errors ek :

ek+1 =Mek =M2ek−1 = · · · =Mk+1e0 (5.4)

By Theorem 1.1 we can find a norm ‖ · ‖ε on Rn such that ‖M‖ε ≤ ρ(M)+ ε < 1. In this norm, we obtain
from (5.4)

‖ek+1‖ε = ‖Mk+1e0‖ε ≤ ‖Mk+1‖ε ‖e0‖ε ≤ ‖M‖k+1
ε ‖e0‖ε

Since ‖M‖ε < 1, we conclude that the sequence (ek)
∞
k=0 converges to 0 in the norm ‖ · ‖ε. Since all norms

on the finite-dimensional space Rn are equivalent, we conclude that the sequence (xk)
∞
k=0 converges to x∗

in any norm. �

Corollary 5.1 Let the fixed point iteration (5.3) be consistent with the invertible matrix A, and ρ(M) < 1.
Then for every starting value x0 the sequence (xk)

∞
k=0 converges to the solution x∗ of Ax∗ = b.

Conversely, it is straightforward to show that for ρ(M) ≥ 1 the iteration does not converge or converges
to different fixed points depending on x0.

Remark 5.1 The natural interpretation of the matrix N is that of an approximate inverse, i.e., N ≈ A−1

in some specific sense – but is essential that N (and M) can be efficiently evaluated. N = A−1 (together
with M = 0) would solve the problem in one step (direct solution). For N ≈ A−1 the matrix M = I−NA
is expected be ‘small’, as required.

The invertibility of N is necessary for convergence: Otherwise the matrix I −M = NA would have a
nontrivial kernel and eigenvalue λ = 0, which contradicts the convergence condition 1 /∈ σ(M).

A fixed point iteration (5.3) consistent with A can be formulated in three (equivalent) ways:

(i) First normal form (5.3): xk+1 =Mxk +N b, with M = I −NA.

(ii) Second normal form: xk+1 = xk +N(b−Axk). This shows that the correction added to xk is a
linear image of the residual

b− Axk =: rk

(iii) Third normal form: W (xk+1 − xk) = b − Axk, with W = N−1; W is an approximation to A.
This shows that the correction δk := xk+1 − xk is obtained by solving the linear system Wδk = rk.

21

The third normal form reveals the heuristic idea behind a consistent iteration. For W ≈ A, a sufficiently
good approximation to A, we may expect

Wx∗ −Wxk ≈ Ax∗ −Axk = b− Axk = rk

which motivates the choice for xk+1.

For the error ek = xk − x∗ we have
ek+1 =Mek (5.5)

and the residual rk = b − Axk satisfies rk = −Aek. Thus, also rk+1 = M rk holds. If the iteration
matrix M = I − NA satisfies ρ(M) < 1, then we call ρ(M) the (asymptotic) convergence factor of the
iteration (5.3). The expression − log10 ρ(M) is called the (asymptotic) convergence rate. This measures
the number of correct decimal digits which are gained in each iteration step (in an asymptotic sense).

21Note the formal analogy to a [quasi-]Newton method for solving a nonlinear system F (x) = b, with residual b− F (xk).
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Remark 5.2 The convergence result from Theorem 5.1 supports the expectation that the error is reduced
by a factor q ∈ (0, 1) in each step of the iteration. However, in general this is true only in an asymptotic,
or ‘mean’ sense: Consider

q = limsup
k→∞

(
‖ek‖
‖e0‖

)1/k

where ‖ · ‖ is a norm which we are interested in, since (asymptotically) the error is reduced by a factor q
in each step. From (5.4) we obtain

‖ek‖ = ‖Mke0‖ ≤ ‖Mk‖‖e0‖
and therefore

q = limsup
k→∞

(
‖ek‖
‖e0‖

)1/k
≤ limsup

k→∞

(
‖Mk‖‖e0‖

‖e0‖

)1/k
= limsup

k→∞
‖Mk‖1/k = ρ(M)

by Theorem 1.1. We note that the precise choice of norm is immaterial for the asymptotic convergence
behavior.22 The meaning of the asymptotic convergence rate − log10 ρ(M) is the number of steps required
to reduce (asymptotically) the error by a factor 10.

Remark 5.3 In general, for a given norm, e.g. for ‖ · ‖2, the behavior of the error in a single step may
have nothing to do with the size of ρ(M) < 1. For (highly) non-normalM , ‖M‖2 may be > 1 (even >> 1).
In other words: The spectral radius ρ(M) only determines the asymptotic convergence rate in general. A
trivial but instructive example is the Jordan block

M =




0 m
0 m

. . .
. . .
. . .

. . .

. . . m
0




∈ R
n×n

Here, ρ(M) = 0, Mn = 0 (nilpotency), but ‖M‖1 = ‖M‖2 = ‖M‖∞ = |m|.
In such a situation the convergence behavior of the stationary iteration will be non-monotonic or erratic,
in particular in the initial phase.

5.2 Splitting methods

Early iterative methods (including the classical Jacobi and Gauss-Seidel methods to be discussed in the
sequel) are splitting methods for solving (5.1). A splitting method is determined by writing

A = G−H

and using the approximate inverse N = G−1 ≈ A−1. Equivalently, this is obtained by rewriting equa-
tion (5.1) as

Ax = b ⇔ Gx = Hx+ b ⇔ x = G−1Hx+G−1 b

which has fixed point form (5.3) and is, by construction, consistent with the matrix A. The corresponding
fixed point iteration reads

xk+1 = G−1H︸ ︷︷ ︸
=M

xk + G−1
︸︷︷︸
=N

b = (I −G−1A)xk +G−1 b = xk +G−1(b− Axk)

In practice, the approximate inverse N = G−1 is, of course, not explicitly computed; only the action z 7→
G−1 z needs to be realized computationally. For efficient methods, the action z 7→ G−1 z, or equivalently,
the solution of the correction equation Gδk = rk, needs to be ‘cheap’.

22We refer to [19, Sec. 4.2] for a more detailed discussion.
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Richardson, Jacobi, Gauss-Seidel.

• Richardson: We start with a trivial, basic case: A = I − (I − A). This leads to the Richardson
iteration:

xk+1 = xk + (b− Axk) (5.6)

Here, N = I is taken as an ‘approximate inverse’ for A.

Remark 5.4 We note that the second normal form of a (consistent) linear iteration shows that every linear
iteration for a system Ax = b can be interpreted as the Richardson iteration applied to the transformed
problem NAx = N b. In this interpretation we call N (or N−1) a preconditioner; we need N ≈ A−1 to
expect convergence of the preconditioned Richardson iteration.

In the following we throughout write A = D+L+U , where D,L, U are the diagonal, the (strictly) lower,
and the (strictly) upper part of A, respectively.

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅ ❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅

A = L + D + U

• Jacobi: Choose G = D and H = −(L + U). The approximate inverse is N = D−1, and the Jacobi
iteration is given by

xk+1 = xk +D−1 (b−Axk) ⇔ Dxk+1 = Dxk + (b− Axk) (5.7a)

This means that, for i = 1 . . . n, the i-the equation is solved for the i-th component, where the other
components take the values from the previous iteration step. The inversion of the diagonal matrix D
(which must be invertible) is trivial. In component notation, the Jacobi iteration can be written as

(xk+1)i = (xk)i +
1

Ai,i

(
bi −

n∑

j=1

Ai,j (xk)j

)
, i = 1 . . . n (5.7b)

• Gauss-Seidel: We choose G = (L + D) and H = −U . The approximate inverse is N = (L+D)−1,
which leads to the forward Gauss-Seidel iteration

xk+1 = xk + (L+D)−1 (b−Axk) ⇔ Dxk+1 = Dxk + (b− Lxk+1 − (D + U)xk) (5.8a)

Provided that D is invertible, the action z 7→ (L+D)−1 z is easily realized by forward substitution since
L+D is lower triangular. In component notation, the Gauss-Seidel iteration can be written as

(xk+1)i = (xk)i +
1

Ai,i

(
bi −

i−1∑

j=1

Ai,j (xk+1)j −
n∑

j=i

Ai,j (xk)j

)
, i = 1 . . . n (5.8b)

The method works like Jacobi but, in the inner iteration, the updates (xk+1)i immediately replace the old
values (xk)i.
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Completely analogous to the forward Gauss-Seidel iteration is the backward Gauss-Seidel iteration, which
corresponds to the splitting G = (D + U), H = −L, and thus

xk+1 = xk + (D + U)−1 (b− Axk), i.e., N = (D + U)−1 (5.9)

Remark 5.5 The Richardson and Jacobi methods are independent of the numbering of the unknowns;
the forward and backward Gauss-Seidel methods are not. E.g., the backward Gauss-Seidel method is
obtained from the forward version by reversing the numbering of the unknowns. The Jacobi method has
much more potential for parallelization. On the other hand, Gauss-Seidel is more economic concerning
storage and, as we will see, usually has more favorable convergence properties.

Damped Richardson, Jacobi, SOR, SSOR.

Each of the above methods can be modified by damping, where a given approximate inverse N is replaced
by ωN ,

xk+1 = xk + ωN(b− Axk) (5.10)

Here, ω ∈ R is the damping (or: relaxation) parameter. E.g., for N = I, we obtain the damped Richardson
method,

xk+1 = xk + ω (b− Axk) (5.11)

and for N = D−1 we obtain the damped Jacobi method,

xk+1 = xk + ωD−1 (b−Axk) (5.12)

The so-called SOR method (successive overrelaxation 23) is obtained in a slightly different manner, by
introducing a relaxation factor ω in the component formulation (5.8b) of the Gauss-Seidel method,

(xk+1)i = (xk)i +
ω

Ai,i

(
bi −

i−1∑

j=1

Ai,j (xk+1)j −
n∑

j=i

Ai,j (xk)j

)
, i = 1 . . . n (5.13a)

In matrix notation, this reads

Dxk+1 = Dxk + ω (b− Lxk+1 − (D + U)xk)

⇔ Dxk+1 = (D + ωL)xk + ω (b− Lxk+1 −Axk)

⇔ xk+1 = xk + ω (D + ωL)−1 (b− Axk), i.e., N = ω (D + ωL)−1 (5.13b)

Of course, instead of the forward Gauss-Seidel method, one could start from the backward Gauss-Seidel
method – then, the matrix U replaces L in (5.13b).

A disadvantage of the Gauss-Seidel and, more generally, the SOR methods is that the iteration matrix
M is not symmetric even if the original matrix A is symmetric. This can be overcome by defining a
symmetric version, the SSOR (Symmetric SOR) by applying first a step of SOR based on the forward
Gauss-Seidel method and then an SOR step based on the backward Gauss-Seidel method:

xk+ 1
2
= xk + ω (D + ωL)−1 (b− Axk),

xk+1 = xk+ 1
2
+ ω (D + ωU)−1 (b−Axk+ 1

2
)

(5.14a)

A short calculation shows

23More precisely: the choice ω > 1 is called overrelaxation whereas the choice ω < 1 corresponds to underrelaxation. In
the examples we will consider, overrelaxation is advantageous.
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xk+1 = xk + ω (2− ω)(D + ωU)−1D (D + ωL)−1 (b− Axk) (5.14b)

with symmetric iteration matrix for symmetric A, i.e., for U = LT.

If A is SPD, then D > 0 and the SSOR iteration matrix is also SPD:
(
(D + ωLT)−1D (D + ωL)−1x, x

)
=
(
D (D + ωL)−1x, (D + ωL)−1x

)
> 0 for x 6= 0

We collect the iteration matrices M for these methods:

method iteration matrix M = I − NA approximate inverse N

damped Richardson MRich = I − ωA ωI

damped Jacobi MJac
ω = I − ωD−1A ωD−1

forward Gauss-Seidel MGS = I − (D+L)−1A (D+L)−1

SOR MSOR
ω = I − ω (D+ωL)−1A ω (D+ωL)−1

SSOR MSSOR
ω = I − ω (2− ω)(D+ωU)−1D (D+ωL)−1A ω (2− ω)(D+ωU)−1D (D+ωL)−1

Jacobi, Gauss-Seidel, SOR and SSOR in the SPD case.

For the case where A is SPD, a fairly general convergence theory can be established for these methods.
First we collect some properties of symmetric and/or SPD matrices.

For a symmetric matrix A ∈ Rn×n we write A ≥ 0 if A is positive semidefinite, and A > 0 if A is positive
definite. For two symmetric matrices A,B ∈ Rn×n we write A ≥ B ifA − B ≥ 0; we write A > B if
A− B > 0.

Lemma 5.2 Let A,B ∈ Rn×n be symmetric. Then:

(i) A > [≥] 0 ⇔ CTAC > [≥] 0 for all invertible C ∈ Rn×n.

(ii) A > [≥]B ⇔ CTAC > [≥] CTBC for all invertible C ∈ Rn×n.

(iii) A,B > [≥] 0 ⇒ A +B > [≥] 0

(iv) λI < A < ΛI ⇔ σ(A) ⊂ (λ,Λ) (analogous assertion for ≤)

(v) A > [≥]B > 0 ⇔ 0 < A−1 < [≤] B−1

Proof: We will only prove (v), the remaining cases being simple (exercise). If you, e.g., prove (i), observe
the meaning of this assertion (a simple ‘change of coordinates’ -argument).

For (v), we will only show that A ≥ B > 0 implies B−1 ≤ A−1. Since B is SPD, we can define the SPD

matrix B− 1
2 . Then, by (i), we infer that A ≥ B implies X := B− 1

2AB− 1
2 ≥ I. Hence, all eigenvalues of

the symmetric matrix X are ≥ 1 (see (iv)). Thus, all eigenvalues of the symmetric matrix X−1 are all

≤ 1, i.e., I ≥ X−1 = B
1
2 A−1B

1
2 . Multiplying both sides by the symmetric matrix B− 1

2 and recalling (i)
gives B−1 ≥ A−1. �

For an SPD matrix A = QΛQT > 0 with Q orthogonal and Λ > 0 diagonal, the square root A
1
2 ,

A
1
2 = QΛ

1
2 QT

and its inverse A− 1
2 = QΛ− 1

2 QT are also SPD. Furthermore, 24 each SPD matrix A defines an ‘energy
product’ and associated energy norm,

24Vectors and matrices are understood in original coordinates in Rn. On could also use transformed coordinates; i.e.,
x = A−

1
2A

1
2x ∈ Rn has coordinate vector x̂ = A

1
2 x with respect to the canonical A -orthogonal basis A−

1
2 , and a linear

mapping represented by M ∈ Rn×n is represented by M̂ = A
1
2MA−

1
2 in these new coordinates. This notation is used

in (5.15a),(5.15b) and in Exercise 5.1.
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(x, y)A = (Ax, y) = (x̂, ŷ), ‖x‖A = (Ax, x)
1
2 = ‖x̂‖2 (5.15a)

where x̂ = A
1
2 x, ŷ = A

1
2 y. The corresponding matrix norm is

‖M‖A = ‖A 1
2MA− 1

2‖2 = ‖M̂‖2 (5.15b)

We note some further properties of general inner products (energy products) (u, u)A = (Au, u), generalizing
well-known identities from the Euclidean case:

Exercise 5.1

a) Let A ∈ Rn×n be SPD. Show: The adjoint MA of a matrix M with respect to the (·, ·)A inner product is given
by

MA = A−1MTA (5.16)

Note that M is A -selfadjoint iff MTA = AM ⇔ A− 1
2MTA

1
2 = A

1
2 MA− 1

2 , i.e., if M̂ = A
1
2 MA− 1

2 is symmetric.

b) An ‘A -orthogonal’ pair of vectors x, y, satisfying

(x, y)A = (Ax, y) = (x̂, ŷ) = 0

is also called [A-]conjugate. A -orthogonality of a linear mapping represented by a matrix Q is defined in the
usual way:

(Qx,Qy)A ≡ (x, y)A, i.e., QTAQ = A

Show that this is equivalent to QAQ = I.

c) A matrix P satisfying

PTAP = I, i.e., the columns pi of P are pairwise A-conjugate: (pi, pj)A = (Api, pj) = (p̂i, p̂j) = δi,j

is called [A-]conjugate. Show that this is equivalent to PAP = A−1.

The diagonal part D of an SPD matrix A satisfies D > 0 because Di,i = (Aei, ei) > 0. In the following
theorem, a stronger property in the sense of ‘diagonal dominance’ is involved.

Theorem 5.2 Let A ∈ R
n×n be SPD. Then,

ρ(MJac
ω ) < 1 ⇔ 0 < A < 2

ω
D

Proof: MJac
ω = I − ωD−1A is not symmetric but A - selfadjoint (see Exercise 5.1):

(
MJac

ω

)A
= A−1

(
MJac

ω

)T
A = A−1(I − ωAD−1)A = I − ωD−1A =MJac

ω

Equivalently, A
1
2 MJac

ω A− 1
2 = I − ωA

1
2D−1A

1
2 is symmetric with real spectrum. We have

σ(MJac
ω ) = σ(A

1
2MJac

ω A− 1
2 ) = σ(I − ωA

1
2D−1A

1
2 )

From Lemma 5.2, (iv) we obtain

ρ(MJac
ω ) < 1 ⇔ −I < I − ωA

1
2D−1A

1
2 < I ⇔ 0 < ωA

1
2D−1A

1
2 < 2I

⇔ 0 < ωD−1 < 2A−1 ⇔ 0 < A < 2
ω
D

which concludes the proof. �
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Under the condition of Theorem 5.2, the damped Jacobi iteration is contractive in the energy norm: For
the error ek = xk − x∗ we have

‖A 1
2 ek+1‖2 = ‖A 1

2MJac
ω ek‖2 = ‖A 1

2MJac
ω A− 1

2 A
1
2 ek‖2 < ‖A 1

2MJac
ω A− 1

2‖2‖A
1
2 ek‖2

or equivalently,
‖ek+1‖A < ‖MJac

ω ‖A︸ ︷︷ ︸
<1

‖ek‖A

This strictly contractive behavior does, in general, not hold in the Euclidean norm. 25

Theorem 5.2 shows that, due to D > 0, choosing the relaxation parameter ω > 0 sufficiently small
(depending on A) will guarantee that the damped Jacobi method converges for every SPD matrix A. Note,
however, that an estimate for the rate of convergence, or contractivity factor, i.e., for ρ(MJac

ω ) = ‖MJac
ω ‖A

is not available from the theorem. For ω ↓ 0 we have MJac
ω = I − ωD−1A → I; in the limit, convergence

is assured but must be expected to be slow. We return to the question of convergence rates later on.

The regime of damping parameters for which the damped Jacobi method converges depends on the
problem. This is in contrast to the SOR method, which converges for arbitrary SPD matrices for any
value of the relaxation parameter ω ∈ (0, 2), see Theorem 5.3 below.

Exercise 5.2 Let A,N be SPD and consider the iteration xk+1 = xk + N(b − Axk). Let M = I − W−1A
(W = N−1) be the iteration matrix. Assume that W is SPD and even satisfies

2W > A > 0 (5.17a)

a) Show: ρ(M) = ‖M‖A < 1.

b) Show: If for some 0 < λ ≤ Λ there holds

0 < λW ≤ A ≤ ΛW

then σ(M) ⊆ [1− Λ, 1− λ], and thus,

ρ(M) ≤ max{|1− λ|, |Λ − 1|}

c) Show: for ω ∈ (0, 1], the damped SSOR method (5.14b) converges for all SPD matrices A.

d) Show that a) can be weakened in the following way: We do not require that N,W are symmetric, but we only
assume that W is positive definite, i.e., 2 ReW = W +W T > 0, and replace condition (5.17a) by

W +W T > A > 0 (5.17b)

Then, ρ(M) = ‖M‖A < 1.

Hint: Use (5.16) and express N +NT by means of W +W T.

Theorem 5.3 Assume ω ∈ R and A ∈ Rn×n SPD. Then,

ρ(MSOR
ω ) = ‖MSOR

ω ‖A < 1 for ω ∈ (0, 2)

25 Also for other classes of iterative methods to be discussed later, energy estimates are often more natural (and easier to
derive) in the SPD case.
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Proof: We make use of Exercise 5.2, d). For the SOR method we have

W = N−1 = ω−1D + L and W +W T = 2ω−1D + L+ LT

Thus,
W +W T −A = 2ω−1D + L+ LT − D − L− LT = (2ω−1 − 1)D

which is > 0 iff ω ∈ (0, 2). �

Remark 5.6 An alternative more technical proof, based on direct investigation of the spectrum ofMSOR
ω ,

reveals that ρ(MSOR
ω ) < 1 if and only if ω ∈ (0, 2).

Convergence of SSOR(ω).

Exercise 5.2 shows that SSOR(ω) converges for ω ∈ (0, 1]. In fact, it converges for all ω ∈ (0, 2) as the
following exercise shows.

Exercise 5.3 Let A be SPD and denote by MSOR
ω = I − ω (D + ωL)−1A the iteration matrix of the (forward)

SOR method and by M̄SOR
ω = I − ω (D + ωLT)−1A the iteration matrix of the backward SOR method. The

iteration matrix MSSOR
ω = M̄SOR

ω MSOR
ω of the damped SSOR method is given by

MSSOR
ω = I − ω(2− ω)(D + ωLT)−1D (D + ωL)−1A

a) Show: M̄SOR
ω is the adjoint of MSOR

ω with respect to the (·, ·)A inner product, i.e., M̄SOR
ω = (MSOR

ω )A.
Conclude that σ(MSSOR

ω ) ⊆ R
+
0 , i.e., the spectrum is non-negative.

b) Using b), show: ‖MSSOR
ω ‖A = ‖MSOR

ω ‖2A.

Exercise 5.3 shows that for an SPD matrix A SSOR(ω) converges (even monotonically in the energy
norm) if SOR(ω) converges monotonically in the energy norm. Due to Theorem 5.3 this is indeed the case
for ω ∈ (0, 2).

Jacobi and Gauss-Seidel for diagonally dominant matrices.

Definition 5.2 ([ir]reducible matrix) A matrix A ∈ Rn×n is called reducible if there exists a permu-
tation of the indices, i.e., a permutation matrix P such that

P TAP =



A1 0

A3 A2


 (5.18)

where A1 and A2 are non-empty square subblocks. Matrices that cannot be transformed in this way a called
irreducible.

Reducibility of A means that, after an appropriate reordering, the system Ax = b can be split into
two subsystems where the subsystem involving A1 can be solved independently. On the other hand,
irreducibility means that the system is ‘fully coupled’.

Definition 5.3 (directed adjacency graph) (cf. Sec. 3) Let A ∈ Rn×n. The graph

G = G(A) = (V,E) with V = {1, . . . , n} and E = {(i, j) : Ai,j 6= 0}
is called the directed adjacency graph of A.

The index j is said to be adjacent to i if (i, j) ∈ E, i.e., if variable xj is present in equation i.

The index j is said to be connected to i if there exists a chain of indices i1, i2, . . . , ik such that
(i, i1), (i1, i2), . . . , (ik−1, ik), (ik, j) ∈ E.
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Lemma 5.3 A matrix A ∈ Rn×n is irreducible iff each index j ∈ {1, . . . , n} is connected to each i ∈
{1, . . . , n}.

Proof: Let A be reducible. Then, after relabeling (permutation) of the indices it takes the form as
on the right-hand side of (5.18), with A1 ∈ K|N1|×|N1|, A2 ∈ K|N2|×|N2| where 26 N1 = {1, . . . , n1} and
N2 = {n1 + 1, . . . , n}. Let i ∈ N1 and j ∈ N2. We claim: j is not connected to i.

Suppose otherwise. Then there exists a sequence (i, i1), (i1, i2), . . . , (ik, j) ∈ E, i.e., every Ail,il+1
6= 0 for

l = 0 . . . k (we set i0 = i, ik+1 = j). Since i ∈ N1, j ∈ N2 and N1 ∪̇N2 = {1, . . . , n}, there must exist at
least one pair (il, il+1) with il ∈ N1 and il+1 ∈ N2. However, the structure (5.18) implies Ai′,j′ = 0 for all
i′ ∈ N1, j

′ ∈ N2, which leads to the desired contradiction.

Conversely, suppose the existence of i and j such that j is not connected to i. To show that A is
reducible, we distinguish the cases j 6= i and j = i.

– Case j 6= i: We partition the index set: {1, . . . , n} = N1 ∪̇N2, where

N1 = {i} ∪ {i′ : i′ is connected to i},
N2 = {1, . . . , n} \N1 = {j′ : (i 6=)j′ is not connected to i}

By assumption, N2 6= ∅.
We claim: Ai′,j′ = 0 for all i′ ∈ N1 and j′ ∈ N2.

Suppose otherwise. Then there exists i′ ∈ N1 and j′ ∈ N2 such that Ai′,j′ 6= 0, i.e., (i′, j′) ∈ E.
Thus, since i′ is connected to i, we conclude that j′ is connected to i. In other words: j′ ∈ N1, which
contradicts j′ ∈ {1, . . . , n} \N1.

Now we may renumber the indices such that those of N1 are listed first and then those of N2 to obtain
the desired reducible structure (5.18).

– Case j = i : As in the case j 6= i, we define N1 = {i′ : i′ is connected to i} and N2 = {1, . . . , n} \N1 =
{i′ : i′ is not connected to i}. By assumption, i ∈ N2, thus N2 6= ∅. If N1 6= ∅, then we may reason as
in the first case that Ai′,j′ = 0 for all i′ ∈ N1 and j′ ∈ N2. It therefore remains to consider the case
N1 = ∅. This means Ai,i′ = 0 for all i′ ∈ {1, . . . , n}, i.e., the matrix A has a null row.

Renumbering the indices such that i appears last guarantees again that we obtain the structure (5.18)
with A1 = 0 ∈ K1×1 and A2 ∈ K(n−1)×(n−1). �

Definition 5.4 (strict and irreducible diagonal dominance) A matrix A ∈ Rn×n is called strictly
diagonally dominant if n∑

j=1
j 6=i

|Ai,j| < |Ai,i|, i = 1 . . . n

A is called irreducibly diagonally dominant if

(i) A is irreducible,

(ii) A is weakly diagonally dominant, i.e.,

n∑

j=1
j 6=i

|Ai,j| ≤ |Ai,i|, i = 1 . . . n,

(iii) ∃ ı̂ ∈ {1, . . . , n} such that
n∑

j=1
j 6=ı̂

|Aı̂,j| < |Aı̂,̂ı|.

26 Indices are already relabeled here.

Ed. 2017 Iterative Solution of Large Linear Systems



5.2 Splitting methods 35

Exercise 5.4 Show that the matrices for the 1D and 2D Poisson problem (i.e., the matrices of Examples 2.1

and 2.2) are irreducibly diagonally dominant.

For strictly diagonally dominant A we have Ai,i 6= 0 for all i. Thus, D is invertible, and therefore the
Jacobi and Gauss-Seidel methods are well-defined. More generally, we have 27

Theorem 5.4 Let A ∈ Rn×n be strictly diagonally dominant or irreducibly diagonally dominant. Then,
A as well as its diagonal D are invertible.

Proof:

• Let A be strictly diagonally dominant. Then D is invertible. We claim: A is also invertible.

Suppose otherwise. Then Ax = 0 for some x 6= 0. Without loss of generality we assume ‖x‖∞ = 1,
with |xi| = 1 for some index i. Then,

∑n
j=1Ai,j xj = 0 implies

|Ai,i| = |Ai,ixi| =
∣∣∣

n∑

j=1
j 6=i

Ai,j xj

∣∣∣ ≤
n∑

j=1
j 6=i

|Ai,j xj | ≤
n∑

j=1
j 6=i

|Ai,j|

which contradicts strict diagonal dominance.

• Let A be irreducibly diagonally dominant. We claim: A is invertible.

Suppose otherwise. Then Ax = 0 for some x 6= 0. Without loss of generality we assume ‖x‖∞ = 1.
We partition the index set: {1, . . . , n} = N1 ∪̇N2, where

N1 = {k : |xk| = 1}, N2 = {k : |xk| < 1}
Here N1 6= ∅. If N2 = ∅, then x 6= 0 is constant up to signs ±, which implies

∑n
j=1±Ai,j = 0 for

i = 1 . . . n. Thus,

|Ai,i| =
∣∣∣

n∑

j=1
j 6=i

±Ai,j

∣∣∣ ≤
n∑

j=1
j 6=i

|Ai,j|, i = 1 . . . n

which contradicts assumption (iii) about A. Thus, also N2 6= ∅. Due to irreducibility (assumption (i))
there exists at least one pair of indices i ∈ N1 and k ∈ N2 with Ai,k 6= 0. Together with |xk| < 1 this
implies

|Ai,i| ≤
n∑

j=1
j 6=i

|Ai,j| |xj| <
n∑

j=1
j 6=i

|Ai,j|

which contradicts weak diagonal dominance (assumption (ii)).

We claim: D is also invertible.

Suppose otherwise. Then Ai,i = 0 for some index i. Then, by diagonal dominance, the i - th row of
A is zero, which contradicts the invertibility of A. �

Exercise 5.5 Let A be strictly diagonally dominant or irreducibly diagonally dominant with positive diagonal
D > 0. Show that all eigenvalues of A have positive real part. (In particular, if A is also symmetric, then A must
be SPD.)

Hint: Let λ ∈ C be an eigenvalue of A with associated eigenvector x ∈ C
n. Assume without loss of generality

that ‖x‖∞ = xi = 1 for some index i. Derive an upper bound for |λ − aii|, following a similar strategy as in the

proof of Theorem 5.4.

27All results in this section are equally valid for A ∈ Cn×n.
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Theorem 5.5 Let A ∈ Rn×n be strictly diagonally dominant or irreducibly diagonally dominant. Then

ρ(MJac) < 1 and ρ(MGS) < 1

Proof: We consider the error propagation e 7→ Me.

– Step 1. We show ‖MJac‖∞ < 1 for A strictly diagonally dominant. From MJac = I − D−1A =
D−1 (D −A) we obtain

(MJac e)i = −
n∑

j=1
j 6=i

Ai,j

Ai,i

ej , i = 1 . . . n

This gives

‖MJac e‖∞ = max
i

∣∣(MJac e)i
∣∣ = max

i

∣∣∣
n∑

j=1
j 6=i

Ai,j

Ai,i

∣∣∣‖e‖∞ < ‖e‖∞ (5.19)

Thus, ρ(MJac) ≤ ‖MJac‖∞ < 1.

– Step 2. We show ρ(MGS) < 1 for A strictly diagonally dominant. Let λ be an eigenvalue of MGS =
I − (L+D)−1A = −(L+D)−1U with corresponding eigenvector x. Without loss of generality we
assume ‖x‖∞ = 1, with |xi| = 1 for some index i. Then, −Ux = λ(L+D)x, i.e.,

−
∑

j>i

Ai,j xj = λAi,ixi + λ
∑

j<i

Ai,j xj , i = 1 . . . n

This implies

|λ| ≤
∣∣∑

j>i Ai,j xj
∣∣

∣∣Ai,ixi
∣∣−
∣∣∑

j<iAi,j xj
∣∣ ≤

∑
j>i |Ai,j|

|Ai,i| −
∑

j<i |Ai,j|
, i = 1 . . . n

where the denominator is positive due to strict diagonal dominance. Thus,

|λ| ≤
∑

j>i |Ai,j|
∑

j>i |Ai,j|+
[
|Ai,i| −

∑

j>i

|Ai,j| −
∑

j<i

|Ai,j|
]

︸ ︷︷ ︸
>0

< 1

again due to strict diagonal dominance.

– Step 3. We show ρ(MJac) < 1 for A irreducibly diagonally dominant. To this end, let λ ∈ C with
|λ| ≥ 1. We show that λ cannot be an eigenvalue of MJac, i.e., we show that M (λ) := MJac − λI is
invertible:

Since A is irreducible, the same is true for D − A and MJac = D−1(D − A) as well as M (λ). Due to
diagonal dominance of A we have

n∑

j=1
j 6=i

|M (λ)
i,j | =

n∑

j=1
j 6=i

|MJac
i,j | =

n∑

j=1
j 6=i

|Ai,j|
|Ai,i|

≤ 1 ≤ |λ| = |M (λ)
i,i |, i = 1 . . . n (5.20a)

since MJac has diagonal 0. Furthermore, by assumption on A, for at least one index i = ı̂ we have ‘< 1’
instead of ‘≤ 1’ in (5.20a). This shows that M (λ) is also irreducibly diagonally dominant and therefore
invertible (Theorem 5.4), which concludes Step 3.
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– Step 4. We show ρ(MGS) < 1 for A irreducibly diagonally dominant. We proceed in the same way as
in Step 3, with M (λ) =MGS − λI, |λ| ≥ 1:

The matrix M (λ) = −(L+D)−1U − λI is invertible iff M̃ (λ) = λ(L + D) + U is invertible. M̃ (λ) is
irreducible since A = D + L+ U is irreducible and λ 6= 0. Due to diagonal dominance of A we have

n∑

j=1
j 6=i

|M̃ (λ)
i,j | = |λ|

i−1∑

j=1

|Ai,j|+
n∑

j=i+1

|Ai,j| ≤ |λ|
n∑

j=1
j 6=i

|Ai,j| ≤ |λ| |Ai,i| = |M̃ (λ)
i,i |, i = 1 . . . n (5.20b)

In the same way as in Step 3 we conclude that M (λ) is irreducibly diagonally dominant and therefore
invertible.

�

Remark 5.7 For the strictly diagonally dominant case, (5.19) provides an upper bound for ‖MJac‖∞ < 1
in terms of the matrix entries, which depends on the ‘degree of diagonal dominance’. It can also be shown
that, in this case, we have ‖MGS‖∞ ≤ ‖MJac‖∞ < 1; see [2, Sec 7.6].

A more detailed analysis shows that for diagonally dominant and irreducibly diagonally dominant ma-
trices, we have ρ(MGS) ≤ ρ(MJac) < 1, i.e., the Gauss-Seidel method converges faster than the Jacobi
method; cf. [10],[13]. For certain (other) types of matrices, this can even be quantified: For example, for

consistently ordered matrices (see Sec. 5.3 below) one can show ρ(MGS) = (ρ(MJac))
2
if ρ(MJac) < 1. It

is a good rule of thumb to expect the Gauss-Seidel method to be superior to the Jacobi method.

5.3 Model problem and consistent ordering

A shortcoming of the results obtained so far is that they do not provide useful quantitative estimates
for the convergence rate, in particular for the Gauss-Seidel method. It is also not so clear whether the
introduction of the relaxation parameter ω for the Gauss-Seidel method can improve things substantially.
For a class of matrices with a special [block-]band structure, it turns out that it is possible to choose the
relaxation parameter ω in such a way that the convergence is significantly sped up.

In the literature, matrices to which this special type of analysis applies are called consistently ordered (see
Def. 5.5 below). This definition is motivated by the special structure of the matrix A for the 2D Poisson
problem in (see Example 2.2). In fact, the 2D Poisson problem provides the example par excellence of a
consistently ordered matrix. This special property is usually not retained for more general finite difference
matrices; in this sense, the theory based on consistent ordering is sort of a model problem analysis. From
a historical point of view, this analysis was a significant step towards a deeper understanding of the
convergenc properties of SOR, at least for one highly relevant class of application problems.

In a nutshell, the results are:

• The (by far) most prominent example of a consistently ordered matrix is the matrix arising from the
2D Poisson problem (Example 2.2).

• For consistently ordered matrices, the Gauss-Seidel method (i.e., ω = 1) converges at twice the rate

of the Jacobi method (if it converges): ρ(MGS) = (ρ(MJac))
2
(see Theorem 5.6).

• For consistently ordered matrices, the optimal damping parameter ωopt for the Gauss-Seidel method

is available explicitly in terms of β = ρ(MJac) < 1 (see Theorem 5.7): ωopt = 2/(1 +
√
1− β2)

and ρ(MSOR
ωopt

) = ωopt − 1. For the case β close to 1 one sees that the optimal damping leads to

a significant improvement: Let β = 1 − δ for some (small) δ > 0. Then, ωopt = 2 − O(
√
δ) and

ρ(MSOR
ωopt

) = 1−O(
√
δ).
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An illustration of the performance of the optimally damped SOR method for the 2D Poisson problem is
given in Example 5.3 below. In particular, we will see that ρ(MJac) = 1 − O(h2), whereas ρ(MSOR

ωopt
) =

1−O(h).

Consistent ordering.

Definition 5.5 A matrix A ∈ Rn×n with diagonal D, strict lower part L, and strict upper part U is said
to be consistently ordered if the eigenvalues of A(z) = zD−1L+ 1

z
D−1U are independent of z ∈ C\{0}.

Example 5.1 A first class of matrices that are consistently ordered are block tridiagonal matrices of the
form

A =




D1 T12

T21 D2 T23

T32 D3
. . .

. . .
. . . Tp−1,p

Tp,p−1 Dp




= L+D + U

where the diagonal blocks Di are themselves diagonal matrices. To see this, we verify that D−1L+D−1U
and zD−1L+ 1

z
D−1U are similar matrices for all 0 6= z ∈ C :

zD−1L+ 1
z
D−1U = X

(
D−1L+D−1U

)
X−1 for X =




I

zI

z2I

. . .

zp−1I




Tridiagonal matrices (e.g., those arising in Example 2.1) fit into the setting of Example 5.1. The 2D
situation of Example 2.2 does not. However, the matrix of Example 2.2 is also consistently ordered as the
following example shows:

Example 5.2 Block tridiagonal matrices whose diagonal block Ti are tridiagonal matrices and whose off-
diagonal block are diagonal matrices are consistently ordered. To see this, consider such a matrix in the
form

B =




T1 D12

D21 T2 D23

D32 T3
. . .

. . .
. . . Dp−1,p

Dp,p−1 Tp




We proceed as above by similarity transformations, with X = Diag(I, zI, z2I, . . . , zp−1I) as above. A
calculation shows

XBX−1 =




T1 z−1D12

zD21 T2 z−1D23

zD32 T3
. . .

. . .
. . . z−1Dp−1,p

zDp,p−1 Tp
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So far, we have neither exploited the assumption that the off-diagonal blocks are diagonal nor that the
diagonal blocks are tridiagonal. The next similarity transformation is again done by a block diagonal
matrix, C = Diag(C1, C2, . . . , Cp), where the matrices Ci (all of the same size n ∈ N) are given by
Ci = Diag(1, z, z2, . . . , zn−1). Observing that the off-diagonal block Di,j are diagonal matrices then allows
us to conclude

CXBX−1C−1 =




C1T1C
−1
1 z−1D12

zD21 C2T2C
−1
2 z−1D23

zD32 C3T3C
−1
3

. . .

. . .
. . . z−1Dp−1,p

zDp,p−1 CpTpC
−1
p




Next, the fact that the diagonal blocks Ti are tridiagonal matrices implies that, upon writing Ti = Li +
Di+Ui (lower, diagonal, and upper part), we have CiTiC

−1
i = Di+zLi+

1
z
Ui. From this, one can conclude

as in Example 5.1 that the original matrix B is consistently ordered.

For the class of consistently ordered matrices, the following theorems have been proved by D.Young;
see [19].

Theorem 5.6 Let A be consistently ordered. Then, ρ(MGS) = (ρ(MJac))
2
. In particular, the Gauss-Seidel

method converges iff the Jacobi method converges.

Theorem 5.7 Assume:

(i) ω ∈ (0, 2),

(ii) MJac has only real eigenvalues,

(iii) β = ρ(MJac) < 1,

(iv) A is consistently ordered.

Then: ρ(MSOR
ω ) < 1, with

ρ(MSOR
ω ) =





1− ω + 1

2
ω2β2 + ωβ

√
1− ω + ω2β2

4
for 0 < ω ≤ ωopt

ω − 1 for ωopt ≤ ω < 2
(5.21a)

where ωopt is given by

ωopt =
2

1 +
√
1− β2

(5.21b)

The value ωopt minimizes ρ(MSOR
ω ), which then takes the value ρ(MSOR

ωopt
) = ωopt − 1.

Corollary 5.2 (SPD case) Let A be SPD and consistently ordered. Let ω ∈ (0, 2). Then σ(MJac) ⊆ R

and ρ(MJac) < 1, and therefore the assertions of Theorem 5.7 hold.

Proof: Theorem 5.3 implies ρ(MGS) < 1. Theorem 5.6 then gives ρ(MJac) < 1. Furthermore, the

spectrum of MJac is real, since σ(MJac) = σ(I− D−1A) = σ(I− D− 1
2AD− 1

2 ) ⊂ R because I− D− 1
2AD− 1

2

is symmetric. �
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0 1 2
0

1

ω
opt

ω
opt

−1

ρ(MSOR
ω

) as a function of ω

Figure 5.1: Asymptotic contraction rate ρ(MSOR
ω ) of SOR in dependence of ω.

Discussion of Young’s theorem.

By Example 5.2, the matrix for the 2D Poisson problem of Example 2.2 is consistently ordered. Hence,
Young’s theorem is applicable. We can compute σ(MJac) explicitly: According to Example 2.2, we have
σ(A) = {4 sin2 iπ

n+1
+ 4 sin2 jπ

n+1
: 1 ≤ i, j ≤ n}. Since the diagonal D of A is given by D = 4I, we easily

compute
σ(MJac) = σ(I − D−1A) =

{
1− sin2 iπ

n+1
− sin2 jπ

n+1
: 1 ≤ i, j ≤ n

}

From this we can conclude, with h = 1
n+1

and some c > 0 independent of h (and thus of the problem size):

ρ(MJac) = 1− ch2 +O(h3)

This allows us to compute the optimal relaxation parameter

ωopt =
2

1 +
√

1− (ρ(MJac))2
= 2− c′h +O(h2), c′ > 0 suitable

We conclude that
ρ(MSOR

ωopt
) = 1− c′h+O(h2)

Thus the SOR-method with optimally chosen relaxation parameter leads to a significant improvement of
the convergence rate.

Example 5.3 We consider the matrix A from Example 2.2 for the cases n = 10 (i.e., h ≈ 0.1) and
n = 100 (i.e., h ≈ 0.01). The right-hand side b is chosen as b = (1, 1 . . . 1)T; x0 = (1, 1 . . . 1)T. We compare
the Jacobi, the Gauss-Seidel, the optimally relaxed SOR-method and the CG method (see Chap. 8).

Fig. 5.2 shows the residual in the ‖ · ‖2 -norm versus the iteration count. We note that the Jacobi
and Gauss-Seidel methods converge (visible for n = 10, invisible for n = 100); indeed, the Gauss-Seidel
method converges at twice the rate of the Jacobi method, and the optimally relaxed SOR-method is
significantly faster. We also observe that the CG method is vastly superior; here we also observe a
superlinear convergence behavior.
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Figure 5.2: 2D Poisson problem: Comparison of Jacobi, Gauss-Seidel, optimal SOR, and CG method

Remark 5.8 In practice, β is not known and therefore also ωopt. A possible technique is as follows:
Choose ω < ωopt (e.g., ω = 1). Perform a few SOR-steps and monitor the behavior of the iterates
‖xk+1 − xk‖2. This gives an indication of ρ(MSOR

ω ) and therefore, using (5.21a) (note: ω < ωopt), of β.
With the aid of (5.21b) one can then get an improved estimate for ωopt. As long as ω < ωopt one can
proceed in this fashion. Since (see Fig. 5.1) the function ω 7→ ρ(MSOR

ω ) has a very steep slope for ω < ωopt,
one should tend to choose ω slightly larger than an (estimated) ωopt.

Classes of consistently ordered matrices; ‘Property A’.

The property of a matrix to be consistently ordered does depend on the ordering. It is therefore of interest
to identify matrices A for which permutation matrices P exist such that P TAP is consistently ordered.
Examples of such matrices are those for which a suitable renumbering of the unknowns leads to block
tridiagonal form, where the diagonal blocks are diagonal matrices (see Example 5.1), which is addressed
by the term ‘Property A’.

Let us see under which conditions on the adjacency graph G of A such a structure can be achieved.
To this end, let A be a block tridiagonal matrix with p blocks on the diagonal. This numbering of the
unknowns corresponds to a partitioning of the set V of vertices of G into p pairwise disjoint sets Si,
i = 1 . . . p : V = S1 ∪̇S2 · · · ∪̇Sp. The fact that the diagonal blocks are diagonal matrices and that A is
block tridiagonal implies:

– No node of a set Si is connected to another node within the same Si.

– Nodes of Si are only connected to nodes of Si−1 or Si+1.

Example 5.4 In Fig. 5.3 we illustrate the situation for the special case p = 2. In particular, we note
that for the matrix A of the 2D Poisson problem, we can find a numbering which brings A to the desired
form: The ‘red-black ordering’ (or: chequerboard ordering) as shown in the right part of Fig. 5.3 yields a
partition of the indices that realizes the splitting S1 ∪̇S2 with the desired property. The sparsity pattern
of the reordered matrix is shown in Fig. 5.4. Since the reordered matrix is again consistently ordered,
the convergence results related to Young’s Theorem apply also to the reordered system, in particular for
Gauss-Seidel and SOR.

We also note that, due to this reordering, the update steps for the (reordered) ‘black’ unknowns xi in
the first half step of the iteration can be computed independently, because the i - th equation involves
only values of ‘red’ unknowns xj , j 6= i, available from the previous iteration step. In the sequel, also the
updates for the red unknowns are independent from each other. Thus, red-black ordering also enables an
efficient parallelization of the SOR steps for this example.
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S1
S2

Figure 5.3: Left: illustration of property A. Right: partitioning (‘red-black coloring’) for model problem
of Example 2.2 that realizes Property A
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Figure 5.4: Sparsity pattern for 2D Poisson problem after red-black ordering

Optimal damping parameters for Richardson and Jacobi (SPD case).

The choice of optimal damping parameters for the Richardson and Jacobi methods is much simpler. We
start with the Richardson method:

Lemma 5.4 Let A ∈ Rn×n be SPD, with smallest and largest eigenvalues λmin = λmin(A), λmax =
λmax(A). Then the optimal damping parameter for the Richardson iteration (iteration matrix MRich

ω =
I − ωA) is given by

ωopt =
2

λmax + λmin

, with ρ(MRich
ωopt

) =
λmax − λmin

λmax + λmin

Proof: The spectrum of MRich is given by σ(MRich
ω ) = 1 − ωσ(A) ⊆ [1 − ωλmax, 1 − ωλmin]. Hence, for

real ω, we obtain ρ(MRich
ω ) = max{|1 − ωλmax|, |1 − ωλmin|}. Graphical considerations then show that

ρ(MRich
ω ) is minimal for 1− ωλmin = −(1− ωλmax), i.e., ω = ωopt =

2
λmin+λmax

, with

1− ωoptλmax =
λmin − λmax

λmax + λmin
, and 1− ωoptλmin =

λmax − λmin

λmax + λmin

See Fig. 5.5. �

If 0 < [λ,Λ] ⊃ [λmin, λmax], i.e., with lower resp. upper bounds for λmin and λmax, then ωopt =
2

λ+Λ
is the

appropriate choice, with ρ(MRich
ωopt

) = Λ−λ
Λ+λ

.

One may proceed analogously for the Jacobi method. Assume that

λD ≤ A ≤ ΛD
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Figure 5.5: Visualization of the proof of Lemma 5.4, with λmin = 1, λmax = 10: 1 − ωλmin (upper thin
line), 1− ωλmax (lower thin line), max{|1− ωλmin|, |1− ωλmax|} (thick line).

for some Λ > λ > 0. Then, from Lemma 5.2 we have σ(MJac
ω ) = σ(I − ωD−1A) ⊆ [1− ωΛ, 1−ωλ]. Then

the optimal damping parameter for the Jacobi method is again given by ωopt =
2

λ+Λ
, with

ρ(MJac
ωopt

) =
Λ− λ

Λ+ λ

Block versions.

The Jacobi method and the Gauss-Seidel method can also be employed in block versions. Namely, let A
be partitioned in the form

A =




A1,1 A1,2 · · · ...

A2,1 A2,2 · · · ...
...

...
. . .

...

· · · · · · · · · Ap,p




where the entries Ai,j are matrix blocks.

The block Jacobi method consists then in defining the block diagonal matrix

D =




A1,1

A2,2

. . .

Ap,p




and performing the iteration xk+1 = xk + D−1(b − Ax). The block Gauss-Seidel and the block SOR
methods are defined in an analogous way. Convergence theories exist for these cases as well.

If A corresponds to a FD or FEM matrix like in the 2D Poisson example, with original lexicographic
ordering of the unknowns, then the diagonal blocks Ai,i are tridiagonal matrices, and inversion of D
amounts to solving one-dimensional problems represented by small tridiagonal systems, e.g. via Cholesky
decomposition. The higher effort for such a block iteration is usually paid off by a faster convergence rate.

In the context of FD methods, such a version of block relaxation scheme is also called ‘line relaxation’,
where the coupling of unknowns in one of the coordinate directions is retained. Another variant is ‘alter-
nating direction line relaxation’ (ADI), where the ordering of unknowns varied in in an alternating fashion,
similarly as in SSOR; cf. e.g. [19].
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6 Chebyshev Acceleration and Semi-iterative Methods

Choosing the optimal relaxation parameter ωopt is not an easy task in general. Chebyshev acceleration and
its variants are an alternative, not uncommon tool to accelerate the convergence of a sequence (xk)

∞
k=0.

Let this sequence be generated by the primary iteration

xk+1 =Mxk +N b (6.1)

We assume ρ(M) < 1, such that (6.1) is convergent. We ask: Can we construct, for every k, an approxi-
mation x̃k based on x0, . . . , xk such that the new sequence (x̃k)

∞
k=0 features faster convergence towards the

fixed point x∗ = (I −M)−1N b of (6.1)? To this end we make an ansatz for a secondary iteration in form
of a weighted sum,

x̃k =

k∑

m=0

ak,mxm (6.2a)

for some parameters ak,m to be chosen. With the explicit (discrete variation-of-constant) representation
for the xm,

xm =Mm x0 +
m∑

ℓ=1

Mm−ℓN b

and the polynomials

pk(t) =

k∑

m=0

ak,m t
m ∈ Pk, qk−1(t) =

k∑

m=0

ak,m

m∑

ℓ=1

tm−ℓ ∈ Pk−1

the secondary iteration (6.2a) can be written as

x̃k = pk(M)x0 + qk−1(M)Nb (6.2b)

with the matrix polynomials pk(M) and qk−1(M). Of course we require that the parameters ak,m be chosen
such that a fixed point of (6.1) is reproduced, i.e., if we would consider (xk)

∞
k=0 to be the constant sequence

(x∗)
∞
k=0, then the sequence (x̃k)

∞
k=0 defined by (6.2a) should be the same constant sequence. Thus, we

require the consistency condition

1 =
k∑

m=0

ak,m = pk(1) ∀ k ∈ N0

i.e., all x̃k are weighted means of the xm, m = 0 . . . k. Under this assumption we can express the error
ẽk = x̃k − x∗ of the secondary iteration in terms of the primary error ek = xk − x∗ :

ẽk = x̃k − x∗ =
k∑

m=0

ak,m(xm − x∗) =
k∑

m=0

ak,m em =

k∑

m=0

ak,mM
me0 = pk(M)e0 (6.3)

This formula for the error gives an indication of how the coefficients ak,m, or, equivalently, the polynomials
pk should be chosen: we should choose pk such that ‖pk(M)‖ is small (or even minimal) in some norm of
interest. Since sometimes information about location of the spectrum of M is available, we state:

• By Exercise below 6.1, σ(p(M)) = p(σ(M)) for any matrix M and any polynomial p. Thus,

ρ(p(M)) = max{|p(λ)| : λ ∈ σ(M)} (6.4)

• Normal matricesM satisfy ‖M‖2 = ρ(M). Hence, for normal matricesM , since p(M) is also normal,
there holds ρ(p(M)) = ‖p(M)‖2 for all polynomials p. In particular, this is true for symmetric
matrices M .
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• Let A be SPD and let M be ‘A -normal’, i.e., MAM = MMA, e.g., M is A - selfadjoint. Then,
analogously as for the case of normal M we have ρ(M) = ‖M‖A, and ρ(p(M)) = ‖p(M)‖A for all
polynomials p.

These considerations suggest that it is reasonable to seek pk ∈ Pk as the solution of the minimization
problem

min
pk∈Pk
pk(1)=1

max
λ∈σ(M)

|pk(λ)| (6.5a)

Since this problem is still hard to solve, we settle for less: If Γ is a closed subset of the open unit disc in
C such that σ(M) ⊆ Γ, then we could seek to solve the minimization problem

min
pk∈Pk
pk(1)=1

max
z∈Γ

|pk(z)| (6.5b)

Of course, this still requires some a priori knowledge about the location of the spectrum. Here we consider
the case that σ(A) ⊆ Γ = [α, β], an interval on the real line. In this case, the minimization problem (6.5b)
can be solved explicitly (Corollary 6.1 below). As we will see in Sec. 6.2, the numerical realization can
also be achieved in an efficient way.

Exercise 6.1 Let M be an arbitrary square matrix, and let p be a polynomial. Show (e.g., using the Jordan

form): σ(p(M)) = p(σ(M)), i.e., the eigenvalues of p(M) are given by p(λ), where λ runs over all eigenvalues

of M .

6.1 Chebyshev polynomials

The Chebyshev polynomials of the first kind, Tk ∈ Pk, are defined by the three-term recurrence

T0(ξ) = 1, T1(ξ) = ξ, and Tk+1(ξ) = 2ξ Tk(ξ)− Tk−1(ξ), k ≥ 1 (6.6a)

It can be verified by induction (see [2]) that these polynomials can be expressed in closed form as 28

Tk(ξ) =

{
cos(k arccos ξ), |ξ| ≤ 1

1
2

[
(ξ +

√
ξ2 − 1)k + (ξ +

√
ξ2 − 1)−k

]
, |ξ| ≥ 1

(6.6b)

Among the numerous remarkable properties of Chebyshev polynomials, we note that they are the solutions
of an optimization problem of the form considered in (6.5b):

Theorem 6.1 Let [α, β] ⊆ R be a non-empty interval, and let γ be any real scalar outside this interval.
Then the minimum

min
p∈Pk,
p(γ)=1

max
t∈ [α,β]

|p(t)| (6.7a)

is attained by the polynomial 29

p(t) = Ck(t) =
Tk(1 + 2 t−β

β−α
)

Tk(1 + 2 γ−β
β−α

)
(6.7b)

Furthermore, the minimizer is unique.

28For |ξ| ≥ 1, the Tk(ξ) can also be expressed in terms of cosh and arcosh, see [2].
29Here, Ck(γ) = 1. Note that for t ∈ [α, β] we have 1 + 2 t−β

β−α ∈ [−1, 1].
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Figure 6.1: Chebyshev polynomials of the first kind

Proof: A detailed proof is given in [10, Sec. 7.3]. Here we show that Ck(t) from (6.7b) indeed solves the
minimization problem (6.7a); uniqueness follows along the same lines.

By affine transformation of t (which does not change the L∞-norm ‖ · ‖∞), we may restrict ourselves to
the standard interval [α, β] = [−1, 1], with |γ| > 1. Then, Ck(t) = Cγ Tk(t) with constant Cγ = 1/Tk(γ).
The Chebyshev polynomial Tk(ξ) = cos(k arccos ξ) attains the values ±1 at the points ξi = cos(iπ/k), i =
0 . . . k, and it alternates between 1 and −1 (i.e., Tk(ξi) and Tk(ξi+1) have opposite signs). Furthermore,
‖Tk‖L∞[−1,1] = 1, implying ‖Ck‖L∞[−1,1] = |Cγ|.
Assume now the existence of π ∈ Pk such that π(γ) = 1 and ‖π‖L∞[−1,1] < ‖Ck‖L∞[−1,1] = |Cγ|. Then,

the polynomial r = Ck − π changes sign k times in the interval [−1, 1] [sketch]. Thus, r has at least k
zeros in [−1, 1]. Additionally, r(γ) = 0. Hence, r ∈ Pk has at least k+1 zeros; thus, r ≡ 0, which leads to
a contradiction. �

It will be relevant to have quantitative bounds for the minimal value in (6.7a):

Corollary 6.1 Under the assumptions of Theorem 6.1 and with α < β < γ, we have

min
p∈Pk
p(γ)=1

max
t∈ [α,β]

|p(t)| = 1

Tk
(
1 + 2 γ−α

β−α

) = 2
ck

1 + c2k
, c =

√
κ− 1√
κ + 1

, κ =
γ − α

γ − β

The same bound holds for the case γ < α < β, if κ is replaced by κ = γ−β
γ−α

.

Proof: The key is to observe that |Tk(ξ)| ≤ 1 for ξ ∈ [−1, 1]. This implies that the polynomial Ck

from (6.7b) satisfies

max
t∈ [α,β]

|Ck(t)| =
1

|Tk(1 + 2 γ−β
β−α

)|

The assertion then follows from the explicit representation of Tk given in (6.6b) and some manipulations
(see, e.g., [10, Sec. 7.3.3] for details). �
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6.2 Chebyshev acceleration for σ(M) ⊆ (−1, 1)

We now assume σ(M) ⊆ (−1, 1) (corresponding to the case of a convergent primary iteration with M
having a real spectrum). Moreover, we assume that parameters −1 < α < β < 1 are known such that
σ(M) ⊆ [α, β]. With these parameters α, β and γ = 1, we use the polynomials

pk(t) = Ck(t)

explicitly given by (6.7b) to define the secondary iteration (6.2a). This results in a ‘Chebyshev-type
accelerated’ iteration scheme. Note that this is a consistent choice since Ck(1) = 1 for all k.

Improved convergence behavior of the Chebyshev iterates in selfadjoint cases.

To quantify the convergence behavior of the secondary Chebyshev iteration, we consider the case that
the iteration matrix M is B - selfadjoint with respect to the energy product (·, ·)B for some SPD matrix
B, i.e., (Mx, y)B ≡ (x,My)B (MB = M). Any such matrix has a real spectrum. Furthermore, we now
assume knowledge of ρ ∈ (0, 1) such that σ(M) ⊆ [−ρ, ρ]. We then choose the polynomials pk defining the
secondary iteration (6.2b) as pk(t) = Ck(t) with α = −ρ, β = ρ, and γ = 1, i.e.,

x̃k =
k∑

m=0

ak,mxm = pk(M)x0 + qk−1(M)Nb, ak,m = coefficients of pk (6.8a)

with

pk(t) = Ck(t) =
Tk(1 + 2 t−ρ

ρ−(−ρ)
)

Tk(1 + 2 1−ρ
ρ−(−ρ)

)
=
Tk(t/ρ)

Tk(1/ρ)
(6.8b)

We then obtain from Corollary 6.1

ρ(pk(M)) = max
λ∈σ(M)

|pk(λ)| ≤ max
λ∈ [−ρ,ρ]

|pk(λ)| =
2ck

1 + c2k
≤ 2ck, c =

√
κ− 1√
κ+ 1

, κ =
1 + ρ

1− ρ

The assumption that M is B - selfadjoint implies ‖p(M)‖B = ρ(p(M)) for all polynomials p. Hence, for
the primary and secondary errors ek, ẽk we have (see (6.3))

(‖ek‖B
‖e0‖B

)1
k

≤ ‖Mk‖
1
k

B = ρ(M),

(‖ẽk‖B
‖e0‖B

)1
k

≤ ‖pk(M)‖
1
k
B =

(
ρ(pk(M))

) 1
k ≤ 2

1
k c ≤ c

In Remark 5.2, we have seen that the convergence factors

qprimary = limsup
k→∞

(‖ek‖B
‖e0‖B

)1
k ≤ ρ(M),

qCheb = limsup
k→∞

(‖ẽk‖B
‖e0‖B

)1
k ≤ c

are good measures for the asymptotic behavior of the convergence speed. To compare qprimary with qCheb,
let us assume that the parameter ρ is the best possible choice, i.e., ρ = ρ(M) < 1. The interesting case is

ρ = 1−δ for small δ > 0. With c = 1−1/
√
κ

1+1/
√
κ
and κ = 1+ρ

1−ρ
, some analysis shows c < 1−

√
2
√
δ+δ/2 = 1−c′

√
δ

with some c′ > 0. We therefore arrive at

qprimary ≤ 1− δ, qCheb ≤ 1− c′
√
δ (6.9)

In practice we typically have qprimary = ρ, such that for small δ, Chebyshev acceleration will noticeably
improve the convergence behavior.
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Numerical realization.

At first glance, a drawback of Chebyshev acceleration appears to be that the definition of x̃k according
to (6.8a) requires knowledge of all primary iterates x0, . . . , xk. In view of storage restrictions, this may
be difficult to realize in practice. However, exploiting the three-term recurrence (6.6a) for the Chebyshev
polynomials Tk removes this restriction.

The polynomials pk from (6.8b) also satisfy a three-term-recurrence: A brief calculation shows

pk+1(t) =
2

ρ

µk

µk+1
tpk(t)−

µk−1

µk+1
pk−1(t), k ≥ 1, with µk = Tk(1/ρ) (6.10a)

and initial functions

p0(t) = 1, p1(t) =
T1(t/ρ)

T1(1/ρ)
=
t/ρ

1/ρ
= t (6.10b)

i.e., a0,0 = 1 and a1,0 = 0, a1,1 = 1. We also observe

µk+1 =
2

ρ
µk − µk−1 (6.10c)

which follows from pk(1) = 1 for all k together with (6.10a). We are now ready to implement Chebyshev
acceleration. With (6.10a) and x∗ = limk→∞ xk we obtain from the error equation ẽk = pk(M)e0 :

x̃k+1 = x∗ + ẽk+1

= x∗ + pk+1(M)e0

= x∗ +
2

ρ

µk

µk+1
M pk(M)e0 −

µk−1

µk+1
pk−1(M)e0

= x∗ +
2

ρ

µk

µk+1

M ẽk −
µk−1

µk+1

ẽk−1

= x∗ +
2

ρ

µk

µk+1

M(x̃k − x∗)−
µk−1

µk+1

(x̃k−1 − x∗)

=
2

ρ

µk

µk+1

M x̃k −
µk−1

µk+1

x̃k−1 +
1

µk+1

(
µk+1 −

2

ρ
µkM + µk−1

)
x∗

We now exploit the fact that x∗ is a fixed point of the basic iteration, i.e., x∗ =Mx∗ +N b. This together
with (6.10c) allows us to remove the appearance of x∗ and to obtain a direct three-term recurrence for the
x̃k, without explicit use of the primary iterates xk :

x̃k+1 =
2

ρ

µk

µk+1
Mx̃k −

µk−1

µk+1
x̃k−1 +

2

ρ

µk

µk+1
N b, with x̃0 = x0, x̃1 = x1 =Mx0 +N b

Algorithm 6.1 Chebyshev acceleration

% input: primary iteration xk+1 =Mxk +Nb ;
% assumption: σ(M) ⊆ [−ρ, ρ] ⊆ (−1, 1)

1: Choose x0 ∈ Rn

2: x̃0 = x0, x̃1 = x1 =Mx0 +N b
3: µ0 = 1,µ1 = 1/ρ ;
4: for k = 1, 2, . . . do
5: µk+1 =

2
ρ
µk − µk−1 % use recursion for µk instead of definition µk = Tk(1/ρ)

x̃k+1 = 2
µk

ρµk+1

Mx̃k −
µk−1

µk+1

x̃k−1 + 2
µk

ρµk+1

N b

6: end for
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Figure 6.2: Chebyshev acceleration for the 2D Poisson problem (Example 2.2) applied to Jacobi iteration
(ρ = ρ(MJac)) and symmetric Gauss-Seidel (= SSOR(1)) with ρ = ρ(MJac)4.

6.3 Numerical example

We illustrate Chebyshev acceleration again for the model problem of Example 2.2. Since we require the
iteration matrix to have a real spectrum, we would like it to be selfadjoint. For the model problem
of Example 2.2, the iteration matrix MJac = I − D−1A of the Jacobi method is indeed symmetric. 30

For Chebyshev acceleration of the Jacobi method we assume that the parameter ρ has been chosen as
ρ = ρ(MJac).

We also employ Chebyshev acceleration for the Gauss-Seidel method. Since σ(MGS) is not necessar-
ily real, we consider its symmetric variant, i.e., SSOR with ω = 1. From Corollary 5.6 we know that
ρ(MGS) = ρ(MSOR(1)) = ρ(MJac)2. For our calculations, we employ ρ = ρ(MJac)4 since we heuristically
expect ρ(MSSOR(1)) ≤ ρ(MGS)2 (note: SSOR(1) is effectively two Gauss-Seidel steps). Fig. 6.2 shows
the performance of various iterative methods including the Chebyshev accelerated versions of the Jacobi
method and of SSOR(1). We observe that Chebyshev acceleration does indeed significantly improve the
convergence.

30For a general SPD matrix A, MJac is A - selfadjoint; cf. the proof of Theorem 5.2.
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A brief discussion is in order. We have already seen that ρ(MJac) = 1 − ch2 +O(h3). Hence, from our
discussion in (6.9) we infer that limsupk→∞(ρ(pk(M

Jac)))1/k = 1− c′h+O(h3/2) for some suitable c′. For
the Chebyshev acceleration based on the SSOR(1) method, we have chosen ρ = ρ(MJac)4; again we get
ρ = 1 − c′′h2 +O(h3) and thus conclude that the Chebyshev accelerated SSOR(1) has a contraction rate
of 1− c′′′h+O(h3/2).

Exercise 6.2 Formulate the Chebyshev acceleration algorithm for the general case that the iteration matrix M

satisfies σ(M) ⊆ [α, β]. Let MSSOR be the iteration matrix for the symmetric Gauss-Seidel iteration applied to

the matrix A for the 2D Poisson problem. Compare the convergence behavior of the SSOR(1) method with the

accelerated version.

Remark 6.1 Formally comparing primary and secondary iterates,

xk =Mkx0 + . . . , x̃k = pk(M)x0 + . . .

shows that Chebyshev acceleration is a more global technique, aiming at an optimal solution in the subspace
spanned by

span{x0,Mx0, . . . ,M
kx0} ⊆ R

n

Such a subspace is called a Krylov space. In later sections we study an important class of so-called
Krylov subspace methods, where optimal iterates (optimal in some specific sense) are more systematically
constructed as elements of Krylov spaces span{x0, Ax0, . . . , Ak x0} for increasing k.
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7 Gradient Methods

Motivated by the rather slow convergence of classical iterative methods, and in view of the sensitivity of
acceleration with respect to estimated parameters, a variety of alternative methods have been proposed.
We first consider methods applicable to SPD matrices A, which often arise as a result of the discretization
of elliptic operators, e.g., the matrices of Examples 2.1 and 2.2. Later on we relax this condition and
consider nonsymmetric equations. Recall that an SPD matrix A > 0 satisfies

xTAx = (x,Ax) = (Ax, x) = (x, x)A = ‖x‖2A > 0 ∀ x 6= 0

In particular, all eigenvalues of A are positive.

The aim of gradient methods is to minimize the quadratic functional φ : Rn 7→ R,

φ(x) = 1
2
(Ax, x)− (b, x) (7.1a)

for given b ∈ Rn. This is related to the linear system Ax = b in the following way: Due to

φ(x+ h)− φ(x) = 1
2

[
(A(x+ h), (x+ h))− (Ax, x)

]
−
[
(b, x+ h)− (b, x)

]

= 1
2

[
(Ax, x) + (Ax, h) + (Ah, x) + (Ah, h)− (Ax, x)

]
− (b, h)

= (Ax, h) + (Ah, h)− (b, h) = (Ax− b, h) +O(‖h‖2)

we identify the gradient of φ as the (negative) residual 31

∇φ(x) = −(b− Ax) (7.1b)

Moreover, the Hessian of φ is given by the Jacobian of ∇φ,

Hφ(x) = J(∇φ)(x) ≡ A > 0 (7.1c)

Thus, the functional φ has a unique minimum at x∗, the stationary point of φ, satisfying ∇φ(x∗) =
Ax∗ − b = 0. We conclude that

For A > 0, solving Ax = b is equivalent to finding the minimum of φ(x) from (7.1a).

Exercise 7.1 Let x∗ be the solution of Ax = b, A > 0. Show that

φ(x)− φ(x∗) = 1
2

(
A(x− x∗), x− x∗

)
= 1

2 ‖x− x∗‖2A (7.2)

and conclude again that φ has indeed a unique minimum.

Exercise 7.1 also shows that

Minimization of φ(x) over any subdomain D ⊆ Rn

is equivalent to minimization of the error e = x− x∗ in the energy norm.

Remark 7.1 The equivalence of solving Ax = b with A > 0 and minimization of φ(x) from (7.1a)
parallels the variational formulation of a selfadjoint elliptic PDE. The simplest 2D example is the Poisson
equation (2.3) with homogeneous Dirichlet boundary conditions, with the corresponding energy functional

φ(u) = 1
2
a(u, u)− (f, u)L2(Ω), with a(u, v) =

ˆ

Ω

∇u ·∇v dx (7.3)

31For general A ∈ Rn×n we have ∇φ(x) = (ReA)x− b, ReA = 1
2 (A+AT).
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In the Sobolev space H1
0 (Ω), the unique minimum of φ(u) from (7.3) is attained for u∗ = weak solution

of the boundary value problem (2.3). This is also referred to as the Dirichlet principle. In this context, ∇u
may be considered as an analog of the discrete object A

1
2 x, and ‖u‖H1(Ω) = a(u, u)

1
2 = ‖∇u‖L2(Ω) is the

corresponding energy norm. The integration-by-parts identity
´

Ω
(−∆u)v dx =

´

Ω
∇u · ∇v dx = a(u, v)

(for u, v ∈ H1
0 (Ω)) corresponds to the identity (Ax, y) = (A

1
2 x,A

1
2 y) = (x, y)A.

Simple iterative schemes for minimizing φ from (7.1a) are ‘descent methods’ and proceed as follows:
Starting from an initial vector x0, the iteration is defined by

xk+1 = xk + αk dk (7.4)

where the search direction 0 6= dk ∈ Rn and the step length αk ∈ R are to be chosen. Typically, once
a search direction dk 6= 0 is chosen, the step length αk is taken as the minimizer of the one-dimensional
minimization problem (a so-called line search):

Find the minimizer αk ∈ R of α 7→ φ(xk + αdk). (7.5)

This minimization problem is easily solved since it is quadratic and convex in α : Define ψ(α) = φ(xk+αdk).
Application of the chain rule gives

ψ′(α) =
(
∇φ(xk + αdk), dk

)
=
(
A(xk + αdk)− b, dk

)
=
(
αAdk − rk, dk

)
= α(Adk, dk)− (rk, dk)

with the residual
rk = b−Axk = −∇φ(xk) (7.6)

Moreover, ψ(α) is of course convex: ψ′′(α) ≡ (Adk, dk) > 0. The condition on a minimizer αk of ψ is
ψ′(αk) = 0. Thus,

αk =
(dk, rk)

(dk, dk)A
=

(dk, rk)

‖dk‖2A
(7.7)

Exercise 7.2 Show that the choice of αk in (7.7) leads to an approximation xk+1 = xk + αk dk such that

φ(xk+1)− φ(xk) = −1

2

|(dk, rk)|2
‖dk‖2A

(7.8)

Thus, if dk is chosen such that (dk, rk) 6= 0, then indeed φ(xk+1) < φ(xk).

Remark 7.2 Some of the basic iterative methods are related to descent methods, or are descent methods
‘in disguise’:

For A ∈ Rn×n, consider the case where the first n search directions d0, . . . , dn−1 are chosen as the unit

vectors, dk = (0, . . . ,

k
↓
1, . . . , 0)T. Then we obtain from (7.7):

αk =
(dk, rk)

‖dk‖2A
=

(rk)k
Ak,k

hence

xk+1 = xk +
(rk)k
Ak,k

dk

which exactly corresponds to the k - th update in the inner loop of a Gauss-Seidel step (5.8a). Note that
n of these updates result in a single Gauss-Seidel step, and further steps are obtained by repeating this
procedure with cyclic choice of search directions (= unit vectors).

In the simplest version of the Richardson iteration (5.6) we simply take dk = rk and αk = 1, but this
does not minimize φ in the search direction rk. The locally optimal choice (7.7) corresponds to the choice

ω = αk =
‖rk‖22
‖rk‖2A

for the relaxation parameter and leads to the steepest descent method discussed in the

sequel.
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Figure 7.1: SD convergence path for a 2×2 matrix A with condition number κ2(A) = 3

7.1 The Method of Steepest Descent (SD) for SPD systems

We need to specify the search direction dk in the iteration (7.4). As shown in Exercise 7.1, most choices
of dk will lead to φ(xk+1) − φ(xk) < 0. The steepest descent method is a ‘greedy’ algorithm in the sense
that it chooses dk as the local direction of steepest descent, which is given by

dk = −∇φ(xk) = rk

This choice for the search direction, together with the step length αk given by (7.7), leads to the Steepest
Descent (SD) Algorithm formulated in Alg. 7.1. 32

Algorithm 7.1 Steepest Descent (SD)

1: Choose x0 ∈ Rn

2: for k = 0, 1, . . . do
3: rk = b−Axk
4: αk = (rk, rk)/(Ark, rk)
5: xk+1 = xk + αkrk
6: end for

Orthogonal search directions.

A consequence of our choice for the step length αk in (7.7) is that

In SD, consecutive search directions are orthogonal to each other.

To see this, we observe

dk+1 = b− Axk+1 = b− A(xk + αk dk) = rk − αkAdk

Inserting the definition of αk given by (7.7) gives, with dk = rk,

(dk+1, dk) = (rk, dk)− αk(Adk, dk) = (rk, rk)−
(rk, rk)

(Ark, rk)
(Ark, rk) = 0 (7.9)

This behavior is visualized in Fig. 7.1.

32Basically, the idea of SD is applicable to any convex minimization problem.
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Convergence of the SD method.

In order to quantify the speed of convergence of the steepest descent iteration, we use the Kantorovich
inequality as a technical tool. Let A > 0 be a real SPD matrix, and λmax and λmin its largest and smallest
eigenvalues. Then, for all x ∈ Rn, the Kantorovich inequality states

(Ax, x)(A−1x, x)

(x, x) (x, x)
≤ (λmin + λmax)

2

4λminλmax
(7.10)

For a proof see [19, Lemma 5.1]. 33

Now we study the magnitude of the error vectors ek = xk − x∗ in the energy norm ‖ · ‖A . Note that
Aek = −rk, where rk = b− Axk is the k-th residual. From (7.2) and (7.8) we obtain with dk = rk :

1
2
‖ek+1‖2A = φ(xk+1)− φ(x∗) =

(
φ(xk+1)− φ(xk)

)
+
(
φ(xk)− φ(x∗)

)
= −1

2

|(rk, rk)|2
‖rk‖2A

+
1

2
‖ek‖2A (7.11a)

Now we use the Kantorovich inequality (7.10) and identity rk = −Aek to estimate

|(rk, rk)|2
‖rk‖2A

=
|(rk, rk)|2
(Ark, rk)

≥ 4λminλmax

(λmin + λmax)
2 (A

−1 rk, rk) =
4λminλmax

(λmin + λmax)
2 (ek, Aek) =

4λminλmax

(λmin + λmax)
2 ‖ek‖2A

Together with (7.11a) this gives

‖ek+1‖2A ≤ ‖ek‖2A
(
1− 4λminλmax

(λmin + λmax)
2

)
= ‖ek‖2A

(λmax − λmin)
2

(λmax + λmin)2

=
(λmax − λmin

λmax + λmin

)2
‖ek‖2A =

(κ2(A)− 1

κ2(A) + 1

)2
‖ek‖2A (7.11b)

with the condition number κ2(A) = λmax/λmin. From this reasoning we obtain

Theorem 7.1 For the SD iteration applied to an SPD system Ax = b, the error ek after k steps is bounded
in the energy norm by

‖ek‖A ≤
(κ2(A)− 1

κ2(A) + 1

)k
‖e0‖A (7.12)

I.e., the asymptotic convergence rate is bounded by κ2(A)−1
κ2(A)+1

.

Hence ek → 0 as k → ∞. Evidently, the speed of convergence depends on the spectrum of A. In
particular, when the condition number κ2(A) is large, the contours of the functional φ, which are elliptic
in shape, are long drawn-out, and the poor convergence rate suggested by (7.11b) is graphically explained
by ‘zig-zag’-paths similar to the one shown in Fig. 7.2. This illustrates a worst case,34 which occurs for an
initial error close to the eigenvector associated with λmax.

33The Kantorovich inequality is an example for a ‘strengthened Cauchy-Schwarz (CS) inequality’. Using CS together with
‖A‖2 = λmax, ‖A−1‖2 = 1/λmin we would obtain the elementary, larger bound λmax/λmin = κ2(A) on the right-hand side

of (7.10). In (7.12), this would result in the larger factor
(κ2(A)−1

κ2(A)

)k/2
. For κ = κ2(A) → ∞ the Kantorovich inequality

gains a factor ≈ 1/4, and with ε = 1/κ this gives the following bounds for the asymptotic convergence rates: ≈ 1 − 2ε
(Kantorovich) vs. 1− ε/2 (CS).

34The best case: For e0 = any eigenvector of A, the SD iteration always would find the exact solution x∗ in one step,
independent of the problem dimension (simple proof!). This is, of course, in no way a practical situation. Moreover, as
illustrated in Fig. 7.2, a small deviation from the eigenvector associated with λmax will lead to a very poor convergence
behavior for the case of large κ2(A).
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Figure 7.2: SD convergence path for a 2×2 matrix A with κ2 ≈ 25

Example 7.1 The performance of the SD method can now be compared with that of the Jacobi and
Gauss-Seidel methods. The convergence paths for these three methods are shown in Fig. 7.3. The system
considered is again that of Example 2.2, i.e., the matrix A arises from discretizing the 2D Poisson equation
with the 5 point finite difference stencil over an 8×8 mesh or an 11×11 mesh. The right-hand side b is
taken as b = (1, 1, . . . , 1)T, and the starting vector is x0 = b. We are only plotting a 2D projection of the
solution vector in Fig. 7.3, and therefore the steepest descent orthogonality property is not graphically
observed. Note that the SD iteration slows down with increasing k.

The SD method does not prove to be a great improvement over the classical iterative methods. Never-
theless, it comes with a number of new concepts including formulating the given problem as a minimiza-
tion problem and considering the relationship between consecutive search directions in a minimization
procedure. These concepts are extended in the following in order to generate more successful iterative
procedures.
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Figure 7.3: Convergence paths for the Jacobi, Gauss-Seidel and SD methods for the Poisson problem from
Example 2.2. Left: case N = 49. Right: case N = 100.
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7.2 Nonsymmetric steepest descent algorithms

In the steepest descent algorithm we have required A to be SPD in order for the functional φ to have a
unique minimum at the solution of Ax = b. Variations on the steepest descent algorithm for nonsymmetric
systems have also been developed, see [19]. The most general, but by far not computationally cheapest or
most efficient requires only that A be invertible. Then, since ATA is SPD, Alg. 7.1 can be applied to the
normal equations

ATAx = ATb

This procedure is called the residual norm steepest descent method, and the functional being minimized in
this case is

ψ(x) = 1
2
(Ax,Ax)− (Ax, b)

This method minimizes the ℓ2 -norm of the residual, ‖Ax− b‖22. However, in view of the convergence
result (7.11b), it is now the condition number of ATA, which is typically much larger than that of A, that
controls the convergence rate of the iteration.35

7.3 Gradient methods as projection methods

One of the main characteristics of the SD method is that consecutive search directions (i.e., the residuals)
are orthogonal, (7.9), which implies that the ℓ2 -projection of the new residual onto the previous one is
zero. Another way of putting it is: The approximation xk+1 is defined as the solution of

Find xk+1 ∈ xk + span{rk} such that rk+1 ⊥ rk.

This is a local condition concerning consecutive residuals only; the ‘search history’, i.e., the information
about the previous search directions r0, . . . , rk−1 is not exploited. One may hope that including this
information in the method leads to faster convergence, similar as for semi-iterative acceleration (see Sec. 6).

Krylov subspace methods are based on this idea: the approximation xk+1 is constructed such that the
residual rk+1 is ‘orthogonal’ (in some appropriate sense to be specified below) to all previous residuals,
search directions, or a related set of vectors.

Remark 7.3 Brief review on orthogonal projectors:

Let Rn = K ⊕K⊥, with K ⊥ K⊥, be an orthogonal subspace decomposition of Rn. Let

K = span{u1, . . . , um}, K⊥ = span{v1, . . . , vn−m}

with (ui, uj) = δi,j, (vi, vj) = δi,j, and (ui, vj) = 0. The union of the ui and vj is an orthogonal basis of
the full space Rn. For given x ∈ Rn we consider the corresponding Fourier expansion

x =

m∑

i=1

(x, ui)ui +

n−m∑

j=1

(x, vj)vj =: P x+Qx (7.13)

This defines a pair (P,Q) of orthogonal projectors. We say that P projects onto K along K⊥, and vice
versa.

35As before, (7.11b) represents only an upper bound for the error. Nevertheless, the bound describes the overall convergence
behavior quite realistically.
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From (7.13), and with

U =




| | |
| | |
u1 u2

... um

| | |
| | |




∈ R
n×m, V =




| | |
| | |
v1 v2

... vn−m

| | |
| | |




∈ R
n×(n−m)

we obtain the matrix representations for the projectors P,Q ∈ Rn×n :

m∑

i=1

ui(u
T

i x) =
m∑

i=1

(uiu
T

i )x = U UTx = P x ∈ K

and analogously for the orthogonal complement,

n−m∑

j=1

vj(v
T

j x) =

n−m∑

j=1

(vj v
T

j )x = V V Tx = Qx ∈ K⊥

From the orthonormality relations UTU = Im×m, V
TV = I(n−m)×(n−m), and UTV = 0m×(m−n),V

TU =
0 (n−m)×m we obtain the characteristic identities for a pair of orthogonal projectors:

P 2 = P = P T, Q2 = Q = QT, P Q = QP = 0n×n

An orthogonal projector is idempotent and symmetric.

We also note the Pythagorean identity

‖x‖22 ≡ ‖P x‖22 + ‖Qx‖22

Exercise 7.3 [See Exercise 5.1]36

Consider a decomposition R
n = K ⊕ K⊥A analogously as above, with (·, ·) throughout replaced by (·, ·)A, and

A -conjugate bases {u1, . . . , um}, {v1, . . . , vn−m}, i.e., (ui, uj)A = δi,j , (vi, vj)A = δi,j, and (ui, vj)A = 0. I.e.,
U and V are A -conjugate matrices, satisfying UTAU = Im×m,V TAV = I(n−m)×(n−m), and UTAV = 0m×(m−n),
V TAU = 0(n−m)×m.

Show that the corresponding pair (P,Q) of ‘A -conjugate’ projectors onto K and K⊥A is given by

P = U UTA, Q = V V TA

and P and Q satisfy
P 2 = P = PA, Q2 = Q = QA, P Q = QP = 0n×n

where MA is the adjoint of a matrix M ∈ R
n×n with respect to (·, ·)A, i.e. (see (5.16))

MA = A−1MTA

Check the Pythagorean identity
‖x‖2A ≡ ‖P x‖2A + ‖Qx‖2A

36For x ∈ Rn one may also denote xA = xTA = (Ax)T, with (x, x)A = xAx, but this notation is not standard and we do
not use it in the following.
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8 The Conjugate Gradient (CG) Method for SPD Systems

8.1 Motivation

The Conjugate Gradient method is the example par excellence of a Krylov subspace method. The idea
underlying this class of methods can, e.g., be motivated by the Cayley-Hamilton Theorem, which allowed
us in Sec. 1.4 to construct the inverse of the matrix A as a polynomial in A (with coefficients depending
on A). Let us write the solution x∗ of Ax = b in the form

x∗ = x0 + A−1 r0

with r0 = b− Ax0. In principle, we can construct A−1 r0 using the Cayley-Hamilton Theorem as

A−1 r0 =
(
d1 I + d2A+ . . .+ dn−1A

n−1
)
r0 = qn−1(A)r0 (8.1a)

where the coefficients are defined in terms of the characteristic polynomial χ(A). However, this is not
feasible in practice. We note that this formula implies

A−1 r0 ∈ Kn = span{r0, Ar0, A2 r0 . . . , A
n−1 r0} (8.1b)

and therefore the solution x∗ satisfies

x∗ ∈ x0 +Kn

More generally, for m ≥ 1 we define the m - th Krylov space of A with respect to an initial residual r0 as

Km = Km(A, r0) = span{r0, Ar0, A2 r0, . . . , A
m−1 r0}, with dim(Km) ≤ m (8.2)

Krylov subspace methods aim at finding, for some m≪ n, an approximation

xm ∈ x0 +Km

which is close to the exact solution x∗.

We start with the most prominent and historically earliest example, the Conjugate Gradient (CG)
method for SPD systems,37 developed by Hestenes, Stiefel, and Lanczos from 1950 on. The CG method
is, compared to SD, a more clever descent method for the minimization of φ(x) = 1

2
(Ax, x)− (b, x).

8.2 Introduction to the CG method

Let A ∈ Rn×n be SPD. The CG method may be motivated and described in different ways (we come back
to this later on). A first idea is to try to proceed in a similar way as in the Steepest Descent method, but
using search directions which are – in contrast to (7.9) –A -orthogonal 38 to each other, i.e.,

(dk+1, dk)A = (Adk+1, dk) = 0, k = 0, 1, . . . (8.3)

with d0 := r0. Let us first motivate this choice.

37The CG method was elected as on of the ‘Top 10 Algorithms of the 20th Century’ by a SIAM committee in 2000.
38 Instead of ‘A -orthogonal’ we will also use the term ‘A -conjugate’ or simply ‘conjugate’. ‘Orthogonal’ means ‘ℓ2-

orthogonal’.
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 x∗

x0

x1

d0 = r0 || t1

d1 ⊥A d0

Figure 8.1: The CG method for n = 2.

The special case n = 2 : geometric interpretation

For n = 2, the contour lines Cφ =const. of φ(x) =
1
2
(Ax, x) − (b, x) are ellipses39 centered at x∗. Suppose

x1 ∈ C = Cφ =const. is obtained by one SD step starting from x0 ∈ R2, with r1 = b − Ax1 ⊥ r0. We do
not know the error e1 = x1 − x∗, but we know the direction tangential to C : For a local parametrization
x = x(s) of C (with x(0) = x1) we have

0 ≡ d

ds
φ(x(s)) =

(
∇φ(x(s)), x′(s)

)

Hence the tangential vector t1 := x′(0) to C at x1 satisfies

t1 ⊥ ∇φ(x1) = Ax1 − b = Ae1, i.e., t1 ⊥ r1, t1 ⊥A e1, and t1 ‖ r0
In particular, t1 is A - conjugate to the error e1. Now, a single line search along the direction A -conjugate
to t1 will yield the exact solution x∗, because the directions of t1 and of Ae1 correspond to a pair of
conjugate diameters of the ellipse C, such that Ae1 points in the direction of the center x∗ of the ellipse.
We can realize this procedure in an explicit way (see Fig. 8.1):

(i) Choose d0 = r0 and perform a line search along d0 (first step as in the SD method),

x1 = x0 + α0d0, with α0 =
(d0, r0)

‖d0‖2A
and evaluate the new residual

r1 = b−Ax1 = r0 − α0Ad0

(ii) Instead of choosing r1 ⊥ r0 as the new search direction as in SD, we apply one step of Gram-Schmidt
orthogonalization w.r.t. (·, ·)A to construct a search vector d1 ⊥A d0, i.e.,

d1 = r1 + β0 d0, with β0 = −(d0, r1)A
‖d0‖2A

39Note that, due to (7.2), ‖e‖A = const. along each contour.
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As argued above, the exact solution x∗ is now given by

x2 = x1 + α1 d1, α1 =
(d1, r1)

‖d1‖2A

For a formal, algebraic proof of this fact we note that x2 has the form

x2 = x0 + α0 d0 + α1d1 = x0 +
(d0, r0)

‖d0‖2A
d0 +

(d1, r1)

‖d1‖2A
d1 (8.4a)

with α0d0 ∈ K1(A, r0) and α0d0+α1d1 ∈ K2(A, r0). Now we compare this with the Fourier representation
of x∗ − x0 in the A - conjugate basis {d0, d1},

x∗ = x0 +
(x∗ − x0, d0)A

‖d0‖2A
d0 +

(x∗ − x0, d1)A
‖d1‖2A

d1

= x0 +
(d0, b−Ax0)

‖d0‖2A
d0 +

(d1, b− Ax0)

‖d1‖2A
d1

= x0 +
(d0, r0)

‖d0‖2A
d0 +

(d1, r0)

‖d1‖2A
d1

= x0 +
(d0, r0)

‖d0‖2A
d0 +

(d1, r1 + α0Ad0)

‖d1‖2A
d1

= x0 +
(d0, r0)

‖d0‖2A
d0 +

(d1, r1)

‖d1‖2A
d1

(8.4b)

This is identical with (8.4a), which shows that the procedure indeed yields the exact solution x∗ after two
steps. Note that the basis {d0, d1} was not given a priori but was constructed in course of the iteration by
one step of Gram-Schmidt orthogonalization.

The ingenious idea behind the CG method is that this procedure can be generalized in a very efficient
way to arbitrary dimension n by means of a simple recursion. This results in a direct solution method for
SPD systems which terminates latest at xn = x∗. But we will also see that the xm, m = 0, 1, . . . show a
systematic convergence behavior vastly superior to the SD iterates.

Fourier expansion with respect to conjugate directions.

For n = 2 we have realized requirement (8.3) in a constructive way, ending up with a direct solution
procedure x0 → x1 → x2 = x∗. Before we discuss the generalization of this procedure leading to the CG
method, we assume for the moment that we already know a pairwise A - conjugate basis

{d0, d1, . . . , dn−1} in R
n, with dj ⊥A dk for j 6= k

Then, for any given initial guess x0, the solution x∗ of Ax = b can be written in terms of the Fourier
expansion 40 of x∗ − x0 = −e0 as (see (8.4b))

x∗ = x0 +
n−1∑

k=0

(−e0, dk)A
(dk, dk)A

dk = x0 +
n−1∑

k=0

(dk, r0)

‖dk‖2A
dk

40For the special case x0 = 0 we have e0 = −x∗ and r0 = b.
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We see that using the energy product enables an explicit Fourier representation of x∗ in terms of r0 and
the dk, where the required inner products can be expressed without explicit reference to x∗. This would
not be possible for a representation w.r.t. a basis orthogonal in ℓ2.

Now, for m < n, we consider the truncated Fourier expansion

xm = x0 +
m−1∑

k=0

(dk, r0)

‖dk‖2A
dk =: x0 + zm ∈ x0 + span{d0, . . . , dm−1} =: x0 +Km (8.5)

Here,

zm =
m−1∑

k=0

(dk, r0)

‖dk‖2A
dk =

m−1∑

k=0

(−e0, dk)A
‖dk‖2A

dk = Pm · (−e0) ∈ Km

is the A - conjugate projection of −e0 onto Km = span{d0, . . . , dm−1} (see Exercise 7.3). By Pm : Rn → Km

we denote the corresponding projector.

Thus, zm satisfies the the minimizing property

zm = argmin
z∈Km

‖z − (−e0)‖A

With xm = x0 + zm and zm − (−e0) = (xm − x0)− (x∗ − x0) = xm − x∗ this shows that xm is the solution
of a minimization problem; namely,

xm = argmin
x∈x0+Km

‖x− x∗‖A (8.6)

For the error em = xm − x∗ we have

em = e0 + zm = (I − Pm)e0 =: Qm e0 ⊥A Km (8.7)

Thus, em is the A - conjugate projection of e0 onto the complement K⊥A
m = span{dm, . . . , dn−1} of Km,

which becomes ‘smaller’ with increasing m.

The corresponding matrix representation is obtained as follows: With the normalized basis vectors d̃k =

dk/‖dk‖A and D̃m =

d̃0

∣∣ . . .
∣∣ d̃m−1


 we have Pm = D̃mD̃

T
mA, see Exercise 7.3. Thus,

xm = x0 + zm = x0 − Pm e0 = x0 − D̃mD̃
T

mAe0 = x0 + D̃mD̃
T

m r0 (8.8)

which is identical with (8.5).

Producing iterates xm in this way may be called a ‘method of conjugate directions’, a simple and straight-
forward projection method. However, in view of practical realization we observe:

• We may not expect in general that a (problem-dependent) A - conjugate basis is a priori known.

• Such a basis may, in principle, be generated by a Gram-Schmidt process starting from an arbitrary
basis.41 However, for larger values of m storage requirements, in particular, will become restrictive,
because all dk must be stored in memory to perform the orthogonalization.

This raises two questions:

• Can we generate an A - conjugate basis42 on the fly in course of an iteration x0 → x1 → . . ., e.g.,
from the successive residuals?

• If yes, can we limit the complexity (in terms storage and flops) of the resulting iterative process?

For the CG method described in the sequel, both goals are achieved in a very satisfactory way for the
case of SPD systems. Here, the basis Km will depend on the initial guess x0.

41One might think about the question what it would mean to start from the Cartesian basis.
42Recall that the SD iteration on the fly generates a sequence of orthogonal search directions (residuals).
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8.3 Derivation of the CG method

In its essence, the CG method may be viewed as a clever realization of the idea to expand with respect to
conjugate directions. Starting from an initial guess x0, the xm are constructed as elements of the affine
Krylov spaces x0 + Km, Km = Km(A, r0) (see (8.1b)) of increasing dimension. Here, Krylov spaces come
into play because, in each iteration step, one multiplication with A is performed to compute the current
residual. We will see that the Km are spanned by the successive residuals (gradients) rk, as well as by
successive ‘conjugated gradients’ dk (the search directions) constructed from the rk.

The start is the same as for n = 2, from x0 with 0 6= r0 = b− Ax0 ∈ K1.

• First step x0 → x1 : Choose d0 = r0 ∈ K1 and perform a line search,

x1 = x0 + α0d0 ∈ x0 +K1, α0 =
(d0, r0)

‖d0‖2A
=

‖r0‖22
‖d0‖2A

6= 0 (8.9a)

and compute the new residual
r1 = r0 − α0Ad0 ∈ K2 (8.9b)

Stop if r1 = 0. Otherwise, {r0, r1} is an orthogonal basis of K2, since the new residual r1 is orthogonal
to the previous search direction d0 = r0.

As a preparation for the next iteration step, we compute the new search direction d1 by the A -
conjugate Gram-Schmidt orthogonalization step

d1 = r1 + β0d0 ∈ K2, β0 = −(d0, r1)A
‖d0‖2A

=
‖r1‖22
‖r0‖22

6= 0 (8.9c)

where the latter identity for β0 follows from (d0, r1)A = 1
α0

(α0Ad0, r1) =
1
α0

(r0 − r1, r1) (see (8.9b))
together with (8.9a) and r1 ⊥ r0. By construction, {d0, d1} is an A - conjugate basis of K2.

• We now proceed by induction, which leads to a complete description of the CG algorithm and its
essential properties. Each iteration step is analogous to step (ii) for the case n = 2, see (8.12a)
below.

For m ≥ 2 we inductively assume that we have recursively computed xk, rk and dk for k = 1 . . .m−1
by successive line search in the same way as for the first step, and that the following identities hold
true:

xk = xk−1 + αk−1dk−1 ∈ x0 +Kk, αk−1 =
(dk−1, rk−1)

‖dk−1‖2A
=

‖rk−1‖22
‖dk−1‖2A

6= 0 (8.10a)

with the residuals
rk = rk−1 − αk−1Adk−1 ∈ Kk+1 (8.10b)

and the line search directions

dk = rk + βk−1dk−1 ∈ Kk+1, βk−1 = −(dk−1, rk)A
‖dk−1‖2A

=
‖rk‖22
‖rk−1‖22

6= 0 (8.10c)

We also inductively assume that, for k = 1 . . .m− 1,

{r0, r1, . . . , rk} is an orthogonal basis of Kk+1

{d0, d1, . . . , dk} is an A - conjugate basis of Kk+1

(8.11a)

which automatically implies that all the Kk are of maximal dimension k.

In particular, note that
rm−1 ⊥ Km−1, dm−1 ⊥A Km−1 (8.11b)
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• Now we take a step m−1 → m and verify that all the properties assumed inductively remain valid.

The next iterate is defined via the current search direction dm−1 (already determined in the preceding
step),

xm = xm−1 + αm−1 dm−1 ∈ x0 +Km, αm−1 =
(dm−1, rm−1)

‖dm−1‖2A
=

‖rm−1‖22
‖dm−1‖2A

6= 0 (8.12a)

The first expression for αm−1 comes from the line search (minimization of φ along xm−1 + αdm−1).
The second identity for αm−1 follows inductively from the definition of rm−1 and dm−1 together with
rm−1 ⊥ dm−2 (orthogonality of the new residual with respect to the old search direction in line
search):

(dm−1, rm−1) = (rm−1 + βm−2 dm−2, rm−1) = (rm−1, rm−1)

The new residual evaluates to

rm = rm−1 − αm−1Adm−1 ∈ Km+1 (8.12b)

If rm = 0, the iteration stops with xm = x∗. Otherwise, we again have 0 6= rm ⊥ dm−1, but even
more:

Claim: rm ⊥ Km.

Proof: Since, by construction, rm ⊥ dm−1 and Km = Km−1 ⊕ span{dm−1} it remains to show that
rm ⊥ Km−1. The vector rm is a linear combination of rm−1 and Adm−1. From (8.11b) we have

rm−1 ⊥ Km−1, Adm−1 ⊥ Km−1

which immediately yields rm ⊥ Km−1, as proposed.

Now we perform the same A - conjugate Gram-Schmidt orthogonalization step as before to construct
a new search direction dm which is conjugate to dm−1 :

dm = rm + βm−1 dm−1 ∈ Km+1, βm−1 = −(dm−1, rm)A
‖dm−1‖2A

=
‖rm‖22
‖rm−1‖22

6= 0 (8.12c)

where the latter identity for βm−1 follows from (dm−1, rm)A = 1
αm−1

(αm−1Adm−1, rm) =
1

αm−1
(rm−1−

rm, rm) (see (8.12b)) together with (8.12a)) and rm ⊥ rm−1.

Claim: dm ⊥A Km.

Proof: Since, by construction, dm ⊥A dm−1 and Km = Km−1 ⊕ span{dm−1} it remains to show
that dm ⊥A Km−1. The vector dm is a linear combination of rm and dm−1. From (8.11b) we have
dm−1 ⊥A Km−1. Concerning rm, we exploit the symmetry of A and identity (8.10b) to compute, for
an arbitrary basis vector dk−1 of Km−1, i.e., for k = 1 . . .m− 1:

(rm, dk−1)A = (Arm, dk−1) =
1

αk−1
(rm, αk−1Adk−1) =

1
αk−1

(rm, rk−1 − rk︸ ︷︷ ︸
∈Km

) = 0, k = 1 . . .m− 1

Together with rm ⊥ Km, which has been proved before, this yields dm ⊥A Km−1, as proposed.

This completes the induction. In particular, we again have (see (8.11a))

{r0, r1, . . . , rm} is an orthogonal basis of Km+1

{d0, d1, . . . , dm} is an A - conjugate basis of Km+1

(8.13)
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Algorithm 8.1 Conjugate Gradient (CG) method

% input: A SPD, b, x0

1: Compute r0 = b− Ax0 and set d0 = r0
2: for k = 0, 1, . . . , until convergence do
3: αk = (rk, rk)/(Adk, dk)
4: Compute xk+1 = xk + αk dk
5: Compute rk+1 = rk − αkAdk
6: if rk+1 = 0 then stop
7: βk = (rk+1, rk+1)/(rk, rk)
8: Compute dk+1 = rk+1 + βk dk
9: end for

Remark 8.1

• In the last step of the proof, the symmetry of A plays an essential role (apart from the fact that the
SPD property of A ensures that the conjugation process is well-defined and does nor break down
unless a zero residual is encountered).

The single, ‘local’ orthogonalization step within each iteration automatically leads to complete or-
thogonal and conjugate bases of the Krylov spaces according to (8.13). This is in sharp contrast to
a general Gram-Schmidt procedure, where all orthogonality relations have to be explicitly enforced
– a global process.

This short recurrence generating a sequence of conjugate vectors is formally closely related to short
recurrences generating orthogonal polynomials of a real variable t (see, e.g., [2, Chap. 6]). In this
analogy, multiplication with the real variable t = t̄ raising the power of a polynomial parallels
multiplication with the symmetric matrix A = AT raising the dimension of the Krylov subspace. See
also Sec. 9.3 below.

Later on we give an alternative explanation of this outstanding feature of the CG iteration.

• Actually, ‘Conjugate Gradients’ is a misnomer (a translation error?): The gradients (residuals) rk
are not conjugate but orthogonal; they are conjugated to become A - conjugate (in form of the dk).

• The CG algorithm is a very simple recurrence formulated in Alg. 8.1. There exist alternative formu-
lations of this iteration; e.g., the recurrence for the xk can be extracted from the recurrence for the
rk without explicit reference to the dk; cf. e.g. [19].

• By construction, xk ∈ x0+Kk = x0+span{r0, Ar0, A2 r0, . . . , A
k−1r0}; the successive powers emanate

from the computation of the residual (8.12b) in each step, which enters the definition of dk and xk+1.

In the absence of roundoff error, there are two possibilities:

– If a zero residual rk = 0 is ‘luckily’ encountered in course of the iteration, the exact solution
xk = x∗ ∈ x0 +Kk has been found.

– Otherwise, the Kk form an increasing sequence of subspaces of increasing dimension k,

xk − x0 ∈ Kk = span{r0, Ar0, A2 r0, . . . , A
k−1r0} = span{r0, . . . , rk} = span{d0, . . . , dk}

This shows that, in principle, CG is a direct method: The exact solution x∗ is found after n steps
at the latest. However, we will see that we can prove a estimate for the error ek = xk − x∗ after k
steps, similarly for the SD method (but with a significantly better quality); see Sec. 8.5 below.
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• The computational complexity of CG is usually dominated by the residual evaluations, in form of a
single computation of Adk per step. In many practical situations the cost for evaluating the residual
is O(n) and comparable to the other vector operations involved.

The storage requirements are moderate, namely also O(n); only a few vectors have to be kept in
memory at the same time.

• As we have seen, the orthogonality/conjugacy relations (8.13) are inherent to the CG iteration, but
only if exact arithmetic is assumed. In practice, these relations will be contaminated by roundoff
error, with a certain effect on the convergence behavior.

8.4 CG as a projection method and its relation to polynomial approximation

Let us recapitulate the essential approximation properties of the CG iterates.

• In Sec. 7, our starting point was to interpret the solution x∗ as the minimizer of the quadratic form

φ(x) = 1
2
(Ax, x)− (b, x) = φ(x∗) +

1
2
‖x− x∗‖2A

see (7.1a),(7.2). The CG method realizes an iterative line search starting from x0 and locally minimiz-
ing φ(x), in a sequential fashion, i.e., minimizing ‖x− x∗‖A along successively constructed conjugate
directions dk emanating from xk−1, with span{d0, . . . , dm−1} = Km, resulting in (cf. (8.12a)):

xm = x0 +

m−1∑

k=0

αk dk = x0 +

m−1∑

k=0

(dk, rk)

(dk, dk)A
dk ∈ x0 +Km (8.14)

This is the same as (8.5), with Km = Km = Km(A, r0), and thus, (8.6) holds true:

xm = argmin
x∈x0+Km

‖x− x∗‖A (8.15a)

For the error em = xm − x∗ this implies

em = argmin
e∈e0+Km

‖e‖A (8.15b)

which also shows monotonic convergence in the energy norm.

• Thus we have identified CG as a projection method – which was essentially our goal formulated in
Sec. 8.2 – with the A - conjugate projector Pm onto Km (cf. (8.7)),

xm = x0 − Pm(x0 − x∗) = x0 − Pm e0 ∈ x0 +Km

For the error em = xm − x∗ we have

em = (I − Pm)e0 =: Qm e0

with the A - conjugate projector Qm onto K⊥A
m .

• By construction, we have em = e0 − Pm e0 ∈ e0 + Km. Thus we can write xm and em in terms of
matrix polynomials,

xm = x0 + pm−1(A)r0 ∈ x0 +Km, (8.16a)

em = e0 + pm−1(A)r0 = (I − pm−1(A)A)e0 =: qm(A)e0 (8.16b)
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Here, pm−1 ∈ Pm−1 is called the CG polynomial. Comparing (8.16a) with identity x∗ = x0 + A−1 r0
we see that pm−1(A) is an approximation to A−1 which depends on x0 and varies from step to step.

The optimality property (8.15b) can now be re-interpreted as a statement on the optimality of the
matrix polynomial qm(A) = I − pm−1(A)A, where

qm(λ) = 1− pm−1(λ)λ ∈ Pm, with qm(0) = 1 (8.17)

We want qm(A) to be ‘small’ for good convergence.

We collect these findings in the following theorem.

Theorem 8.1 The error em = xm − x∗ of the CG iterate xm is the A -conjugate projection of the initial
error e0 onto K⊥A

m along Km = Km(A, r0),

em = Qm e0 = qm(A)e0 ⊥A Km (8.18a)

and it satisfies
‖em‖A = min

e∈e0+Km

‖e‖A = min
q∈Pm

q(0)=1

‖q(A)e0‖A ≤ min
q∈Pm

q(0)=1

‖q(A)‖A · ‖e0‖A (8.18b)

The error is related to the the spectrum σ(A) via

‖em‖A
‖e0‖A

≤ max
λ∈σ(A)

|qm(λ)| = min
q∈Pm

q(0)=1

max
λ∈σ(A)

|q(λ)| (8.18c)

Proof: Relation (8.18c) follows from (8.18b) together with

‖q(A)‖A = max
λ∈σ(A)

|q(λ)|

since ‖q(A)‖A = ‖q(A)‖2 = ρ(q(A)) for A SPD, and because the eigenvalues of q(A) are q(λ), λ ∈ σ(A),
cf. Exercise 6.1. �

Note that, in course of the iteration, the CG matrix polynomial pm−1(A) is not explicitly constructed
in form of a matrix. It is ‘inherent’ to the process; the CG iteration realizes the appropriate image of r0.
Explicit computation of the projection matrices is useless and would also be numerically expensive.

The projection property of the CG iteration may also be stated in the following way, cf. Fig. 8.2.

Corollary 8.1 The m-th CG iterate xm is uniquely characterized as the solution of the projection problem

Find xm ∈ x0 +Km such that the error em = xm − x∗ satisfies em ⊥A Km . (8.19a)

This is equivalent to Galerkin orthogonality,

Find xm ∈ x0 +Km such that its residual rm = b− Axm satisfies rm ⊥ Km . (8.19b)

In Sec. 9 we will derive the CG method in an alternative fashion, by requiring the optimality property
formulated in Theorem 8.1 or Corollary 8.1, respectively, and algorithmically realizing the corresponding
projections, where, in a first step, orthogonal bases of the Krylov spaces are constructed. This procedure
will also lead to a better insight to the simplicity of the CG procedure, and it will also lead us to more
general projection methods to be studied in Sec. 10.
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Figure 8.2: CG as a projection method

8.5 Convergence properties of the CG method

We are now in a position to analyze the convergence of the CG method and to derive a priori error
estimates. To this end we may now choose any polynomial q ∈ Pm with q(0) = 1 to estimate the right
hand side of (8.18c) from Theorem 8.1. A reasonable universal bound is obtained in a similar way as in
Sec. 6: Assume σ(A) ⊆ [α, β] and seek a polynomial p(λ) which attains the minimum

min
q∈Pm

q(0)=1

max
λ∈ [α,β]

|q(λ)|

From Corollary 6.1 (with γ = 0) we know that this minimal q is given by a transformed Chebyshev
polynomial, and this results in the error bound

‖em‖A ≤ min
q∈Pm

q(0)=1

max
λ∈σ(A)

|q(λ)| ‖e0‖A ≤ min
q∈Pm

q(0)=1

max
λ∈ [α,β]

|q(λ)| ‖e0‖A

≤ 2
cm

1 + c2m
‖e0‖A , c =

√
κ− 1√
κ+ 1

, κ =
β

α

As a consequence, taking [α, β] = [λmin, λmax], and with the condition number κ2(A) = λmax/λmin, we
obtain

Theorem 8.2 For the CG iteration applied to an SPD system Ax = b, the error in the energy norm is
bounded by

‖em‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)m
‖e0‖A (8.20)

This bound is similar to that obtained for the SD method, see Theorem 7.1, except that now the condition
number of A is replaced by its square root! For large κ2(A) we have

√
κ2(A)− 1√
κ2(A) + 1

∼ 1− 2√
κ2(A)

and convergence to a specified tolerance may be expected after O(
√
κ2(A)) steps.
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There is another major difference between SD and CG: While (with the exception of trivial starting
vectors) the convergence behavior of the steepest descent method is accurately described by the condition
number of the matrix (i.e., the ratio of the extremal eigenvalues), the whole distribution of the spectrum
of A influences the convergence behavior of the CG-algorithm. In particular, the bound (8.20) is often too
pessimistic.

Theorem 8.3 If A has only m < n distinct eigenvalues then, for any initial guess x0 the CG iteration
converges in at most m steps.

Proof: Under the assumption of the theorem we may decompose the initial error e0 in terms of the
eigenbasis of A in the form 43

e0 =

m∑

i=1

εi vi ∈ span{v1, . . . , vm} (8.21)

where the vi are certain eigenvectors of A (normalized in ℓ2), with corresponding eigenvalues λi > 0,
i = 1 . . .m. Thus, the initial residual satisfies

r0 = −Ae0 = −
m∑

i=1

λi εi vi ∈ span{v1, . . . , vm}

and for all iterated residuals we have

Ak r0 = −
m∑

i=1

λk+1
i εi vi ∈ span{v1, . . . , vm} k = 0, 1, . . .

This shows
Kk = Kk(A, r0) ⊆ span{v1, . . . , vm} for all k ≥ 0

In particular, the dimension of the Krylov spaces

Kk = span{r0, Ar0, . . . , Ak−1r0} = span{r0, . . . , rk−1}
does not grow beyond m. This shows that (at latest)

rm = 0 ⇒ em = 0

because otherwise we would have rm ⊥ Km and dim(Km+1) = dim(span{r0, . . . , rm−1, rm}) = m + 1,
a contradiction. �

We may also express this property in terms of the optimal polynomial qm inherent to CG (see (8.17)).
Consider the characteristic polynomial of A,

χ(z) = (z − λ1)
ν1 · · · (z − λm)

νm

where νi is the algebraic multiplicity of λi. The minimal polynomial µ(z) of A is defined as the monic
polynomial of minimal degree which vanishes at the spectrum 44 of A. Now, by assumption, µ(z) is given
by the polynomial of degree m,

µ(z) = (z − λ1) · · · (z − λm), µ(λi) = 0, i = 1 . . .m

and the right hand side of (8.18c) attains its minimal value 0 for the rescaled version of µ(z),

q(λ) =
(
1− λ

λ1

)
· · ·
(
1− λ

λm

)
, q(0) = 1

which shows em = 0.
43This is true because any linear combination of eigenvectors associated with an eigenvalue λi is again such an eigenvector

in the eigenspace associated with λi.
44Analogously to χ(A) = 0 (Cayley-Hamilton Theorem) we also have µ(A) = 0.
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Remark 8.2

• The argument in the proof of Theorem 8.3 also shows that the assertion remains true for arbitrary
A > 0 if e0 is a linear combination of m < n eigenvectors of A, which is of course not a very practical
assumption.

• From the above considerations we conclude that the CG iteration will rapidly converge of either A
is well-conditioned (untypical!) or, by a heuristic argument, if the eigenvalues of A are concentrated
in a few ‘clusters’.

• Actually, the convergence properties of the CG iteration are more complex. In most cases, superlinear
convergence is observed, i.e., the rate of convergence improves in course of the iteration. Theoretical
explanations of this phenomenon are rather subtle.

• We also conclude that one way of improving the convergence behavior of the CG method is to reduce
the condition number of the linear system by preconditioning (to be discussed in Sec. 12). This is
by far the most popular method of improving the convergence behavior of the CG method. A pre-
conditioner which ‘bunches eigenvalues’ can also improve the performance; however, this requires a
very detailed knowledge of the structure of the matrix under consideration.

8.6 CG in Matlab: The function pcg

The following is a copy of the help page for the CG method implemented in Matlab. Note that, alter-
natively to the matrix A, a function AFUN is sufficient which realizes the operation x 7→ Ax. The function
pcg also supports preconditioning in several variants, where the concrete preconditioner has to be provided
by the user. As for A, the preconditioner may be specified in form of an evaluation function MFUN.

Since a posteriori error estimation is a difficult topic in general, the tolerance parameter TOL refers to
the size of the ‘backward error’, i.e., the relative residual norm ‖rk‖2/‖b‖2.

PCG Preconditioned Conjugate Gradients Method.

X = PCG(A,B) attempts to solve the system of linear equations A*X=B for

X. The N-by-N coefficient matrix A must be symmetric and positive

definite and the right hand side column vector B must have length N.

X = PCG(AFUN,B) accepts a function handle AFUN instead of the matrix A.

AFUN(X) accepts a vector input X and returns the matrix-vector product

A*X. In all of the following syntaxes, you can replace A by AFUN.

X = PCG(A,B,TOL) specifies the tolerance of the method. If TOL is []

then PCG uses the default, 1e-6.

X = PCG(A,B,TOL,MAXIT) specifies the maximum number of iterations. If

MAXIT is [] then PCG uses the default, min(N,20).

X = PCG(A,B,TOL,MAXIT,M) and X = PCG(A,B,TOL,MAXIT,M1,M2) use symmetric

positive definite preconditioner M or M=M1*M2 and effectively solve the

system inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner

is not applied. M may be a function handle MFUN returning M\X.

X = PCG(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is

[] then PCG uses the default, an all zero vector.
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[X,FLAG] = PCG(A,B,...) also returns a convergence FLAG:

0 PCG converged to the desired tolerance TOL within MAXIT iterations

1 PCG iterated MAXIT times but did not converge.

2 preconditioner M was ill-conditioned.

3 PCG stagnated (two consecutive iterates were the same).

4 one of the scalar quantities calculated during PCG became too

small or too large to continue computing.

[X,FLAG,RELRES] = PCG(A,B,...) also returns the relative residual

NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.

[X,FLAG,RELRES,ITER] = PCG(A,B,...) also returns the iteration number

at which X was computed: 0 <= ITER <= MAXIT.

[X,FLAG,RELRES,ITER,RESVEC] = PCG(A,B,...) also returns a vector of the

estimated residual norms at each iteration including NORM(B-A*X0).

Example:

n1 = 21; A = gallery(’moler’,n1); b1 = A*ones(n1,1);

tol = 1e-6; maxit = 15; M = diag([10:-1:1 1 1:10]);

[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M);

Or use this parameterized matrix-vector product function:

afun = @(x,n)gallery(’moler’,n)*x;

n2 = 21; b2 = afun(ones(n2,1),n2);

[x2,flag2,rr2,iter2,rv2] = pcg(@(x)afun(x,n2),b2,tol,maxit,M);

See also bicg, bicgstab, bicgstabl, cgs, gmres, lsqr, minres, qmr,

symmlq, tfqmr, ichol, function_handle.

8.7 CGN: CG applied to the normal equations

As argued in Sec. 7.2 for the SD method, CG may in principle applied to arbitrary systems via solution
of the normal equations

ATAx = AT b

where ATA takes the role of A before. Again, this will be not a successful approach in general because√
κ2(ATA) = κ2(A). Moreover, the additional evaluations x 7→ ATx make each iteration step more

expensive – or even unfeasible, if an evaluation procedure for AT is not directly available.

Remark 8.3 One could also think of solving the normal equations my the convergent Gauss-Seidel or
SOR method, see Theorem 5.3. This is closely related to the so-called Kaczmarz iteration, which is
unconditionally convergent, but also with a very poor convergence rate in the typical case of an ill-
conditioned matrix A.
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9 General Approach Based on Orthogonalization of Km.

The Arnoldi and Lanczos Procedures

In this section we study the construction of orthogonal bases in Krylov spaces. The basic procedure is a
variation of the well-known Gram-Schmidt algorithm, leading to a ‘projected version’ of a matrix A ∈ Rn×n

in form of a Hessenberg matrix. This construction is the basis for general Krylov subspace methods to be
studied in the sequel.

9.1 The Arnoldi procedure for A ∈ Rn×n

A matrix A ∈ Rn×n and a given vector r0 ∈ Rn define a sequence of Krylov subspaces45

Km = Km(A, r0) = span{r0, Ar0, . . . , Am−1 r0}, m = 0, 1, 2, . . .

We call

Km =




| | |
| | |
r0 Ar0

... Am−1 r0

| | |
| | |




∈ R
n×m (9.1)

the corresponding Krylov matrix.

Constructing an orthonormal basis {v1, . . . , vm} of Km is of interest on its own; it is a basic technique
for what follows, and for general algorithms based on Krylov sequences. In principle, we know how to
construct {v1, . . . , vm} : Apply the Gram-Schmidt algorithm (or another equivalent orthonormalization
procedure) to the Krylov vectors r0, Ar0, . . . (the columns of Km). However, these are not given a priori
but are to be computed on the fly in course of the orthonormalization process.

The so-called Arnoldi iteration is a clever implementation of this procedure. The resulting orthonormal
vectors vj are called Arnoldi vectors:

Choose v1 = r0/‖r0‖2. Then, for j = 1 . . .m, multiply the current Arnoldi vector vj by A

and orthonormalize Avj against all previous Arnoldi vectors v1, . . . , vj, resulting in vj+1.

This leads to the following iteration (with the intermediate unnormalized orthogonalized vectors wj):

v1 = r0/‖r0‖2 (9.2a)

and

wj = Avj − (Avj , v1)v1 − (Avj , v2)v2 − . . . − (Avj, vj)vj ; vj+1 =
wj

‖wj‖2
, j = 1, 2, . . . (9.2b)

This is also formulated in Alg. 9.1, where we define

hij = (Avj , vi), i ≤ j, and hj+1,j = ‖wj‖2 (9.3)

As long as wj 6= 0 we have due to (9.2b) (for which, by construction, wj ⊥ span{v1, . . . , vj}) :
h2j+1,j = (wj , wj) = (Avj + lin.comb. of {v1, . . . , vj}, wj) = (Avj , ‖wj‖2 vj+1) = hj+1,j (Avj , vj+1)

hence
‖wj‖2 = hj+1,j = (Avj , vj+1) (9.4)

45Assume for the moment that the Aj r0 are linearly independent, such that Km is of maximal dimension m ≤ n.
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Algorithm 9.1 Arnoldi iteration (classical Gram-Schmidt variant)

1: v1 = r0/‖r0‖2
2: for j = 1, 2, . . . , m do
3: for i = 1, 2, . . . , j do
4: Compute hij = (Avj , vi)
5: end for
6: Compute wj = Avj −

∑j
i=1 hij vi

7: hj+1,j = ‖wj‖2
8: if hj+1,j = 0 then stop
9: vj+1 = wj/hj+1,j

10: end for

A breakdown occurs if a wj = 0 is encountered. Provided the iteration does not break down, i.e., as long
as wj 6= 0, it generates the Arnoldi matrix

Vm =




| | |
| | |
v1 v2

... vm

| | |
| | |




∈ R
n×m (9.5)

and the ‘look-ahead’ vector vm+1. We also define the rectangular upper Hessenberg matrix H̄m ∈ R
(m+1)×m,

H̄m =




h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

h32 h33 . . . h3m

. . .
. . .

...

hm,m−1 hmm

hm+1,m




=




(Av1, v1) (Av2, v1) (Av3, v1) . . . (Avm, v1)

(Av1, v2) (Av2, v2) (Av3, v2) . . . (Avm, v2)

(Av2, v3) (Av3, v3) . . . (Avm, v3)

. . .
. . .

...

(Avm−1, vm) (Avm, vm)

(Avm, vm+1)




If breakdown occurs in the m - th step, wm = 0 is still well-defined but not vm+1, and the algorithm stops.
In this case, the last row of H̄m is zero, i.e., hm+1,m = 0.

From the structure of Vm and H̄m it is obvious that, from step to step, a further column is added to
these matrices. The dimension of H̄m increases in each step.

Lemma 9.1 Assuming that Alg. 9.1 does not terminate prematurely, the vectors vj , j = 1 . . .m, form an
orthonormal basis of the Krylov space Km, i.e., V

T

mVm = Im×m. Furthermore, Pm = VmV
T

m ∈ Rn×n is the
orthogonal projector onto Km.

Proof: An exercise: An induction argument shows that the vectors vj, j = 1 . . .m, are indeed orthonormal.
A second induction argument reveals vj ∈ Kj for j = 1 . . .m, and Pm = VmV

T
m is the orthogonal projector

onto Km (see Remark 7.3). �

Since by Lemma 9.1, the Arnoldi vectors vj are orthonormal and since Avj ∈ span{v1, . . . , vj+1}
(see (9.2b)), each Avj can also be expressed in terms of its Fourier expansion in terms of the vi with
j+1 terms.

E.g., for j = 1 we have
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Av1 = (Av1, v1)︸ ︷︷ ︸
h11

v1 + w1 = (Av1, v1)︸ ︷︷ ︸
h11

v1 + (Av1, v2)︸ ︷︷ ︸
h21

v2

(see (9.4)). For general j, with hij = (Avj, vi) we have

Avj =

j∑

i=1

hij vi + wj =

j+1∑

i=1

hij vi, j = 1 . . .m−1 (9.6a)

A special case occurs for j = m if, in the last step, wm = 0 and vm+1 is not defined. But in any case, we
have

Avm =

m∑

i=1

him vi + wm (9.6b)

from the last Arnoldi step in (9.2b), with wm = hm+1,m vm+1 if vm+1 is well-defined.

In matrix notation, (9.6) is equivalent to

AVm =




| | |
| | |

Av1 Av2
... Avm

| | |
| | |




= Vm+1H̄m = VmHm + wm e
T

m ∈ R
n×m (9.7)

where the square upper Hessenberg matrix Hm ∈ Rm×m is obtained from H̄m by removing its last row,
and where

em =
(
0, 0, . . . , 0, 1)T ∈ R

m

denotes the m - th unit vector in R
m.

We also conclude:

Theorem 9.1 The Arnoldi procedure generates a reduced QR-decomposition of the Krylov matrix Km

(see (9.1)) in the form
Km = VmRm (9.8)

with Vm from (9.5) satisfying V T

mVm = Im×m, and with an upper triangular matrix Rm ∈ Rm×m.

Furthermore, with the m×m -upper Hessenberg matrix

Hm =




h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

h32 h33 . . . h3m
. . .

. . .
...

hm,m−1 hmm




=




(Av1, v1) (Av2, v1) (Av3, v1) . . . (Avm, v1)

(Av1, v2) (Av2, v2) (Av3, v2) . . . (Avm, v2)

(Av2, v3) (Av3, v3) . . . (Avm, v3)
. . .

. . .
...

(Avm−1, vm) (Avm, vm)




we have
V T

mAVm = Hm ∈ R
m×m (9.9)

Proof: The matrix Rm in (9.8) is implicitly defined by the orthogonalization process (9.2b): The first
columns of Km are linear combinations of the first j columns of Vm, which is equivalent to (9.8).

Furthermore, left multiplication of identity (9.7) by V T
m yields

V T

mAVm = V T

m VmHm + V T

mwm e
T

m = Hm,

due to the orthogonality relations V T
m Vm = Im×m and V T

mwm = 0. �
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Remark 9.1 Now we see what the Arnoldi process accomplishes: Apart from computing an orthogonal
basis of Km, it maps A to a smaller upper Hessenberg matrix Hm by an orthogonal transformation,
see (9.9).

For m = n, the outcome would be identical with the well-known orthogonal similarity transformation
to upper Hessenberg form (cf., e.g., [2]). For the case m < n relevant here, this corresponds to a reduced
version of such a decomposition, where the resulting small matrix Hm = V T

mAVm ∈ Rm×m is a projected
version of A acting in Km : Consider x ∈ Km and express it in the basis Vm, i.e., x = Vmum with
corresponding coefficient vector um ∈ Rm. Applying A to x and projecting the result Ax back to Km

yields
VmV

T

mAx = VmV
T

mAVmum = VmHmum (9.10)

i.e., the coefficient vector of the result expressed in the basis Vm is given by Hmum. We can also write

VmHmV
T

m = VmV
T

mAVmV
T

m = PmAPm =: Am ∈ R
n×n

with the orthogonal projector Pm = VmV
T
m onto Km. The matrix Am is a rank-m approximation to A.

The orthogonal basis delivered by the Arnoldi procedure will be used in Sec. 10 for the construction of
approximate solutions xm for general linear systems Ax = b.

Exercise 9.1 Show by means of an induction argument with respect to powers of A :

p(A)r0 = Vm p(Hm)V T
m r0 = ‖r0‖2Vmp(Hm)e1

for all p ∈ Pm−1, where e1 =
(
1, 0, . . . , 0)T is the first unit vector in R

m.

9.2 The MGS (Modified Gram-Schmidt) variant

In practice, the classical Gram-Schmidt algorithm is usually implemented in an alternative, multiplicative
way which is numerically more robust; this is known as the Modified Gram-Schmidt algorithm (MGS). Let
us describe this variant in the context of the Arnoldi procedure.

Consider the j - step of the Arnoldi iteration (9.2b),

wj = Avj − (Avj , v1)v1 − . . .− (Avj , vj)vj , vj+1 = wj/‖wj‖2 (9.11a)

where the v1, . . . , vj are already orthonormal. We have

(Avj, vi)vi = (vT

i Avj)vi = vi (v
T

i Avj) = (vi v
T

i )Avj = P̂iAvj

with the orthogonal rank-1-projectors P̂i = vi v
T
i onto span{vi}. Thus, (9.11a) is equivalent to

wj = (I − P̂1 − . . .− P̂j)Avj = (I − Pj)Avj = QjAvj (9.11b)

with the pair of orthogonal projectors

Pj = P̂1 + . . .+ P̂j = v1 v
T

1 + . . .+ vj v
T

j = Vj V
T

j projecting onto span{v1, . . . , vj} = Kj, and Qj = I −Pj

The idea behind MGS is to organize these successive projections in a different fashion. Let

Q̂i = I − P̂i = I − vi v
T

i , i = 1 . . . j

denote the rank-(n−1)-projectors onto the orthogonal complements
(
span{vi}

)⊥
along span{vi}.
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Algorithm 9.2 Arnoldi iteration (Modified Gram-Schmidt variant)

1: v1 = r0/‖r0‖2
2: for j = 1, 2, . . . , m do
3: Initialize wj = Avj
4: for i = 1, 2, . . . , j do
5: Compute hij = (wj, vi)
6: Update wj = wj − hij vi
7: end for
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 then stop
10: vj+1 = wj/hj+1,j

11: end for

Due to the orthonormality of the vi it is easy to verify by that

Q̂j Q̂j−1 · · · Q̂1 = (I − vj v
T

j )(I − vj−1 v
T

j−1) · · · (I − v1 v
T

1 ) (9.12)

= I − vj v
T

j − . . .− v1 v
T

1 = Qj

With this representation for Qj , (9.2b) can be rewritten in form of a recursion in terms of the Q̂j =

(I − vj v
T
j ), replacing Qj in (9.11b) by Q̂j Q̂j−1 · · · Q̂1 from (9.12):

v1 = r0/‖r0‖2
w1 = (I − v1 v

T

1 )Av1, v2 = w1/‖w1‖2
w2 = (I − v2 v

T

2 )(I − v1 v
T

1 )Av2, v3 = w2/‖w2‖2
...

. . .

wm = (I − vm v
T

m) · · · (I − v1 v
T

1 )Avm, vm+1 = wm/‖wm‖2
Together with the identity (I − vi v

T
i )w = w − (w, vi)vi this leads to Alg. 9.2, which is mathematically

equivalent to Alg. 9.1 but usually less sensitive to cancellation effects.

Remark 9.2 The Arnoldi iteration can also be realized via successive Housholder reflections, as in the
classical, full orthogonal reduction of a square matrix to upper Hessenberg form. For details see [19].

9.3 The Lanczos procedure for symmetric A ∈ Rn×n

Assume A = AT ∈ Rn×n is symmetric, and apply the Arnoldi procedure (9.2) for given r0. By symmetry,
we immediately obtain from (9.9):

Hm = V T

mAVm = HT

m is also symmetric

Since Hm ∈ Rm×m is upper Hessenberg (see Theorem 9.1), it must be tridiagonal. In this case we write

Hm =: Tm =




α1 β2

β2 α2 β3
. . .

. . .
. . .

βm−1 αm−1 βm

βm αm




,
αj = hjj = (Avj, vj),

βj = hj,j−1 = (Avj−1, vj) = (Avj , vj−1)
(9.13)
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Algorithm 9.3 Lanczos iteration

1: β1 = 0, v0 = 0
2: v1 = r0/‖r0‖2
3: for j = 1, 2, . . . , m do
4: Initialize wj = Avj − βj vj−1

5: Compute αj = (wj, vj)
6: Update wj = wj − αj vj
7: βj+1 = ‖wj‖2
8: if βj+1 = 0 then stop
9: vj+1 = wj/βj+1

10: end for

With this denotation, Alg. 9.2 specializes to the simple recursion formulated in Alg. 9.3. 46

Exercise 9.2 Use the tridiagonal structure of the matrices Tm to conclude that vj+1 ∈ span{vj−1, vj , Avj};
specifically, verify the three-term recurrence

Avj = βj+1 vj+1 + αj vj + βj vj−1 (9.14)

Note: βj+1 can be obtained by normalizing wj = Avj − αj vj − βj vj−1.

Remark: Due to this simple recursion, algorithms based on the Lanczos process can be organized in a way such

that only three vectors need to be kept in memory at the same time.

The Lanczos procedure is a simple three-term recurrence which we have obtained from the general
(Arnoldi) case via symmetry, A = AT. For better insight, we now directly derive the Lanczos iteration
from scratch. This parallels the derivation of a three-term recurrence for orthogonal polynomials of a real
variable x as, e.g., described in [2, Lemma 6.4]. In the present context, multiplication by the symmetric
matrix A is the analog of multiplication by x ∈ R.

We start with v0 = 0 and v1 = r0/‖r0‖2 . Now, for given m ≥ 1 we assume inductively that the
orthonormal vectors v1, . . . , vm have been obtained. In order to find vm+1 ⊥ span{v1, . . . , vm}, we make
the ansatz for the unnormalized version wm of vm+1,

wm = Avm − αm vm − βm vm−1

For arbitrary coefficients αm and βm we then have, exploiting the symmetry of A,

(wm, vj) = (Avm, vj)− αm (vm, vj)− βm (vm−1, vj)

= (vm, Avj)− αm (vm, vj)− βm (vm−1, vj)

By induction, for j = 1 . . .m − 2 we have (vm, vj) = (vm−1, vj) = 0 and Avj ∈ Kj+1 ⊆ Km−1 ⊥ vm, thus
also (vm, Avj) = 0 holds. This shows that for arbitrary coefficients αm and βm our ansatz automatically
satisfies

(wm, vj) = 0, j = 1 . . .m− 2

In order to fix αm and βm it remains to require

0
!
= (wm, vm) = (Avm, vm)− αm (vm, vm)− βm (vm−1, vm)

= (Avm, vm)− αm

46 In practice, the Lanczos iteration is quite sensitive to numerical loss of orthogonality due to round-off. Much research

has been invested to fix this problem with reasonable effort by means of some form of re-orthogonalization; cf. [19].
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and
0

!
= (wm, vm−1) = (Avm, vm−1)− αm (vm, vm−1)− βm (vm−1, vm−1)

= (Avm, vm−1)− βm

This directly yields αm = (Avm, vm) and βm = (Avm, vm−1), hence

wm = Avm − (Avm, vm)vm − (Avm, vm−1)vm−1

which leads to the three-term recurrence relation for the vm+1 = wm/‖wm‖2 and the tridiagonal structure
Hm = Tm, see (9.13).

Exercise 9.3 Extend this induction argument to show βm = ‖wm−1‖2 . (We have already seen this identity

in (9.4).)

9.4 Arnoldi/Lanczos and polynomial approximation

Similarly as for the CG method (cf. Theorem 8.1), there is an intimate connection between the Arnoldi /
Lanczos procedure and a polynomial approximation problem:

Arnoldi/Lanczos approximation problem:

Find a monic polynomial pm ∈ Pm such that ‖pm(A)r0‖2 becomes minimal . (9.15)

The solution of this problem is characterized by the following theorem:

Theorem 9.2 As long as the Arnoldi/Lanczos iteration does not break down (i.e., the Krylov matrix
Km has full rank), the approximation problem (9.15) has a unique solution pm, which is given by the
characteristic polynomial of Hm [Tm ] .

Proof: Since Km = Km(A, r0) = span{r0, Ar0, . . . , Am−1 r0} and since the columns of Vm form a basis of
Km, for any monic polynomial pm ∈ Pm the vector pm(A)r0 can be written as

pm(A)r0 = Am r0 − Vmum ∈ Am r0 ⊕Km

with some coefficient vector um ∈ Rm. Thus, (9.15) is equivalent to a linear least squares problem:

Find um ∈ R
m, i.e., Vmum ∈ Km such that ‖Vmum − Am r0‖2 becomes minimal . (9.16)

Under the assumption of the theorem, i.e. if Vm has full rank m, the this least squares problem has a
unique solution um, with a residual of the form pm(A) = Am r0−Vmum, characterized by the orthogonality
relation 47

V T

m (Am r0 − Vmum︸ ︷︷ ︸
= pm(A)r0

) = 0 ⇔ pm(A)r0 ⊥ Km (9.17)

In order to find pm, we now consider the Arnoldi/Lanczos factorization Hm = V T
mAVm (see (9.9)). Due to

r0, Ar0, . . . , A
m−1 r0 ∈ Km and since VmV

T
m projects onto Km, we have

V T

mAr0 = V T

mAVmV
T

m r0 = HmV
T

m r0

V T

mA
2 r0 = V T

mAVmV
T

mAr0 = V T

mAVmV
T

mAVmV
T

m r0 = H2
mV

T

m r0

. . .

V T

mA
m r0 = . . . = Hm

m V
T

m r0

47 (9.17) is the system of Gaussian normal equations for the least squares problem (9.16).
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hence 48

V T

m pm(A)r0 = pm(Hm)V
T

m r0 for all pm ∈ Pm (9.18)

Now we consider the characteristic polynomial χm of Hm. χm ∈ Pm is monic and satisfies χm(Hm) = 0
(Cayley-Hamilton). Together with (9.18) we conclude

0 = χm(Hm)V
T

m r0 = V T

mχm(A)r0

Thus, pm = χm satisfies (9.17), and we already know that this solution is unique. �

Remark 9.3 Due to Theorem 9.2, Hm is in a certain sense an approximation to A with the property that
its characteristic polynomial χm is an approximation to χ, the characteristic polynomial of A, for which
χ(A) = 0 (Cayley-Hamilton). This approximation is optimal in the sense of (9.15).

Theorem 9.2 also provides a motivation for approximating σ(A) by σ(Hm), e.g. by starting the Arnoldi
iteration from some random r0. The eigenvalues of the Hm are also called Ritz values, and the method
may be considered as a generalization of the ordinary power iteration. For details see e.g. [9],[11],[22].
Approximation results are e.g., available for the symmetric case; see Sec. 15.

Exercise 9.4 Consider the projected matrix49

Am = VmHmV T
m = PmAPm ∈ R

n×n, Pm = VmV T
m

Show that each eigenvalue of Hm is also an eigenvalue of Am, and all other eigenvalues of Am are zero.

9.5 Krylov spaces and matrix decompositions.
The direct Lanczos method for symmetric systems (D-Lanczos)

As in Sec. 9.3 we now assume that A is symmetric (at this point, not necessarily SPD). The case of a
general matrix A is considered in Sec. 10.

Since the columns of the Lanczos matrix Vm represent an orthonormal basis of Km, we can use this as
the basis for a projection method, in the spirit of the Galerkin orthogonality requirement 50

Find xm ∈ x0 +Km such that its residual rm = b−Axm satisfies rm ⊥ Km . (9.19)

which is identical with the characterization (8.19b) obtained for the CG iterates in Corollary 8.1.

We now realize a procedure for computing such an xm. We make an ansatz for xm in terms of the basis

Vm =

v1

∣∣ . . .
∣∣vm


 delivered by the Lanczos procedure,

xm = x0 + Vmum (9.20a)

where the coefficient vector um ∈ Rm is to be determined. With

Axm = Ax0 + AVmum, rm = b− Axm = r0 −AVmum

48See Exercise 9.1 for a closely related identity.
49See also Remark 9.1.
50 Note that (9.19) is not equivalent to the (also very reasonable) minimal residual requirement of minimizing ‖rm‖2 over

all possible rm ∈ r0 +AKm, which will be considered later on.

In the SPD case, (9.19) is also equivalent to minimizing ‖em‖A over all possible error vectors em ∈ e0 + Km, see charac-
terization (8.19a) in Corollary 8.1.
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enforcing the orthogonality condition (9.19) leads to the requirement

r0 −AVmum ⊥Km, i.e, (r0 − AVmum, Vm vm) = 0 for all vm ∈ R
m

which is equivalent to the system of normal equations

V T

m (r0 −AVmum) = 0 ⇔ V T

mAVm︸ ︷︷ ︸
= Tm

um = V T

m r0 = β e1, β = ‖r0‖2

with e1 = (1, 0, . . . , 0)T ∈ R
m, because v1 = r0/‖r0‖2 (see (9.2b)). Thus, um is determined by the

tridiagonal system
Tmum = β e1 (9.20b)

which is a projected version of the original system Ax = b in the sense of (9.19).

If the Lanczos iteration does not break down, the system (9.20b) has a unique solution which can be
computed via LU-decomposition of Tm, and then xm is given by (9.20a). But if we do it in such a ‘naive’
way, the full matrix Vm has to stored in order to compute xm. Alternatively, the computation of Vm, i.e.,
the Lanzcos iteration, can be repeated while assembling xm.

The better option is to ‘intertwine’ the Lanczos iteration with the elimination process for the sys-
tem (9.20b), i.e., orthonormalization and solving for um are performed simultaneously. This will lead
us to an efficient iterative scheme. To this end, we first study the detailed recursive structure of the
LU-decomposition of tridiagonal matrices of in the following exercise.

Exercise 9.5 Assume that for m = 1, 2, . . ., the tridiagonal matrices

Tm =




α1 β2

β2 α2 β3
. . .

. . .
. . .

βm−1 αm−1 βm

βm αm




∈ R
m×m

from (9.13) admit LU-decompositions Tm = LmUm. Of course, Lm and Um are bidiagonal, and we adopt the
notation

Tm = LmUm =




1

λ2 1

. . .
. . .

λm−1 1

λm 1







η1 ω2

η2 ω3

. . .
. . .

ηm−1 ωm

ηm




(9.21)

a) Verify the following recursive formulas for the values λm, ωm, ηm in (9.21):

ωm = βm, λm =
βm
ηm−1

, ηm = αm − λmωm (9.22)

Conclude that the matrices Lm and Um are recursively obtained from Lm−1, Um−1 by adding one row and
column, i.e.,

Lm =




Lm−1 0

0T λm 1


, Um =




Um−1
0
ωm

0T ηm




(9.23)
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b) Given the factors L,U ∈ R
m×m of the LU-decomposition of a matrix T ∈ R

m×m in the form (9.23),

L =




L′ 0

ℓT 1


, U =




U ′ u

0T η




with L′, U ′ ∈ R
(m−1)×(m−1) and ℓ, u ∈ R

m−1, conclude that L−1 and U−1 can be written as

L−1 =




L′−1 0

−ℓTL′−1 1


, U−1 =




U ′−1 − 1
η U

′−1u

0T 1
η




This means that after adding one row and column to the tridiagonal matrix T to obtain the new tridiagonal
matrix T ′, the triangular inverses L′−1, U ′−1 can be also obtained from L−1 and U−1 by simply adding one
row and column.

Combining the results of Exercise 9.5 with (9.20) leads to the representation of the iterates xm in the
form

xm = x0 + Vmum = x0 + VmU
−1
m L−1

m β e1

with Lm and Um from (9.21). From the Lanczos iteration (Alg. 9.3) we have a short recurrence for the
columns vj of Vm. The matrices U−1

m and L−1
m can be computed according to Exercise 9.5. Hence, we

expect to be able to find a short recurrence for the vectors xm in form of an iteration of Krylov type. To
this end we substitute

Dm = VmU
−1
m , zm = L−1

m β e1

and obtain
xm = x0 +Dm zm (9.24)

To derive a recurrence for the xm, we first consider the vectors zm : From Exercise 9.5 we obtain

zm = L−1
m β e1 =



L−1
m−1 0

ℓTm 1






β e1

0


=



zm−1

ζm


, with ζm = β ℓTme1 (9.25a)

i.e., the vector zm is obtained from zm−1 by adding one scalar entry, ζm.

Next, the explicit form of Um and its inverse allows us to infer from Exercise 9.5:

Dm = VmU
−1
m =


Vm−1 vm





U−1
m−1 um

0T 1
ηm


=


Dm−1 dm


, with dm = Vm−1um +

1

ηm
vm (9.25b)

i.e., the matrix Dm is obtained from Dm−1 by adding one column, dm.

Inserting these findings about Dm and zm into (9.24), we conclude

xm = x0+Dm zm = x0+

Dm−1 dm





zm−1

ζm


= x0+Dm−1 zm−1+ζmdm = xm−1+ζmdm, with ζm = β ℓTme1

with ζm and dm from (9.25). In this way we have obtained a simple update formula for the iterates xm,
with certain search directions dm and associated weights ζm. We now investigate in more detail how the
dm and the weights ζm can be computed efficiently.

The search direction dm is the m - th column of Dm = VmU
−1
m . It can be determined by considering the

m - th column of the product Vm = DmUm with Um from (9.21). We have

Vj,m =

m∑

i=1

Dj,iUi,m = Dj,m−1ωm +Dj,mηm, j = 1 . . .m
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This gives a recurrence for the search directions of the form

ηm dm = vm − ωmdm−1 (9.26)

This formula is also correct for m = 1 provided we set d0 = 0.

Furthermore, since zm is found by forward substitution on the system

Lm zm = β e1

with Lm from (9.21), we have

zm =



zm−1

ζm


, with ζm = −λm ζm−1 (9.27)

i.e., the last element of the vector zm is just the last element from zm−1 multiplied by −λm.
Finally, xm is updated in each step according to

xm = xm−1 + ζmdm (9.28)

All this results in the so-called D-Lanczos algorithm, Alg. 9.4. It incorporates the following recurrences:

(i) the recurrence for the Lanczos vectors vm together with the definition of the scalars αm and βm
(see Alg. 9.3);

(ii) the formulas for the entries λm, ωm, ηm of the LU-decomposition of Tm (see (9.22));

(iii) the recurrence for the search directions dm, see (9.26);

(iv) the recurrence (9.27) for the weights ζm; and finally,

(v) the update formula (9.28) for the iterates xm.

Algorithm 9.4 D-Lanczos

1: Compute r0 = b− Ax0; ζ1 = β = ‖r0‖2; v1 = r0/β
2: λ1 = β1 = 0, d0 = 0;
3: for m = 1, 2, . . . , do
4: Compute wm = Avm − βm vm−1 and αm = (wm, vm)
5: if m > 1 then compute λm = βm

ηm−1
and ζm = −λm ζm−1

6: ηm = αm − λmβm
7: dm = (vm − βm dm−1)/ηm
8: xm = xm−1 + ζmdm
9: if xm has converged, then stop
10: wm = wm − αm vm; βm+1 = ‖w‖2; vm+1 = wm/βm+1

11: end for

Remark 9.4 The D-Lanczos algorithm relies on the symmetry of the matrix A, but it is not assumed that
A be SPD. However, the above derivation assumes the existence of an LU-decomposition of the matrices
Tm. If A is SPD, then we will see that this assumption is valid, and the D-Lanczos produces iterates
identical to the CG iterates, as shown in the next section. If A is merely symmetric but indefinite, then
it is possible that the D-Lanczos algorithm breaks down: It may happen that ηm = 0 in (9.21).
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9 GENERAL APPROACH BASED ON ORTHOGONALIZATION OF KM .

THE ARNOLDI AND LANCZOS PROCEDURES

9.6 From Lanczos to CG

The D-Lanczos algorithm relies on linking recurrences for the Krylov vectors vm and the search directions
dm to each other by means of the entries of the LU-decomposition of the matrices Tm. We now show that
this can be written in a simpler way, where the decomposition is not explicitly required. For SPD systems
we will see that this is always possible, i.e., the iteration does not break down, and we show that the result
is exactly the CG algorithm from Sec. 8.

Lemma 9.2 Let A ∈ Rn×n be symmetric. Let xm, m = 0, 1 . . . be the sequence of approximations obtained
by the D-Lanczos Algorithm 9.4 – we assume that the algorithm does not break down. Let rm = b− Axm
be the sequence of residuals. Then:

(i) rm = σm vm+1 for some σm ∈ R;

(ii) the residuals rm are pairwise orthogonal, i.e., (ri, rj) = 0 for i 6= j;

(iii) the search directions dm are pairwise conjugate, i.e., (Adi, dj) = 0 for i 6= j.

Proof:

• ad (i): Use em = (0, 0, . . . , 0, 1)T ∈ Rm, consider

T̄m =




Tm

tm+1,m e
T
m


∈ R

(m+1)×m

satisfying AVm = Vm+1T̄m (see (9.7)), and compute the residual: 51

rm = b− Axm = b− A(x0 + Vmum) = r0 − AVmum = β v1 − Vm+1T̄mum

= Vm (β e1 − Tmum︸ ︷︷ ︸
= 0

)− vm+1 (tm+1,m e
T

mum) = σm vm+1 (9.29)

for some scalar σm.

• ad (ii): Due to (9.29) the residuals rm are multiples of the vm+1 which are pairwise orthogonal. Thus
the residuals are orthogonal as well.

• ad (iii): Consider the matrix product

DT

mADm = U−T

m V T

mAVmU
−1
m = U−T

m TmU
−1
m = U−T

m Lm

I.e., the lower triangular matrix U−T
m Lm equals the symmetric matrix DT

mADm, which therefore must
be a diagonal matrix. Thus, the vectors dm form a conjugate set, i.e., (Adi, dj) = 0 for i 6= j. �

We now assume that A is SPD. In this case,

Tm = V T

mAVm is clearly also SPD,

therefore the LU-decomposition Tm = LmUm is well-defined. In particular, the ηm computed by the
D-Lanczos algorithm do not vanish (cf. (9.21),(9.22),(9.26)).

Lemma 9.2 describes exactly the orthogonality relationships which we have established for the CG method
in Sec. 8.3. This is not surprising, since the Galerkin orthogonality requirement (9.19) which led us to
D-Lanczos is identical with (8.19b) (cf. Corollary 8.1) which characterizes the CG iterates. Therefore, the
resulting iterates xm must be identical. In particular, the D-Lanczos algorithm does not break down in
the SPD case.

51Here we use the identity AVm = Vm+1T̄m, see (9.7).
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Remark 9.5

• Alternatively, the CG iteration can also be deduced from the Cholesky decomposition of the SPD
matrix Tm, in a similar way as D-Lanczos was deduced from the LU-decomposition of Tm, see [18,
Sec. 1.2.7].

• Comparing (8.16a) with (9.20) we see that, with the CG polynomial pm−1(A) ≈ A−1, the CG iterates
xm can be written in the following equivalent ways:

xm = x0 + VmT
−1
m V T

m r0 (9.30)

= x0 + pm−1(A)r0

= x0 + Vm pm−1(Tm)V
T

m r0

≈ x0 + A−1 r0 = x∗

• The superlinear convergence behavior of the CG iterates observed in practice can be explained in
the following way (we give no details): We have xm = x0+Vmum where um is the solution of (9.20b.
It can be shown that the extremal Ritz values, i.e., the eigenvalues of Tm, feature fast convergence
towards the extreme eigenvalues of A. For the later iteration steps this means that the iterates behave
in a way as if these eigenvalues were ‘removed’, entailing a smaller effective condition number.
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10 General Krylov Subspace Methods, in particular GMRES

We now assume that A ∈ R
n×n is an arbitrary square matrix. In general, Krylov subspace approximations

are defined via a projection property, which has the general form of a Petrov-Galerkin orthogonality
requirement:

Find xm ∈ x0 +Km such that its residual rm = b− Axm satisfies rm ⊥ Lm . (10.1)

Here, the ansatz space (or solution space) is Km = Km(A, r0). Different Krylov methods differ in the choice
of the test space Lm. We will consider three choices:

(i) ‘Full orthogonalization methods’ (‘FOM’ or ‘OrthoRes’; e.g., D-Lanczos and conjugate gradient
(CG) methods):

We choose Lm = Km (cf. (9.19)) and require Galerkin orthogonality,

Find xm ∈ x0 +Km such that its residual rm = b−Axm satisfies rm ⊥ Km . (10.2a)

With rm = −Aem = −A(xm − x∗) this is equivalent to the requirement Aem ⊥ Km. In particular,

em ⊥ AKm for A symmetric, em ⊥A Km for A SPD (10.2b)

If A is SPD, we already know from Sec. 8.4 that this has always a unique solution xm satisfying

‖em‖A = ‖xm − x∗‖A = min
x∈x0+Km

‖x− x∗‖A = min
e∈e0+Km

‖e‖A (10.2c)

i.e., the energy norm of the error is minimized over e0 +Km.

(ii) ‘[Generalized] minimal residual methods’ (MINRES, GMRES):

We choose Lm = AKm, i.e.,

Find xm ∈ x0 +Km such that its residual rm = b− Axm satisfies rm ⊥ AKm . (10.3a)

This is equivalent to the requirement Aem ⊥ AKm and, as shown below, it is equivalent to

‖rm‖2 = ‖b− Axm‖2 = min
x∈x0+Km

‖b−Ax‖2 = min
r∈r0+AKm

‖r‖2 (10.3b)

which motivates the term ‘minimal residual method’.

(iii) ‘Biorthogonal methods’:

Here, Lm = Km(A
T, r̃0) for some r̃0. This choice will lead to the Biconjugate Gradient method

(BiCG) and its variants.

The orthogonality conditions (10.2a), (10.3a) are illustrated in Fig. 10.1.

Lemma 10.1 Conditions (10.3a) and (10.3b) are equivalent.

Proof: This is directly related to the characterization of the solution of a linear least squares problem:
For given x0 with residual r0 = b − Ax0, we consider an arbitrary x ∈ x0 + Km, with residual vector
r ∈ r0 + AKm = r0 + Lm. Let us write r = r0 + l with l ∈ Lm. Furthermore, we decompose the initial
residual according to

r0 = Pm r0 +Qm r0 ∈ Lm ⊕ L⊥
m
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Figure 10.1: The orthogonality conditions (10.3a) and (10.2a)

where Pm is the orthogonal projector onto Lm, and Qm = I − Pm. Thus, r has the unique decomposition

r = (l + Pm r0) +Qm r0 ∈ Lm ⊕ L⊥
m,

satisfying the Pythagoraean identity

‖r‖22 = ‖ l + Pm r0‖22 + ‖Qm r0‖22

Since Qm r0 is a priori fixed, this attains its minimal value for l = −Pm r0, i.e., the minimum is attained at

r = rm = r0 − Pm r0 = Qm r0 ∈ L⊥
m ⊥ Lm

which is exactly the Petrov-Galerkin orthogonality requirement rm ⊥ Lm = AKm.

This argument can also be reversed: If r satisfies r ⊥ Lm = AKm, then r = Qm r and ‖r‖22 = ‖Qm r‖22 =
‖Qm r0‖22, which is the minimal attainable value. �

For A invertible, the corresponding solution value xm with b − Axm = rm is uniquely defined by the
minimal value rm: xm = A−1(b − rm). In the following we study the computation of xm by means of a
Krylov subspace method. Similarly as the D-Lanczos iteration was derived from the Lanczos procedure
in Sec. 9.5, our starting point is the general Arnoldi procedure for general matrices A, see Sections 9.1
and 9.2.

10.1 Computing the xm

As for all Krylov subspace methods, approximations xm, m = 0, 1, . . . are computed until an approximation
xm is found which is sufficiently accurate. It is, of course, essential that the xm can be computed efficiently
from the orthogonality conditions (10.2a) or (10.3a). The general procedure is:

• Construct the n×m Arnoldi matrix Vm =

v1

∣∣ . . .
∣∣vm


. By construction, its columns vj form an

orthogonal basis of Km.

• Construct the n×m matrix Wm =

w1

∣∣ . . .
∣∣wm


 such that its columns wj form a basis of Lm. For

Lm = AKm this is given by Wm = AVm, which is generated in course of the Arnoldi procedure.
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• Represent the approximate solution as

xm = x0 + Vmum (10.4)

where um ∈ Rm is a vector of weights to be determined. Note that rm = r0 − AVmum.

• Enforcing either of the orthogonality conditions (10.2a),(10.3a) leads to the system of normal equa-
tions

W T

m (b− Axm) = 0 ⇔ W T

mAVmum = W T

m r0 (10.5a)

from which the approximate solution xm follows in the form

xm = x0 + Vmum = x0 + Vm
(
W T

mAVm
)−1

W T

m r0 (10.5b)

Note that the matrix W T
mAVm is only of size m×m; therefore its inversion is affordable for m≪ n.

Exercise 10.1

a) Let A ∈ R
n×n be an invertible matrix. Use (8.1b) to conclude that the approximation xn obtained in the n-th

step (10.4) according to the MINRES criterion (10.3b) is the exact solution x∗ of Ax = b.

b) Assume additionally that for some m ≤ n there holds Km = Kn. Show that then already

xm = xm+1 = · · · = x∗

Hint: Show that Kk = Km = Kn also for all k > m.

Remark 10.1 One may also think of proceeding in the following way, motivated by Exercise 9.1: For all
p ∈ Pm−1 he have

Vm p(Hm)V
T

m r0 = p(A)r0

Formally replacing p(A) by A−1 would suggest the approximate identity

VmH
−1
m V T

m r0 ≈ A−1 r0

which gives
xm := x0 + VmH

−1
m V T

m r0 ≈ x0 + A−1 r0 = x∗

A look at (10.5b) shows that this gives exactly a FOM method, 52 Wm = Vm. (Recall that Hm = V T
mAVm.)

This type of FOM approximation is also often used in an analogous way for approximating other matrix
functions f(A) valuated at some given vector y, e.g., the matrix exponential f(A) = exp(A) (instead of
f(A) = A−1), making use of f(Hm) :

f(A)y ≈ Vm f(Hm)V
T

m y = Vm f(Hm)β e1, β = ‖y‖2

10.2 The GMRES (Generalized Minimal Residual) method

GMRES is the most popular Krylov subspace method applicable to any invertible matrix A, based on the
Petrov-Galerkin orthogonality (minimal residual) requirement (10.3a), Lm = AKm. For given m, GMRES
computes an orthogonal basis {v1, . . . , vm} of Km = Km(A, r0) and solves a linear system of dimension m
equivalent to (10.5a) in an efficient way.

The first step of the GMRES algorithm is to generate the set of basis vectors v1 . . . , vm by means of the
Arnoldi procedure, in the formulation based on Modified Gram-Schmidt, see Sec. 9.2 (Alg. 9.2).

52See (9.30) for the CG case.
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Exercise 10.2 Let A ∈ R
n×n be an invertible matrix. Assume r0 6= 0 and let H̄m ∈ R

(m+1)×m be defined by the
Arnoldi algorithm,

H̄m =




h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

h32 h33 . . . h3m

. . .
. . .

...

hm,m−1 hmm

hm+1,m




=




(Av1, v1) (Av2, v1) (Av3, v1) . . . (Avm, v1)

(Av1, v2) (Av2, v2) (Av3, v2) . . . (Avm, v2)

(Av2, v3) (Av3, v3) . . . (Avm, v3)

. . .
. . .

...

(Avm−1, vm) (Avm, vm)

(Avm, vm+1)




Consider the subdigonal entries of H̄m, and assume hj+1,j 6= 0 for j = 1 . . . m−1. Show:

a) Km = span{v1, . . . , vm} and dimKm = m.

b) H̄m has full column rank: rank H̄m = m (cf., e.g., (9.7)).

c) If hm+1,m = 0, then Am r0 ∈ Km (!). Conclude that Km = Km+1 = · · · = Kn.

Exercise 10.2 shows: As long as Alg. 9.2 does not break down, i.e., if hj+1,j 6= 0 for j = 1 . . .m − 1,
the Arnoldi vectors {v1, . . . , vm} form an orthogonal basis of Km (this fact was already established in
Lemma 9.1 above). Note that it is essential for Vm ∈ Rn×m to have full rank in order for the expression
(W T

mAVm)
−1 in (10.5b) to be meaningful. The case of a breakdown, i.e., hm+1,m = 0 with hj+1,j 6= 0 for

j = 1 . . .m− 1, is called a lucky breakdown 53 because, as we will see below, in this case we already hit the
exact solution x∗. (This is a consequence of Exercise 10.1.)

Let us assume the no-breakdown condition

hj+1,j 6= 0 for j = 1 . . .m−1 (10.6)

With
β = ‖r0‖2

we have β v1 = r0, and
β Vm+1 e1 = β v1 = r0 (10.7)

with e1 = (1, 0, 0, . . . , 0)T ∈ Rm+1.

The optimality criterion (10.3b) for GMRES is the key to compute xm in the form xm = x0 + Vmum.
Using (10.7) and the identity AVm = Vm+1H̄m (see (9.7)) we can write the residual of a vector x =
x0 + Vmum in the form

b− Ax = r0 − AVmum = β v1 − Vm+1H̄mum = Vm+1 (β e1 − H̄mum)

Moreover, since the columns of Vm+1 are orthonormal, we have ‖b− Ax‖2 = ‖Vm+1 (β e1 − H̄mum)‖2 =
‖β e1 − H̄mum‖2 . Thus, the optimality criterion (10.3b) is equivalent to a least square problem for um :
Find um ∈ Rm for which the minimum

min
x∈x0+Km

‖b−Ax‖2 = min
um∈Rm

‖β e1 − H̄mum‖2 (10.8)

is obtained. Since assumption (10.6) guarantees that H̄m has full rank, problem (10.8) can be uniquely
solved for um. One way to realize this is to set up and solve the normal equations

H̄T

mH̄mum = H̄T

mβ e1 (10.9)

53GMRES has no ‘serious breakdown’ scenario; however, a ‘computational breakdown’ may occur if the matrices to be
stored in memory become too large. See Remark 10.2 below.
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for the minimization problem (10.8), which is equivalent to (10.5a). For this system, for example, Cholesky
decomposition of H̄T

mH̄m could be employed (this would lead to a cost O(m3)). However, in view of the
fact that H̄m has upper Hessenberg form, it is customary and more efficient to employ a QR-decomposition
of H̄m instead, as discussed in the sequel.

Exercise 10.3 Brief review on the solution of linear least squares problems (cf. e.g. [2]):

Let k ≤ n and B ∈ R
n×k have full rank, and let b ∈ R

n. Show:

a) The minimization problem (least-squares problem)

Find uopt ∈ R
k such that ‖b−Buopt‖2 = min

u∈Rk
‖b−Bu‖2 (10.10)

has a unique solution uopt, given by the solution of the normal equations

BTBu = BT b

b) Let B be decomposed in the form B = QR̄, where Q ∈ R
n×n is orthogonal and R̄ ∈ R

n×k has (generalized)
upper triangular form,

R̄ =




R

0




with R ∈ R
k×k is upper triangular.

(i) Show that the assumption that B has full (column) rank implies that R is invertible.

(ii) Set b̃ = QTb ∈ R
n and decompose it as b̃ = (b̃T1 , b̃

T
2 )

T, where b̃1 ∈ R
k and b̃2 ∈ R

n−k.

Show: The solution uopt ∈ R
k of the minimization problem (10.10) is given by

uopt = R−1 b̃1

(iii) Show that the minimizer uopt satisfies ‖b−Buopt‖2 = ‖b̃2‖2. Thus, the minimal residual norm can be
computed independent of uopt.

(iv) Show that, actually, a reduced QR-decomposition is sufficient, i.e., only the first k columns of Q are
required. These columns form an orthonormal basis of the column space of A.

The least squares problem (10.8) has the standard form considered in Exercise 10.3, i.e., um is the solution
of the minimization problem

Find um ∈ R
m such that ‖β e1 − H̄mum‖2 is minimal . (10.11)

The QR-decomposition of H̄m is easy to realize because the upper Hessenberg matrix H̄m ∈ R(m+1)×m

is already ‘close to upper tridiagonal’: Only the m non-zero elements of H̄m below the diagonal need to
annihilated. This is typically accomplished using Givens rotations (cf. e.g. [2]).

This QR-decomposition gives H̄m = Qm+1R̄m, where Qm+1 ∈ R(m+1)×(m+1) is orthogonal and R̄m ∈
R(m+1)×m has the form

R̄m =



Rm

0




with Rm ∈ Rm×m upper triangular. As discussed in Exercise 10.3, Rm is invertible. Hence, the approximate
solution um ∈ Rm can be obtained via back substitution from

Rmu = g̃

where g̃ consists of the first m components of βQT
m+1 e1 = (g̃T, g′)T with g̃ ∈ Rm and g′ ∈ R. The pseudo-

code for this basic form of the GMRES algorithm is given as Alg. 10.1. It consists of the Arnoldi iteration
up to dimension m, followed by the solution of the resulting least squares problem (10.11).
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Algorithm 10.1 GMRES (basic form)

1: Compute r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2: Allocate the (m+1)×m -matrix H̄m and initialize elements hij to zero
3: for j = 1, 2, . . . , m do
4: Compute wj = Avj
5: for i = 1, . . . , j do
6: hij = (wj, vi)
7: wj = wj − hij vi
8: end for
9: hj+1,j = ‖wj‖2.
10: if hj+1,j = 0 set m = j and goto 12 % lucky breakdown
11: vj+1 = wj/hj+1,j

12: end for
13: Compute um as the minimizer of ‖β e1 − H̄mum‖2 and set xm = x0 + Vmum

Exercise 10.4 Use the fact that computing the QR-decomposition of the upper Hessenberg matrix H̄m requires

O(m2) flops. Assume that the matrix A ∈ R
n×n is sparse and that the cost of a matrix-vector multiplication

x 7→ Ax is O(n). Show that the cost of GMRES is O(m2n) flops. What is its memory requirement?

Remark 10.2 Some comments on Alg. 10.1:

• Our derivation of Alg. 10.1 assumed the no-breakdown condition (10.6). GMRES terminates upon
finding the first j = m with hm+1,m = 0, i.e., hj+1,j 6= 0 for j = 1 . . .m−1 and hm+1,m = 0.
This situation is called a lucky breakdown, since from Exercise 10.1 we know that then Km = Kn;
furthermore, from Exercise 10.1 we get xm = x∗, i.e., the GMRES happens to hit exactly the desired
solution x∗. Concerning the computation of xm, we note that Exercise 10.2 shows dimKm = m and
that H̄m has full rank, such that the computation of xm in line 12 of Alg. 10.1 is possible.

• In practice, the GMRES algorithm is implemented in a different way: The parameter m is not fixed
a priori. Instead, a maximum number mmax is given, typically dictated by computational resources,
in particular, the memory capacity available.

• The vectors v1, v2, . . . are computed successively together with the matrices H̄m. Note that, for
computing the optimal um and extracting the approximate solution xm = x0+Vmum at the end, the
full matrix Vm ∈ Rn×m – which becomes large for increasing m– has to be kept in memory! 54 Once
the vectors v1, . . . , vm−1 and the matrix H̄m−1 have already been computed, it is sufficient to compute
the next Arnoldi vector vm, and the matrix H̄m is obtained from H̄m−1 by adding one column and
the entry hm+1,m. Also, it is possible to update the required QR-decompositions in an efficient way
from step to step.

• An appropriate termination condition (typically, the size of the residual ‖rm‖2 = ‖b− Axm‖2) is
employed to stop the iteration. Note that the algorithm does not automatically provide xm explicitly
once only um has been computed. However, the residual norm

‖rm‖2 = ‖b−Axm‖2 = ‖β e1 − H̄mum‖2

is easily evaluated on the basis of Exercise 10.3; see also [19].

54For CG and D-Lanczos the situation is different because the vi can be reconstructed from a three-term recurrence.
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• If the maximum number of iterations has been reached without triggering the termination condition,
then a restart is usually performed, i.e., GMRES is started afresh with the last approximation
xmmax as the initial guess. This is called restarted GMRES(mmax). After a restart, the old data are
‘forgotten’, and storage requirements for the vj etc. begin to accumulate from scratch.

• A more detailed description of the various practical implementation issues can be found in [19].

Remark 10.3 Faute de mieux, the residual ‖b−Axm‖2 is typically used as a stopping criterion. It should
be noted that for matrices A with large κ2(A), the error may be large in spite of the residual being small:

‖xm − x∗‖2
‖x∗‖2

≤ κ2(A)
‖b− Axm‖2

‖b‖2
In this sense, only the backward error will be small under such a termination condition based on the norm
of the residual.

Remark 10.4 The Krylov method analogous to GMRES for the special case of a symmetric, possibly
indefinite matrix A is called theMinimal Residual Method (MINRES). Similarly like the D-Lanczos method
(which is of FOM type), MINRES involves tridiagonal matrices Hm = Tm, which leads to compact update
formulas similar to D-Lanczos.

The denotation GMRES is due to historical reasons, because the special symmetric version called MIN-
RES was introduced earlier in the literature.

10.3 GMRES in Matlab: The function gmres

Example 10.1 Matlab has a robust version of restarted GMRES that can be used for experimentation.
Applying this version of GMRES to the SPD matrix A ∈ R

1806×1806 bcsstk14.mtx from the MatrixMarket
collection, with exact solution x = (1, 1, · · · , 1)T results in the convergence history plotted in Fig. 10.2.
We note that the residual decays as the number if iterations increases. When the number of iterations
reaches the problem size, the exact solution should be found. As in this example, this does not happen in
practice due to round-off problems, but the residual is quite small.

In computational practice, GMRES is usually employed in connection with a suitable preconditioner.
From this we expect a significant improvement of the convergence behavior. Preconditioning is discussed
in Sec. 12.

The following is a printed copy of the help page for the GMRES method implemented in Matlab. As
for CG, alternatively to the matrix A, a function AFUN is sufficient which realizes the operation Ax.

The function gmres also supports a restarting strategy and preconditioning in several variants, but the
concrete preconditioner has to be provided by the user. As for A, the preconditioner may be specified in
form of a matrix or a function handle.

GMRES Generalized Minimum Residual Method.

X = GMRES(A,B) attempts to solve the system of linear equations A*X = B

for X. The N-by-N coefficient matrix A must be square and the right

hand side column vector B must have length N. This uses the unrestarted

method with MIN(N,10) total iterations.

X = GMRES(AFUN,B) accepts a function handle AFUN instead of the matrix
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Figure 10.2: Convergence history of GMRES (A is SPD).

A. AFUN(X) accepts a vector input X and returns the matrix-vector

product A*X. In all of the following syntaxes, you can replace A by

AFUN.

X = GMRES(A,B,RESTART) restarts the method every RESTART iterations.

If RESTART is N or [] then GMRES uses the unrestarted method as above.

X = GMRES(A,B,RESTART,TOL) specifies the tolerance of the method. If

TOL is [] then GMRES uses the default, 1e-6.

X = GMRES(A,B,RESTART,TOL,MAXIT) specifies the maximum number of outer

iterations. Note: the total number of iterations is RESTART*MAXIT. If

MAXIT is [] then GMRES uses the default, MIN(N/RESTART,10). If RESTART

is N or [] then the total number of iterations is MAXIT.

X = GMRES(A,B,RESTART,TOL,MAXIT,M) and

X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2) use preconditioner M or M=M1*M2

and effectively solve the system inv(M)*A*X = inv(M)*B for X. If M is

[] then a preconditioner is not applied. M may be a function handle

returning M\X.

X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) specifies the first initial

guess. If X0 is [] then GMRES uses the default, an all zero vector.

[X,FLAG] = GMRES(A,B,...) also returns a convergence FLAG:

0 GMRES converged to the desired tolerance TOL within MAXIT iterations.

1 GMRES iterated MAXIT times but did not converge.

2 preconditioner M was ill-conditioned.

3 GMRES stagnated (two consecutive iterates were the same).

[X,FLAG,RELRES] = GMRES(A,B,...) also returns the relative residual

NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. Note with

preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))).

[X,FLAG,RELRES,ITER] = GMRES(A,B,...) also returns both the outer and

inner iteration numbers at which X was computed: 0 <= ITER(1) <= MAXIT

and 0 <= ITER(2) <= RESTART.
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[X,FLAG,RELRES,ITER,RESVEC] = GMRES(A,B,...) also returns a vector of

the residual norms at each inner iteration, including NORM(B-A*X0).

Note with preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))).

Example:

n = 21; A = gallery(’wilk’,n); b = sum(A,2);

tol = 1e-12; maxit = 15; M = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M);

Or, use this matrix-vector product function

%-----------------------------------------------------------------%

function y = afun(x,n)

y = [0; x(1:n-1)] + [((n-1)/2:-1:0)’; (1:(n-1)/2)’].*x+[x(2:n); 0];

%-----------------------------------------------------------------%

and this preconditioner backsolve function

%------------------------------------------%

function y = mfun(r,n)

y = r ./ [((n-1)/2:-1:1)’; 1; (1:(n-1)/2)’];

%------------------------------------------%

as inputs to GMRES:

x1 = gmres(@(x)afun(x,n),b,10,tol,maxit,@(x)mfun(x,n));

See also bicg, bicgstab, bicgstabl, cgs, lsqr, minres, pcg, qmr, symmlq,

tfqmr, ilu, function_handle.

10.4 Convergence properties of the GMRES method

A convergence analysis for GMRES can be done along similar lines as for the CG method in Sec. 8.5.

Lemma 10.2 Let xm be the approximate solution obtained in the m-th step of the GMRES algorithm,
with residual rm = b− Axm. Then, rm is of the form

rm = r0 − pm−1(A)Ar0 = qm(A)r0, qm(λ) = 1− pm−1(λ)λ

with the ‘GMRES polynomial’ pm−1 ∈ Pm−1, and

‖rm‖2 = ‖
(
I − pm−1(A)A

)
r0‖2 = min

p∈Pm−1

‖
(
I − p(A)A

)
r0‖2

or equivalently, qm ∈ Pm with q(0) = 1 and

‖rm‖2 = ‖qm(A)r0‖2 = min
q∈Pm

q(0)=1

‖q(A)r0‖2

Proof: By construction, xm minimizes the 2-norm of the residual in the affine space x0 +Km. Thus, the
assertion follows from the fact that

x0 +Km = {x0 + p(A)r0 : p ∈ Pm−1} ⇒ rm = b− Axm ∈ {r0 − p(A)Ar0 : p ∈ Pm−1} �

Lemma 10.2 shows that GMRES iteration can be identified with a polynomial approximation problem
reflecting the minimal residual property, similar to the ‘Arnoldi/Lanczos approximation problem’ (9.15):

GMRES approximation problem:

Find a polynomial qm ∈ Pm with qm(0) = 1 such that ‖qm(A)r0‖2 becomes minimal . (10.12)
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Theorem 10.1 Assume that A is diagonalizable, A = XΛX−1, where Λ = Diag(λ1, λ2, . . . , λn) is the
diagonal matrix of eigenvalues. Let

ǫm = min
q∈Pm

q(0)=1

max
i=1...n

|q(λi)| (10.13a)

Then the norm of the m - th residual is bounded by

‖rm‖2 ≤ κ2(X)ǫm ‖r0‖2 (10.13b)

with κ2(X) = ‖X‖2 ‖X−1‖2.

Proof: Consider an arbitrary polynomial q ∈ Pm with q(0) = 1, and x ∈ x0 + Km such that b − Ax =
q(A)r0. Then,

‖r‖2 = ‖b− Ax‖2 = ‖q(A)r0‖2 = ‖X q(Λ)X−1 r0‖2 ≤ κ2(X)‖q(Λ)‖2 ‖r0‖2
with

‖q(Λ)‖2 = max
i=1...n

|q(λi)|

Since xm minimizes the residual norm over x0 +Km, then for any such polynomial q we have

‖rm‖2 = min
x∈x0+Km

‖b−Axm‖2 ≤ κ2(X)ǫm ‖r0‖2

with ǫm from (10.13a), as asserted. �

The quantity ǫm is related to the question whether such a polynomial qm exists which is ‘small on the
spectrum’ of A, in the sense of (10.13a). If appropriate a priori information about the spectrum is available,
‖εm‖2 can be estimated in a similar way as in the convergence proof for the CG method (see Sec. 8.5).

Example 10.2 Consider an invertible matrix A with real spectrum contained in an interval [α, β] ⊆ R+.
From Corollary 6.1 (which is based on the Chebyshev min-max Theorem 6.1), with γ = 0, we conclude

ǫm ≤ min
q∈Pm

q(0)=1

max
i=1...n

|q(λi)| ≤ min
q∈Pm

q(0)=1

max
λ∈ [α,β]

|q(λ)|

≤ 2
cm

1 + c2m
, c =

√
κ− 1√
κ+ 1

, κ =
β

α

However, if A far from normal, the quantity κ = β/α, which is related to the spectral condition number
κσ(A), is not related to the quantity κ2(A).

Moreover, the condition number κ2(X) of the matrix of eigenvectors appears in the estimate for ‖rm‖2.
For normal A we have κ2(X) = 1. In general, however, κ2(X) is typically not known and can be very
large, even if the condition number κ2(A) is of moderate size, e.g. if A is close to a non-diagonalizable
matrix. The simple convergence result from Theorem 10.1 is therefore of limited practical value.

Remark 10.5 For GMRES, the required effect of a preconditioner to accelerate convergence is less clear
cut than, e.g., for the CG method. In general, ‘bunching of eigenvalues’ is still a good strategy, as ǫm can
be bounded by a complex analog of the Chebyshev min-max Theorem; see [19].

Preconditioning is the topic of Sec. 12 ff.
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Exercise 10.5 Let A ∈ R
n×n be of the bidiagonal form

A =




1 c1

1 c2
. . .

. . .

1 cn−2

1 cn−1

1




with ci 6= 0. Show: The eigenvalue λ = 1 has geometric multiplicity 1. What is the corresponding eigenspace?
Furthermore, n is the smallest integer m for which (A− I )m = 0, and the characteristic polynomial χ(z) of A is
identical with its minimal polynomial, χ(z) = µ(z) = (z − 1)n. Try to explain how the GMRES iteration applied
to A behaves. (You may also test.)

Hint: The dimension of the eigenspace ker(A − I) is 1. Let u1 denote an eigenvector. A first principal vector u2
is a vector satisfying Au2 = u2 + u1, or equivalently, u2 ∈ ker((A − I)2), and so on. What is the dimension of

ker((A − I)2)? Now, consider higher and higher principal vectors, and the study the behavior of GMRES when

applied to r0 = u1, r0 = u2, and so on.

A GMRES residual decay estimate in the positive definite case.

Let us consider systems with a (not necessarily symmetric) positive definite matrix A. In particular, we
assume

(Ax, x) ≥ γ (x, x) for all x ∈ R
n (10.14)

i.e., ReA ≥ γ. (In the context of elliptic PDEs, such a quantitative condition is also called coercivity, or
ellipticity, see (A.2).)

The m - th iterate of the GMRES method minimizes the residual norm ‖rm‖2 over the affine Krylov space
r0 + AKm, see (10.3b). Since rm−1 ∈ Km, this implies

‖rm‖22 ≤ min
α∈R

‖rm−1 − αArm−1‖22

= min
α∈R

{
‖rm−1‖22 − 2α (Arm−1, rm−1) + α2‖Arm−1‖2

}

The minimum on the right hand side is attained at

αmin =
(Arm−1, rm−1)

‖Arm−1‖2
giving

‖rm‖22 ≤
(
1− (Arm−1, rm−1)/‖rm−1‖22

‖Arm−1‖2
)
‖rm−1‖22

Together with assumption (10.14) this gives

‖rm‖2 ≤
√

1− γ2

‖A‖22
‖rm−1‖2 (10.15)

The decay in (10.15) is uniform, i.e., the convergence of the residuals towards zero is geometric.

For this simple estimate we only have compared two successive residuals, but we have not made use of
the global minimal residual property. Therefore, a further consequence of estimate (10.15) that for the
positive definite case, also the restarted GMRES produces residuals with uniformly decreasing norms.

Exercise 10.6 Reformulate the estimate (10.15) in terms of the spectrum and condition number of A for the

case where A is SPD.
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11 Methods Based on Biorthogonalization. BiCG

The main disadvantage of GMRES is its high memory requirement. For symmetric matrices A, this can be
circumvented by using D-Lanczos, MINRES, or CG. The main reason for these savings in the symmetric
case is that – in the notation of Sec. 10 – the matrix W T

mAVm becomes tridiagonal. In general, this
property is also retained in biorthogonalization methods which we now consider.

Remark 11.1 Consider the Lanczos decomposition from Sec. 9.3 for symmetric A ∈ Rn×n,

V T

mAVm = Tm ∈ R
m×m tridiagonal, symmetric (11.1a)

where the columns vi ∈ Rn of Vm are orthonormal. As discussed before, this can be viewed as ‘reduced
version’ of the full orthonormal triangularization

V TAV = T ∈ R
n×n tridiagonal, symmetric (11.1b)

where the vi form an orthonormal basis of the full space Rn. The decompositions (11.1a) and (11.1b) can
be obtained in floating point arithmetic in a finite number of steps, in contrast to the eigendecomposition

XTAX = Λ ∈ R
n×n diagonal (11.2)

where the columns xi of X form an orthonormal basis of eigenvectors of A.

The idea of biorthogonality is not so far off. Consider an arbitrary, nonsymmetric diagonalizable matrix
A ∈ Rn×n, with eigendecomposition

X−1AX = Λ ∈ R
n×n diagonal (11.3a)

Here, the columns xj of X form a (generally non-orthonormal) basis of eigenvectors of A; they are also
called right eigenvectors of A. Transposing (11.3a) gives

XTATX−T = Λ (11.3b)

This shows that the columns yi of X
−T, i.e., the rows of X−1 are the (right) eigenvectors of AT. They are

also called left eigenvectors of A. Now, identity I = X−1X shows

(yi, xj) = δi,j

i.e., the pair of eigenbases (x1, . . . , xn) and (y1, . . . , yn) is biorthogonal. With Y = X−T we can write (11.3a)
in the form

Y TAX = Λ ∈ R
n×n diagonal (11.4)

In view of (11.1b), we may again ask for a directly computable modification of such a decomposition in
the form

W TAV = T ∈ R
n×n (unsymmetric) tridiagonal (11.5a)

with a biorthogonal matrix pair (V,W ), i.e., W TV = I, or, more generally, a reduced version analogous
to (11.1a),

W T

mAVm = Tm ∈ R
m×m (unsymmetric) tridiagonal (11.5b)

with Vm,Wm ∈ Rn×m satisfying W T
mVm = Im×m. This is exactly what the Lanczos biorthogonalization

procedure aims to realize.
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11.1 Lanczos biorthogonalization

Let v1, w1 ∈ Rn be a pair of vectors, and consider the Krylov spaces Km(A, v1) and Km(A
T, w1). The

classical algorithm to compute two sets of vectors {v1, . . . , vm} and {w1, . . . , wm} which span these two
spaces and which are biorthonormal, i.e., (vi, wj) = δi,j , is Alg. 11.1 specified below.

This algorithm, the Lanczos biorthogonalization procedure, is a generalization of the Lanczos orthonor-
malization procedure discussed in Sec. 9. We wish to find a pair of biorthogonal matrices Vm,Wm ∈ Rn×m,

Vm =




| | |
| | |
v1 v2

... vm

| | |
| | |




, Wm =




| | |
| | |
w1 w2

... wm

| | |
| | |




, W T

mVm = Im×m (11.6)

The idea due to Lanczos is to use two simultaneous Lanczos processes for A and AT. We make the following
ansatz motivated by the symmetric Lanczos procedure:

AVm = Vm+1 T̄m,

ATWm = Wm+1 S̄m

(11.7)

with a pair of (m+1)×m tridiagonal matrices

T̄m =




α1 β2

δ2 α2 β3
. . .

. . .
. . .

δm−1 αm−1 βm

δm αm

δm+1




, S̄m =




α1 δ2

β2 α2 δ3
. . .

. . .
. . .

βm−1 αm−1 δm

βm αm

βm+1




, (11.8)

The desired relations (11.7) are equivalent to a pair of three-term recurrences (cf. (9.14) for the symmetric
case),

Avj = βj vj−1 + αj vj + δj+1 vj+1

ATwj = δjwj−1 + αjwj + βj+1wj+1

(11.9)

for j = 1 . . .m, with β1 = δ1 = 0, from which it will be possible to compute v2, v3, . . . and w2, w3, . . . as
long as the βj and δj do not vanish.

So far we have not used the biorthogonality requirement for the vectors vi and wj . If this is assured,
together with (11.7) it will lead us to a decomposition of the desired form (11.5b),

W T

mAVm =W T

mVm+1T̄m =

Im×m

∣∣∣ 0

T̄m = Tm

where the square tridiagonal matrix Tm ∈ Rm×m is defined from T̄m (or, equivalently, from S̄T
m) by removing

its last row,

Tm =




α1 β2

δ2 α2 β3
. . .

. . .
. . .

δm−1 αm−1 βm

δm αm




∈ R
m×m (11.10)
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Algorithm 11.1 Lanczos biorthogonalization

1: Choose two vectors v1, w1 with (v1, w1) = 1
2: Set β1 = δ1 = 0, w0 = v0 = 0
3: for j = 1, 2, . . . , do
4: αj = (Avj , wj)
5: v̂j+1 = Avj − αj vj − βj vj−1

6: ŵj+1 = ATwj − αjwj − δjwj−1

7: δj+1 =
√

|(v̂j+1, ŵj+1)|. If δj+1 = 0 stop
8: βj+1 = (v̂j+1, ŵj+1)/δj+1

9: wj+1 = ŵj+1/βj+1

10: vj+1 = v̂j+1/δj+1

11: end for

With this notation, (11.7) can be written as (cf. (9.7))

AVm = VmTm + δm+1 vm+1 e
T

m

ATWm =WmT
T

m + βm+1wm+1 e
T

m

(11.11)

with em = (0, 0, . . . , 1)T.

The algorithmic realization consists in implementing the pair of three-term recurrences (11.7) and en-
forcing biorthogonality. This fixes the coefficients αj , βj and δj in the following, recursive way:

Assume that, for j ≥ 1, v1, . . . , vj and w1, . . . , wj already satisfy biorthogonality. We wish to construct
vj+1 and wj+1 according to (11.7) in a way such that the extended sequences v1, . . . , vj+1 and w1, . . . , wj+1

are also biorthogonal. Let

v̂j+1 = Avj − αj vj − βj vj−1,

ŵj+1 = ATwj − αjwj − δjwj−1

Consider the inner product (v̂j+1, wj) and enforce biorthogonality:

0
!
= (v̂j+1, wj) = (Avj , wj)− αj (vj, wj)︸ ︷︷ ︸

= 1

−βj (vj−1, wj)︸ ︷︷ ︸
= 0

This shows that αj has to be chosen as
αj = (Avj , wj)

Exactly the same choice for αj also leads to (ŵj+1, vj) = 0, as is easy to check. Furthermore, we rescale
v̂j+1 and ŵj+1 such that, with the normalization coefficients βj+1 and δj+1, the resulting normalized vectors
vj+1 = v̂j+1/δj+1 and wj+1 = ŵj+1/βj+1 satisfy (vj+1, wj+1) = 1. This is the standard choice, see Alg. 11.1.
This choice is not unique – the only requirement is δj+1βj+1 = (v̂j+1, ŵj+1). However, for other choices
the algorithm has to be appropriately modified, see [19].

The final outcome is Alg. 11.1, resulting in a pair of full biorthonormal bases {v1 . . . vm} and {w1 . . . wm}
of Km(A, v1) and Km(A

T, w1), respectively. The proof of full biorthonormality is the topic of the following
exercise.

Exercise 11.1 Show that the above construction automatically leads to a full biorthonormal sequence. In
particular, we have

0 = (vj+1, w1) = . . . = (vj+1, wj−1), 0 = (wj+1, v1) = . . . = (wj+1, vj−1)

Hint: Proof by induction, exploiting the structure of the three-term recurrences for the vj and wj . See Sec. 9.3

for the analogous argument in the symmetric case.
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The main advantage over the Arnoldi procedure consists in the fact that only short recurrences are
involved, which results in significant savings of computing costs and storage. On the other hand, the fact
that the transpose AT or a corresponding evaluation procedure is required may be a significant disadvantage
in applications where this is not readily available or expensive to evaluate.

Note that a serious breakdown occurs if δj+1 as defined in line 7 of Alg. 11.1 vanishes, in particular if
v̂j+1 6= 0 and ŵj+1 6= 0 but (v̂j+1, ŵj+1) vanishes or becomes very small. Such a breakdown is hardly
predictable; in the literature, strategies have been developed where the freedom in the choice of the βj and
δj is exploited to avoid breakdowns, e.g., by Look-Ahead - strategies. Still, this is a difficult topic; see [19]
for some details.

Summary of the properties of Lanczos biorthogonalization:

Theorem 11.1 Assume that Alg. 11.1 does not break down before step m. Then the vectors vj and wj,
j = 1 . . .m, are biorthogonal. Moreover, {v1, . . . , vm} is a basis of Km(A, v1) and {w1, . . . , wm} is a basis
of Km(A

T, w1). The following identities hold true:

AVm = VmTm + δm+1 vm+1 e
T

m

ATWm = WmT
T

m + βm+1wm+1 e
T

m (11.12)

W T

mAVm = Tm

with Tm from (11.10).

In general, the bases {v1, . . . , vm} and {w1, . . . , wm} are not orthogonal themselves.

Theorem 11.1 can be interpreted as follows. The matrix Tm is a projected version of A corresponding to
an oblique (non-orthogonal) projection onto Km(A, v1). More precisely: Consider the matrix

VmTmW
T

m = VmW
T

mAVmW
T

m ∈ R
n×n

By construction, VmW
T
m is an oblique projector onto span{v1, . . . , vm} = Km(A, v1) because due to

biorthogonality, VmW
T
mVmW

T
m = VmW

T
m. An analogous interpretation can be given for T T

m, which is a
projected version of AT (projection onto Km(A

T, w1)).

In the following section we consider a Krylov subspace method, BiCG, which is derived in a similar way
from Alg. 11.1 as D-Lanczos and GMRES were derived from the Lanczos and Arnoldi processes.

In Alg. 11.1, both mappings x 7→ Ax and x 7→ ATx are involved, and similar operations are performed
with them. This can be pursued further to see that, if two linear systems involving A and AT have to be
solved, methods based on Lanczos biorthogonalization appear to be natural. Otherwise it may be favorable
to avoid explicit evaluation of AT; we briefly discuss such techniques in Sec. 11.3.

11.2 BiCG

According to p. 84, case (iii), the approximation xm by a biorthogonal method is defined via the Petrov-
Galerkin condition

Find xm ∈ x0 +Km(A, r0) such that its residual rm = b−Axm satisfies rm ⊥ Lm = Km(AT, w1). (11.13)

We have:
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Lemma 11.1 Assume that Alg. 11.1 does not break down before step m. Assume that Tm is invertible.
Then, (11.13) has a unique solution of the form

xm = x0 + Vmum (11.14a)

where um is the solution of
Tmum = W T

m r0 = β e1, β = ‖r0‖2 (11.14b)

Proof: Exercise – essentially along the same lines as for D-Lanczos (see Sec. 9.5). �

Remark 11.2 The related so-called QMR (Quasi Minimal Residual ) method is also based on Lanczos
biorthogonalization. Here, in contrast to (11.14b), um is determined by minimizing ‖β e1 − T̄mum‖2 (sim-
ilarly as for GMRES), with e1 = (1, 0, . . . , 0)T ∈ Rm+1 and T̄m ∈ R(m+1)×m from (11.8).

Remark 11.3 Consider the ‘dual’ linear system ATx = b ′, where b ′ is a given vector. If x ′
0 is an initial

guess and w1 = r ′0 = b ′ − ATx ′
0, then (under the assumptions of Lemma 11.1) the solution u ′

m of

T T

mu
′
m = V T

m r
′
0 = β ′e1, β ′ = ‖r ′0‖2

leads to an approximation x ′
m = x ′

0 +Wmu
′
m which solves the Petrov-Galerkin problem (a dual version

of (11.13))
Find xm ∈ x0 +Km(A

T, r ′0) such that r ′m = b ′ − ATx ′
m ⊥ L ′

m = Km(A, v1) . (11.15)

This follows from the fact that, in the Lanczos biorthogonalization procedure, the matrices A and AT

occur in a way pari passu. In other words: simply change the role of A and AT. As a consequence, by
considering the Krylov spaces Km(A, r0) and Km(A

T, r ′0), it is possible to solve Ax = b and ATx ′ = b ′

simultaneously.

The procedure towards an algorithm now parallels that of our derivation of the D-Lanczos method (and
the CG algorithm); we will be slightly more brief here. In order to simplify the notation, we assume that
we wish to solve simultaneously the systems Ax = b and ATx ′ = b ′. We also assume that initial guesses
x0 and x

′
0 are prescribed. These determine the initial residuals r0 = b−Ax0, r

′
0 = b′ −ATx ′

0 and thus the
vectors v1 and w1, which in turn determine the Krylov spaces Km(A, v1) and Km(A

T, w1).

We assume that the matrix Tm delivered by Lanczos biorthogonalization has an LU-decomposition Tm =
LmUm. Then the approximate solutions xm, x

′
m are given by

xm = x0 +Dm zm, x ′
m = x ′

0 +D ′
m z

′
m

where Dm =

d0

∣∣∣ . . .
∣∣∣ dm−1


 = VmU

−1
m , D ′

m =

d ′

0

∣∣∣ . . .
∣∣∣ d ′

m−1


 =WmL

−T
m , and

zm = L−1
m (β e1), z ′m = U−T

m (β ′e1)

In order to formulate the BiCG algorithm, what has to be done is to combine the Lanczos biorthogonal-
ization process with the LU-decomposition of the tridiagonal matrix Tm into a single iteration:

Proceeding in the same way as in the derivation of the D-Lanczos method, one concludes that the
matrices Dm, D

′
m are obtained from Dm−1, D

′
m−1 by simply appending one column. Also, zm and z ′m are

obtained from zm−1, z
′
m−1 by adding one entry. As for the D-Lanczos method we therefore obtain

xm = xm−1 + ζmdm−1, x ′
m = x ′

m−1 + ζ ′
md

′
m−1

for suitable ζm, ζ
′
m. Furthermore, from Vm = DmUm and Wm = D ′

mL
T
m we have

dm−1 ∈ span{dm−2, vm}, d ′
m−1 ∈ span{d ′

m−2, wm}
Now, instead of explicitly computing the update formulas for ζm, ζ

′
m and dm, d

′
m, we may exploit the

(bi)orthogonality conditions in the same way as in the derivation of the CG algorithm from D-Lanczos:
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(i) The search directions dj , d
′
j form a A -biorthogonal system: This follows from

(
D ′

m

)T
ADm = L−1

m W T

mAVmU
−1
m = L−1

m TmU
−1
m = I

(ii) The residuals rm, r
′
m are multiplies of vm+1 and wm+1, respectively, and are therefore biorthogonal.

This follows as in the CG-case: From the definition of xm and Theorem 11.1 we get

rm = b− Axm = b− A(x0 + Vmum) = r0 − AVmum = β v1 − (VmTm + δm+1 vm+1 e
T

m)um

= Vm (β e1 − Tmum) + δm+1 vm+1 (e
T

mum) = δm+1 vm+1 (e
T

mum)

An analogous reasoning shows that r ′m is a multiple of wm+1.

We collect these findings:
xm+1 = xm + αm dm, x ′

m+1 = x ′
m + α ′

md
′
m

rm+1 = rm − αmAdm, r ′m+1 = r ′m − α ′
mA

Td ′
m

dm+1 = rm+1 + βm dm, d ′
m+1 = r ′m+1 + β ′

m d
′
m

(11.16)

Using the above orthogonality conditions, we obtain after some manipulations

αm = α ′
m =

(rm, r
′
m)

(Adm, d ′
m)
, βm = β ′

m =
(rm+1, r

′
m+1)

(rm, r ′m)
(11.17)

This leads to Alg. 11.2. (Here we ignore the update for the x ′
m, which can be omitted if we are only

interested in solving Ax = b.)

Algorithm 11.2 BiCG

1: Compute d0 = r0 = b−Ax0
2: Choose r ′0 such that (r0, r

′
0) 6= 0

3: for m = 0, 1 . . . do
4: αm = (rm,r ′

m)
(Adm,d ′

m)

5: xm+1 = xm + αmdm
6: rm+1 = rm − αmAdm
7: r ′m+1 = r ′m − αmA

Td ′
m

8: βm = (rm+1, r
′
m+1)/(rm, r

′
m)

9: dm+1 = rm+1 + βmdm
10: d ′

m+1 = r ′m+1 + β ′
md

′
m

11: end for

Remark 11.4 If a dual problem ATx∗ = b ′ is also to be solved, then r ′0 depends on the initial guess x ′
0

and the update for the x ′
m needs also to be explicitly carried out.

Exercise 11.2 Show that the BiCG method produces residuals rm, r ′m and search directions dm, d ′
m of the form

rm = ϕm(A)r0, r ′m = ϕm(AT)r ′0 ; dm = πm(A)r0, d ′
m = πm(AT)r ′0

where ϕm and πm are polynomials of degree m.
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11.3 A brief look at CGS and BiCGStab

In many applications the matrix A is not explicitly available, but merely a routine that provides the matrix-
vector multiplication x 7→Ax. In such a situation, the operation x 7→ATx is not necessarily available, and
therefore the BiCG-algorithm is not directly applicable. One of the reasons for developing the Conjugate
Gradient Squared (CGS) and the BiConjugate Gradient Stabilized (BiCGStab) methods was to circumvent
this problem. Here we illustrate the main ideas of the CGS method, which is a ‘transpose-free’ formulation
of the BiCG method. Working out all the details is a job involving manipulating Krylov recurrences.

Our starting point is the observation from Exercise 11.2. With the corresponding notation, the αm and
βm from (11.17) satisfy

αm =
(ϕm(A)r0, ϕm(A

T)r ′0)

(Aπm(A)r0, πm(AT)r ′0)
=

(ϕ2
m(A)r0, r

′
0)

(Aπ2
m(A)r0, r

′
0)
,

βm =
(ϕm+1(A)r0, ϕm+1(A

T)r ′0)

(ϕm(A)r0, ϕm(AT)r ′0)
=

(ϕ2
m+1(A)r0, r

′
0)

(ϕ2
m(A)r0, r

′
0)

We see: If we can derive a recursion for the vectors ϕ2
m(A)r0 and π2

m(A)r0, then we can compute the
parameters αm and βm in a transpose-free way, i.e., without explicit reference to AT.

The CGS algorithm computes approximations x̂m – equivalent to the xm delivered by BiCG – with
residuals rm = r̂m of the form

r̂m = ϕ2
m(A)r0 (11.18)

We now show that recurrences for the iterates x̂m and the residuals r̂m can indeed be realized. This is
achieved by some algebraic manipulation of some formulas: From the recurrences (11.16) for the residuals
rm and the search directions dm in BiCG, we obtain a pair of recursions for the polynomials ϕm and πm:

ϕm+1(λ) = ϕm(λ)− αmλπm(λ), (11.19a)

πm+1(λ) = ϕm+1(λ) + βmπm(λ) (11.19b)

Squaring yields

ϕ2
m+1(λ) = ϕ2

m(λ)− 2αmλϕm(λ)πm(λ) + α2
mλ

2π2
m(λ), (11.20a)

π2
m+1(λ) = ϕ2

m+1(λ) + 2βmϕm+1(λ)πm(λ) + β2
m+1π

2
m(λ) (11.20b)

From this we can obtain recurrences for the polynomials ϕ2
m and π2

m by introducing the auxiliary polynomial

ψm(λ) = ϕm+1(λ)πm(λ)

since the other cross term ϕm(λ)πm(λ) can be computed from the functions ϕ2
m(λ), π

2
m(λ) and ψm(λ) as

(see (11.20b))

ϕm(λ)πm(λ) = ϕm(λ)
(
ϕm(λ) + βm−1πm−1(λ)

)
= ϕ2

m(λ) + βm−1ϕm(λ)πm−1(λ) (11.21)

Combining (11.19a) with (11.20a) and (11.21) yields a recurrence for the polynomials ψm :

ψm(λ) = ϕm+1(λ)πm(λ) =
(
ϕm(λ)− αmλπm(λ)

)
πm(λ) = −αmλπ

2
m(λ) + ϕm(λπm(λ)

= −αmλπ
2
m(λ) + ϕ2

m(λ) + βm−1ϕm(λ)πm−1(λ)

= −αmλπ
2
m(λ) + ϕ2

m(λ) + βm−1ψm−1(λ)

This also allows us to obtain a recurrence for the residuals r̂m from (11.18). In order to motivate the
recurrence for the approximations x̂m, we make the ansatz x̂m+1 = x̂m + αm d̂m for some search direction
d̂m. The latter has to satisfy

r̂m+1 = b− Ax̂m+1 = b− A(x̂m + αm d̂m) = r̂m − αmAd̂m
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Since we require r̂m = ϕ2
m(A)r0, we obtain in view of (11.20a)

−αmAd̂m = r̂m+1 − r̂m = ϕ2
m+1(A)r0 − ϕ2

m(A)r0

= A
(
− 2αmπm(A)ϕm(A) + α2

mAπ
2
m(A)

)
r0

From this, we readily infer that d̂m is given by

d̂m =
(
2πm(A)ϕm(A)− αmAπ

2
m(A)

)
r0

Collecting these findings, for the vectors

r̂m = ϕ2
m(A)r0, p̂m = π2

m(A)r0, q̂m = ϕm+1(A)πm(A)r0

we obtain the following recursions (with x̂0 = x0, r̂0 = b− Ax̂0, p̂0 = r̂0, β0 = 0):

αm = (r̂m, r
′
0)/(Ap̂m, r

′
0),

d̂m = 2 r̂m + 2βm−1 q̂m−1 − αmA p̂m,

q̂m = r̂m + βm−1 q̂m−1 − αm−1A p̂m,

x̂m+1 = x̂m + αm d̂m,

r̂m+1 = r̂m − αmA d̂m,

βm = (r̂m+1, r
′
0)/(r̂m, r

′
0),

p̂m+1 = r̂m+1 + βm (2 q̂m + βj p̂m)

Remark 11.5 We refer to [19] for a slightly different formulation of the CGS algorithm. From the above
derivation of CGS it is not clear that it is indeed a Krylov subspace method. In the survey article [6] for
a more detailed discussion of the fact that the CGS can be viewed as a Krylov subspace method is given.
However, here the inner product with respect to which orthogonality is required is problem dependent.

It has been observed in numerical examples that the convergence of CGS is often ‘erratic’ and the
residuals can become very large. In order to remedy this, the BiCGStab variant was introduced, which
usually leads to a ‘smoother’ convergence behavior – this is mainly experimental evidence. We refer to [19]
for a more detailed description of the algorithm.

Many other variants have been developed, trying to combine desired virtues as non-erratic convergence
behavior, look-ahead strategies to avoid breakdowns, and transpose-free formulation. This is still an
active research area; ‘the universal method’ which solves all problems with best efficiency does not exist.
Particular classes of problems are often better understood (the SPD case is a typical example).

This leads us to the next topic, preconditioning. Here one tries to combine a standard technique like
CG or GMRES with a preprocessing step, aiming at solving an equivalent but ‘less harmful’ problem at
some extra cost per step. Most successful preconditioning technique are taylored to particular problem
structures; finding a good preconditioner is the main job in order to realize an efficient solution algorithm
for a particular class of problems.

Example 11.1 In some sense, the matrix A from Exercise 10.5 may be call an enfant terrible from the
point of view of Krylov subspace methods. Consider the case n = 10 with upper diagonal 1, i.e., a Jordan
block of dimension 10:
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Figure 11.1: Convergence history for Example 11.1.
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1 1
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1 1

1 1

1




While direct elimination ist trivial, any of the unpreconditioned methods is able to find a reasonable
solution before n steps. Figure 11.1 shows the convergence history for GMRES and BiCG; the only
difference is that BiCG finds, up to round-off, the exact solution ‘already’ after n− 1 steps. For CGS and
BiCGSTAB, a very similar behavior is observed.

Trying to give a heuristic interpretation of this effect, one may say that all these methods try to minimize
the norm of some polynomial pm(A) over the spectrum of A. For a highly nonnormal matrix like in
Exercise 11.1, the location of the spectrum by no means contains complete information about the behavior
of A. For all these methods, significant nonnormality is a critical issue which can, in general, only coped
with by appropriate preconditioning techniques.
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12 Preconditioning

12.1 General remarks; preconditioned GMRES

Preconditioning transforms the original linear system Ax = b into an equivalent one which is (hopefully)
easier to solve by an iterative technique. A good preconditionerM is an approximation for A which can be
efficiently inverted, chosen in a way that using M−1A or AM−1 instead of A leads to a better convergence
behavior. 55

In fact, CG or GMRES are rarely used directly. In practice, they are usually applied in collaboration
with some preconditioner. Historically, the full acceptance of the CG method startet around 1970 (20 years
after its invention), when the first practicable preconditioning techniques were designed.

Note that, whereas CG or GMRES are ‘general purpose’ techniques (CG for SPD matrices, GMRES
for general matrices), a preconditioner typically incorporates information about a specific problem under
consideration. Thus, the general purpose solver serves as a ‘template’ which is adapted to a particular
class of problems via preconditioning.

There are three general types of preconditioning.

• Left preconditioning by a matrix ML ≈ A :

M−1
L Ax =M−1

L b (12.1a)

Here, the preconditioned residual r̂ =M−1
L (b−Ax) =M−1

L r can be interpreted as an approximation
for the ‘exact correction’ A−1 r = x∗ − x = −e, i.e., the (negative) error of the current iterate x.

• Right preconditioning by a matrix MR ≈ A :

AM−1
R y = b, x =M−1

R y (12.1b)

This involves a substitution y for the original variable x.

• Split (two-sided) preconditioning with a pair of matrices ML, MR such that MLMR ≈ A :

M−1
L AM−1

R y =M−1
L b, x =M−1

R y (12.1c)

Split preconditioning encompasses both the left and the right methods by settingMR = I orML = I,
respectively.

Naturally, an important feature of the preconditioning matrices will be that they are easily inverted in
the sense that the ‘approximate problem’ Mv = y can be solved relatively cheaply.56 In the algorithms
below, evaluation of v =M−1y is to be understood as the solution of Mv = y.

The split preconditioned GMRES method is formulated in Alg. 12.1. It can be understood as simply
applying the classical GMRES (Alg. 10.1) to

M−1
L AM−1

R y =M−1
L b

with exact solution y∗ =MRx∗ and a starting vector y0 =MRx0. The relations x∗ =M−1
R y∗, x0 =M−1

R y0,
and setting xm =M−1

R ym =M−1
R (y0+Vmum) = x0+M

−1
R Vmum, allows one to write the GMRES iteration

in such a way that the auxiliary variables yi do not appear explicitly but only the original iterates xi, which
are the ones of interest. However, the Arnoldi vectors vj are to be identified with the transformed variable y.

55Here we use the traditional notation M for a preconditioner. Do not mix it up with the meaning of M in Section 5,
where it denotes the iteration matrix of a stationary scheme.

Sometimes the inverse M−1 ≈ A−1 is called a preconditioner. The action of M and that of M−1 should not be mixed up.
56Recall ‘rules’: Iterative methods only use the matrix-vector product x 7→ Ax; a practical preconditioner M is typically

only given as the action x 7→ M−1x; in fact, the matrix M is often not explicitly available.

Ed. 2017 Iterative Solution of Large Linear Systems



12.2 PCG: Preconditioned CG 105

Algorithm 12.1 Preconditioned GMRES

1: Compute r0 =M−1
L (b− Ax0), β = ‖r0‖2, and v1 = r0/β

2: Allocate the (m+ 1)×m matrix H̄m and initialize elements hij to zero
3: for j = 1, 2, . . . , m do
4: Compute wj =M−1

L AM−1
R vj

5: for i = 1, . . . , j do
6: hij = (wj, vi)
7: wj = wj − hij vi
8: end for
9: hj+1,j = ‖wj‖2
10: if hj+1,j = 0 set m = j and goto 13 % lucky breakdown
11: vj+1 = wj/hj+1,j

12: end for
13: Compute um as the minimizer of ‖β e1 − H̄mu‖2 and set xm = x0 +M−1

R Vmum

Remark 12.1 The left preconditioned GMRES minimizes the residual norm ‖M−1
L (b−Axm)‖2 over a

suitable Krylov subspace. Right preconditioning, on the other hand, minimizes the original residual
‖b− Axm‖2.

A natural question is whether left, right, or even split preconditioning is to be preferred. In many cases,
the convergence behavior is not significantly different. This is not completely unexpected in view of the
fact that the spectra of AM−1 (corresponding to right preconditioning) and M−1A (corresponding to left
preconditioning) coincide.

Let M be a preconditioner. A standard version of a split preconditioning is obtained by means of the
LU-decomposition M = LU , choosing ML = L and MR = U . Many preconditioners used in applica-
tion problems are constructed in this form; often, M is not directly computed but L and U are chosen
appropriately, with LU ≈ A.

12.2 PCG: Preconditioned CG

We discuss left preconditioning of the CG method, i.e., we consider solving

M−1Ax =M−1b (12.2)

where A is SPD. It will be natural and convenient to choose the preconditioner M to be SPD as well.

The CG algorithm in its original form (Alg. 8.1) is not directly applicable to the new system (12.2),
because the matrix M−1A is not SPD in general. However, it is SPD with respect to another inner
product on Rn :

Exercise 12.1 Let A,M ∈ R
n×n be SPD. Define the M -inner product (·, ·)M by (x, y)M = (Mx, y) = xTMy.

Show:

a) M−1A is selfadjoint with respect to the inner product (·, ·)M , i.e., (M−1Ax, y)M = (x,M−1Ay)M for all
x, y ∈ R

n.

b) M−1A is positive definite with respect to (·, ·)M , i.e., (M−1Ax, x)M > 0 for all 0 6= x ∈ R
n.

Hence we may apply the CG-algorithm 8.1 to the preconditioned system (12.2), replacing the standard
Euclidian inner product (·, ·) by the new inner product (·, ·)M . With the preconditioned residuals r̂k =
M−1 rk this leads to:
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1. r0 = b−Ax0, r̂0 =M−1 r0, d̂0 = r̂0
2. for k = 0, 1, . . . until convergence do

3. αk = (r̂k, r̂k)M /(M−1Ad̂k, d̂k)M
4. xk+1 = xk + αk d̂k
5. r̂k+1 = r̂k − αkM

−1Ad̂k
6. βk = (r̂k+1, r̂k+1)M /(r̂k, r̂k)M
7. d̂k+1 = r̂k+1 + βk d̂k
8. end for

The difficulty with this algorithm is that the evaluation of (·, ·)M involved in the computation of the βk
requires the matrix-vector multiplication x 7→ Mx. However, the ‘rule’ of our preconditioning strategies
is that only the matrix-vector multiplications x 7→ Ax and x 7→ M−1x should be used. However, it
is possible to rewrite this algorithm in a way avoiding matrix-vector multiplications x 7→ Mx, by re-
introducing the original residual rk =M r̂k. Updating rk along with the vectors xk, r̂k, and d̂k then leads
to the preconditioned CG-algorithm formulated in Alg. 12.2, with a slightly increases memory requirement.

Algorithm 12.2 Left-preconditioned Conjugate Gradient method

1: Compute r0 = (b− Ax0), r̂0 =M−1 r0, d̂0 = r̂0
2: for k = 0, 1, . . . until convergence do
3: αk = (rk, r̂k)/(Ad̂k, d̂k)
4: xk+1 = xk + αk d̂k
5: rk+1 = rk − αkAd̂k
6: r̂k+1 =M−1 rk+1

7: βk = (rk+1, r̂k+1)/(rk, r̂k)

8: d̂k+1 = r̂k+1 + βk d̂k
9: end for

Exercise 12.2 Consider the right-preconditioned system AM−1u = b, where u = Mx. Show that the matrix

AM−1 is symmetric positive definite with respect to the inner product (·, ·)M−1 defined by (x, y)M−1 = (M−1x, y).

Formulate the (right-)preconditioned CG algorithm. Formulate it in such a way that the auxiliary variable u and

the iterates uj = Mxj do not explicitly appear in the algorithm, but only the original iterates xj = M−1uj .

Exercise 12.3 Assume that the Cholesky decomposition M = LLT of an SPD preconditioner M is available.
Consider the split-preconditioned system with ML = L and MR = LT, i.e., applying the CG algorithm to the
SPD system L−1AL−Tu = L−1 b.

Show: The iterates xm = L−Tum coincide with those of the left-preconditioned CG method, i.e., Alg. 12.2

with preconditioner M . Furthermore, show that the iterates also coincide with the iterates obtained from right

preconditioned CG as developed in Exercise 12.2. (Note that the same argument holds for any SPD preconditioner

M implicitly specified by a regular matrix C with M = CCT.)

12.3 Preconditioning in Matlab

The Matlab implementations, in particular pcg and gmres, support left preconditioning, see Sec. 8.6
and 10.3. The preconditioner M =ML may be specified directly as a matrix or via two matrices M1 and
M2 such that ML =M1M2 (e.g., in form of an LU-decomposition of M for easy inversion). In both cases,
applying the preconditioner means solving systems of the form My = r, see Alg. 10.1 and 12.2. Similarly
as for A itself (function handle AFUN), the backsolving function r 7→ M−1 r may be specified in form of a
function handle57 MFUN.

57Note: While AFUN corresponds to x 7→ Ax, MFUN corresponds to x 7→ M−1x.
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Figure 12.1: Convergence history for Example 12.1.

Example 12.1 This is just for trying out the way of usage: We run the example from doc gmres with
and without preconditioning; see Fig. 12.1. In this example, A is symmetric tridiagonal and not far from
diagonally dominant; M = diag(A) is therefore a plausible preconditioner.

n = 21;

A = gallery(’wilk’,n);

b = sum(A,2);

tol = 1e-12;

maxit = n;

[x1,flag1,relres1,iter1,resvec1] = gmres(A,b,n,tol,maxit);

M = diag([10:-1:1 1 1:10]);

[x2,flag2,relres2,iter2,resvec2] = gmres(A,b,n,tol,maxit,M);

%

% Or, use this matrix-vector product function

%

% function y = afun(x,n)

% y = [0; x(1:n-1)] + [((n-1)/2:-1:0)’; (1:(n-1)/2)’].*x+[x(2:n); 0];

%

% and this preconditioner backsolve function

%

% function y = mfun(r,n)

% y = r ./ [((n-1)/2:-1:1)’; 1; (1:(n-1)/2)’];

%

% as inputs to GMRES:

%

[x2,flag2,relres2,iter2,resvec2] = gmres(@(x)afun(x,n),b,n,tol,maxit,@(x)mfun(x,n));

%

loglog([1:length(resvec1)+1],[resvec1./norm(b,2);norm(b-A*x1,2)/norm(b,2)],’--’,...

[1:length(resvec2)+1],[resvec2./norm(b,2);norm(b-A*x2,2)/norm(b,2)],’-o’,...

’LineWidth’,2);

set(gca,’FontSize’,16)

legend(’GMRES’,’GMRES with PC’,’Location’,’SouthEast’)

xlabel(’iteration count’)

ylabel(’relative residual’)

title(’Example: "gallery(wilk)" (n = 21)’)

set(gca,’XTick’,[1 10 100 1000 10^4 10^5])
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12.4 Convergence behavior of PCG

We consider the PCG algorithm with left preconditioning as described in Sec. 12.2. The convergence
analysis follows along similar lines as in Sec. 8.5.

In its essence, the PCG algorithm coincides with the standard CG algorithm; only the standard Euclidean
inner product (·, ·) is replaced by the M - inner product (·, ·)M . Moreover, M−1A plays the role of A, and
PCG is just a Krylov subspace method for solving M−1Ax = M−1 b. Thus we conclude that the iterates
xm are uniquely characterized by the FOM-type Galerkin orthogonality in the form

r̂m =M−1 rm =M−1 (b− Axm) ⊥M K̂m (12.3)

where the Krylov space K̂m = Km(M
−1A, r̂0) is given by

K̂m = span{r̂0, . . . , (M−1A)m−1 r̂0}, r̂0 =M−1 r0 =M−1 (b−Ax0)

Due to (r̂, v)M = (M−1 r, v)M = (r, v), the Galerkin orthogonality condition (12.3) involving K̂m is equiv-
alent to the original Galerkin condition for the unpreconditioned residual rm, but with Km replaced by
K̂m. Thus we again have (see (8.6))

‖xm − x∗‖A = inf
x∈x0+K̂m

‖x− x∗‖A (12.4a)

Exactly as in the case of standard CG we obtain, using K̂m = span{r̂0, . . . , (M−1A)m−1 r̂0}, that the
xm ∈ x0 + K̂m can be written in the form

xm = x0 + pm−1(M
−1A) r̂0

with the PCG polynimial pm−1 ∈ Pm−1. Thus, with e0 = x0 − x∗,

xm − x∗ = e0 + xm − x0 = e0 + pm−1(M
−1A) r̂0 = e0 + pm−1(M

−1A)M−1r0

= e0 − pm−1(M
−1A)M−1Ae0 =

(
I − pm−1(M

−1A)M−1A
)
e0 =: qm(M

−1A)e0

Thus, the optimality condition (12.4a) gives

‖em‖A = ‖xm − x∗‖A = min
q∈Pm

q(0)=1

‖q(M−1A)e0 ‖A (12.4b)

where the minimum is attained by some optimal polynomial q = qm.

Due to the fact that A and M are SPD, M− 1
2AM− 1

2 is also SPD, and the ‘preconditioned spectrum’

σ(M−1A) = σ(M− 1
2AM− 1

2 )

is positive. Thus we arrive at

‖em‖A = min
q∈Pm

q(0)=1

‖q(M−1A)e0 ‖A ≤ min
q∈Pm

q(0)=1

max
i=1...n

|q(λi)| · ‖e0‖A (12.5)

where the λi > 0 are the eigenvalues of M− 1
2AM− 1

2 and also of M−1A.

The outcome is the same as in Theorem 8.1 for the CG method, with A replaced by M−1A. Thus,
identity (12.5) shows:

The convergence of PCG depends on the spectrum of the preconditioned matrix M−1A.

As in the case of the CG method, an overall (worst case) bound involves the ratio of the largest and the
smallest eigenvalue of M−1A. We formulate this as an exercise.
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Exercise 12.4

a) Show: The speed of convergence of the PCG iteration can be estimated by

‖em‖A ≤ 2
(√κ− 1√

κ+ 1

)m
‖e0‖A, κ = κσ(M

−1A) =
λmax

λmin

where λmax and λmin are the largest and smallest eigenvalues of M−1A, and κσ(M
−1A) = λmax/λmin is the

spectral condition number (in general, this is not identical with κ2(M
−1A)).

b) Show that a characterization of λmin and λmax which may be easier to check is the following: λmin is the
largest and λmax is the smallest number such that

λminM ≤ A ≤ λmaxM

is valid.

c) Show: If α, β > 0 can be found such that
αM ≤ A ≤ βM

then α ≤ λmin, β ≥ λmax, and thus, κσ(M
−1A) ≤ β/α.

12.5 Preconditioning techniques in general

As mentioned before, CG and GMRES are fairly general solution techniques. In practice, the precondi-
tioner M ≈ A is chosen in dependence on properties of the matrix A and is the key component of the
iterative solution method. A few general comments concerning the choice/design of a preconditioner are:

• M−1A should be ‘close’ to the identity matrix or at least have a spectrum that is clustered.

• The operation x 7→ M−1x should be cheap/easy to perform. Note that this condition depends also
on the computer architecture employed. As we will see below, a Gauss-Seidel preconditioner may
be better than a Jacobi preconditioner (in terms of iteration count), but a Jacobi preconditioner
requires less communication and is often more natural and efficient to realize on a parallel computer.

A good preconditionerM typically depends on the problem under consideration. For many preconditioning
techniques, theoretical results about their performance are available (e.g., via bounds for κσ(M

−1A) in
the case of PCG), but often, testing with representative examples is equally important.

In this section we discuss a few preconditioning techniques that could be applied in many circumstances.
We point out that these techniques are fairly general and may not always be very effective. However, since
they are easy to use they are often worth an initial investigation. A more detailed discussion of these
techniques can be in found in [19].

Classical iterative schemes as preconditioners.

Every linear stationary iteration

xk+1 = xk +N(b−Axk) = (I −NA)xk +N b = Gxk +N b (12.6)

induces a preconditioner. Here, for the iteration matrix of the scheme we write I−NA = G. 58 Convergent
linear iterations satisfy ρ(G) < 1, i.e., G is ‘small’; in other words: NA is ‘close to’ I because N plays the
role of an approximate inverse. Hence, the matrix W = N−1 may be used as a preconditioner M – it is
an approximation for A.

58This notation G is different from Sec. 5 (G=M); in the present context, M always denotes a preconditioner.
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For the classical splitting methods (Jacobi, Gauss-Seidel, SOR, SSOR) such a preconditioner W = N−1

can be read off directly from the identity G = I − NA; the formulas given in Sec. 5.2, p.30. For example,
with A = L+D + U ,

– Jacobi preconditioner: MJ = D

– Gauss-Seidel preconditioner: MGS = L+D

– Symmetric Gauss-Seidel preconditioner: MSGS = (L+D)D−1(D + U)

Jacobi preconditioning may be interpreted as a diagonal rescaling of the original matrix A as D−1A,
resulting in a matrix with unit diagonal.

We stress that the action of these preconditioners can be easily realized since the matrices L +D and
D + U have triangular structure. We also note that MSGS is symmetric if the underlying matrix A is.
This allows us to employ it as a preconditioner for PCG.

More generally, applying several steps of a convergent linear stationary iteration (12.6) define a precon-
ditioner. Performing k steps means that G = I −NA is replaced by

Gk = (I −NA)k = I −NkA with Nk = (I −Gk)A−1 ≈ A−1

and the corresponding preconditioner is

M = N−1
k = A(I −Gk)

−1 ≈ A (12.7)

In the following theorem we relate the quality of of a preconditioner based on a stationary linear iteration
with iteration matrix G to its convergence speed, i.e., to the contraction factor ‖G‖ ≤ ξ < 1, assuming
the iteration is convergent in some norm ‖ · ‖.

Theorem 12.1 Let M ≈ A be the preconditioner (12.7) defined by k steps of the linear stationary itera-
tion (12.6), with an iteration matrix G = I −NA satisfying ‖G‖ ≤ ξ < 1. Then,

(i) ‖M−1A‖ ≤ 1 + ξk

(ii) cond(M−1A) ≤ 1 + ξk

1− ξk

(iii) If ‖G‖ is an ℓ2 -contraction, i.e., if ‖G‖2 ≤ ξ < 1, then M−1A is positive definite; in particular,

(M−1Ax, x) ≥ (1− ξk)‖x‖22 for all x ∈ R
n

Proof: From (12.7) we have M−1A = I −Gk.

• ad (i): From (12.7),
‖M−1A‖ = ‖(I −Gk)‖ ≤ 1 + ‖Gk‖ ≤ 1 + ξk

• ad (ii): To estimate ‖(M−1A)
−1‖ = ‖(I −Gk)

−1‖ from above, we consider an arbitrary x ∈ Rn and
estimate ‖(I −Gk)x‖ from below: With ‖Gkx‖ ≤ ξk ‖x‖ < ‖x‖ we have

‖(I −Gk)x‖ ≥ ‖x‖ − ‖Gk x‖ ≥ (1− ξk)‖x‖

This implies ‖(M−1A)
−1‖ ≤ (1− ξk)

−1
, and together with (i) this gives (ii).
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• ad (iii): For arbitrary x ∈ Rn,

(M−1Ax, x) = ((I −Gk)x, x) = (x, x)− (Gkx, x)

≥ ‖x‖22 − ‖Gkx‖2 ‖x‖2 ≥ (1− ξk)‖x‖22

which proves (iii). �

Remark 12.2 Theorem 12.1, (iii) shows that under the assumption ‖G‖2 ≤ ξ < 1 the preconditioned
matrix M−1A is positive definite and satisfies the coercitivity condition (10.14) with τ = 1− ξk, entailing
the residual decay estimate (10.15) for preconditioned GMRES. Therefore, under these circumstances
preconditioning leads to regular convergence behavior, in contrast to the ‘arbitrarily bad’ convergence
behavior encountered in examples like that one considered in Exercise 11.1.

Remark 12.3 The convergence criterion ρ(G) < 1 is rather strict. On the other hand, if a preconditioner
is only ‘good’, it is better than nothing. In particular, something like

‖M−1A‖ ≤ C, ‖A−1M‖ ≤ C, C a moderate-sized constant

is sufficient to ensure a satisfactory convergence property of a preconditioned Krylov subspace method.
Cf. also the related Exercise 12.4 for the case of PCG – here, spectra are involved instead of norms.

This reasoning shows that the choice of an appropriate preconditioner is in some sense easier than
searching for one that leads to a convergent linear iteration scheme, because the requirements on the
preconditioner are less strict. This is why the combination of Krylov methods with preconditioning has
become so popular.

In practice, the linear system Ax = b to be solved is a member of a family of systems with increas-
ing dimension n (typically, n → ∞ for some discretization parameter h → 0). In this case, a perfect
preconditioner may characterized by the property

‖M−1A‖ ≤ C, ‖A−1M‖ ≤ C, C a moderate-sized constant independent of n,

of course at moderate computational cost for the preconditioning step.

Incomplete decompositions: ILU and its variants.

A popular class of preconditioners are incomplete decompositions. Such a type of preconditioning is
also one of the historically earliest examples (around 1970) which made the PCG method become widely
accepted.

In Sec. 3 on direct methods we have seen that computing the LU-decomposition of a sparse matrix A may
result in considerable fill-in. In view of the fact that a preconditioner just needs to be an approximation
to A, one may consider computing an approximate decomposition L̃ Ũ ≈ A, where L̃ and Ũ should also
be sparse. Choosing M = L̃ Ũ then leads to an efficient evaluation of x 7→ M−1x, since y = L̃−1x and
M−1x = Ũ−1 y can easily be realized by forward and backward substitution.

Matlab has built-in functions to compute these incomplete factors as well as few other variants, e.g.,
MILU (see the book [19] for further details). See: help ilu, help ichol.
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ILU(0).

Let NZ(A) denote the set of index pairs (i, j) with Ai,j 6= 0, the ‘sparsity pattern’ of A. In the ILU(0)
technique, the factors L̃ and Ũ are required to satisfy:

(i) L̃ and Ũ have the same sparsity pattern as A,

i.e., NZ(L̃+ Ũ) = NZ(A) (12.8a)

(ii) the non-zero entries of L̃ and Ũ are such that

(L̃Ũ)i,j = Ai,j for all index pairs (i, j) ∈ NZ(A) (12.8b)

Algorithmically, this can be realized by modifying standard LU-decomposition in such a way that only
the non-zero entries of the factors L and U are computed; the remaining fill-in is simply ignored. To see
how this works, consider e.g. the Crout scheme for computing an LU-decomposition (see [2]): Assume, for
example, that a21 = a3n = 0. The the scheme is modified enforcing ℓ21 = 0 and u3n = 0:

∣∣∣∣∣∣∣∣∣∣∣∣

u11 u12 u13 . . . u1n

u22 u23 . . . u2n

u33 . . . 0

. . .
...

unn

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0 1

ℓ31 ℓ32 1
...

. . .
. . .

ℓn1 . . . . . . ℓn,n−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

a31 a32 a33 . . . 0
...

. . .
...

an1 . . . . . . . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

Now, in the usual way, by comparing coefficients, we successively compute

• the first row of U (= first row of A),

• the first column of L,

• the second row of U ,

• the second column of L,

• the third row of U ,

• and so on.

Here, the equations corresponding to the indices inNZ(A) are processed in the usual way, and the equations
involving the zero entries of A are simply ignored. If N0 is the number of non-zero entries in A, we have N0

less unknowns, andN0 less parameters ℓij and ui,j to be determined (compared to a full LU-decomposition).

An equivalent version in the spirit of Gaussian elimination is executed by Alg. 12.3. The algorithm
overwrites the matrix A with the factors L̃ and Ũ (as usual, the diagonal contains the diagonal of Ũ since
the diagonal of L̃ has fixed entries 1).

Comments concerning existence, uniqueness, and implementation of ILU(0):
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Algorithm 12.3 ILU(0) – KIJ-variant

% overwrites A with incomplete LU-decomposition; entries Li,i = 1 not stored

1: for k = 1, 2, . . . , n− 1 do
2: for i = k+1 . . . n and (i, k) ∈ NZ(A) do
3: aik = aik/akk
4: for j = k+1 . . . n and (i, j) ∈ NZ(A) do
5: aij = aij − aik akj
6: end for
7: end for
8: end for

• There is a priori no guarantee that an incomplete decomposition can be computed. For certain
classes of matrices such as M-matrices,, however, it is known that an incomplete LU-decomposition
exists, see [19, Theorem 10.1]. A matrix A is called an M-matrix if

• Ai,i > 0 ∀ i
• Ai,j ≤ 0 ∀ i, j with i 6= j

• A is invertible, with (A−1)i,j ≥ 0 ∀ i, j

In particular, the matrices A from the Poisson example 2.2 are M-matrices.

• By construction, we have
A = L̃ Ũ −R

with a ‘residual matrix’ R.

• In practice, instead of Alg. 12.3 a different variant of Gaussian elimination is employed. For sparse
matrices A which are stored row by row (e.g., in the CRS-format) it is better to rearrange the three
loops (over i, j and k) such as to operate on whole rows of A (row-wise elimination). This leads to
the so-called IKJ-variant of (incomplete) LU-decomposition.

Remark 12.4 ILU(0) employs the same sparsity pattern as the matrix A. One could employ other
sparsity patterns for the factors L̃ and Ũ . One way to choose them is done in the ILU(p) methods
(see [19]), where p ∈ N0 is a measure for the amount of fill-in we wish to accept.

A drawback of the ILU(0) strategy is that it ignores the actual size of the entries of the exact factors
L and U . ILUT based on ‘thresholding’ tries to incorporate this into the method. In this approach the
sparsity pattern of the factors L̃ and Ũ is determined on the fly during the decomposition process, since
the magnitude of the entries of L and U is not a priori known.

Incomplete Cholesky (ICC).

For SPD matrices A, it is common to use the Cholesky decomposition A = LLT instead of the LU-
decomposition. This sparked the development of incomplete Cholesky decomposition techniques analogous
to ILU and ILUT.

For classical Cholesky applied to an SPD matrix A, all occurring square roots are well-defined positive
numbers, such that is always guaranteed that the diagonal of L is positive. If we use a version of incomplete
Cholesky decomposition for preconditioning in PCG, we have to ensure thatM = L̃ L̃T is positive definite.
For this purpose it may be necessary to ‘strengthen’ the diagonal entries.
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Figure 12.2: Convergence history for Example 12.2.

Fast direct solvers for simplified problems. A Poisson preconditioner.

For special prominent problem types, fast direct solvers are sometimes available. An example ist the fast
Poisson solver discussed in Sec. 4. If, for instance, we wish to solve a stationary diffusion-reaction equation
of the form

−∆u(x, y) + c(x, y)u(x, y) = f(x, y) on Ω, u|∂Ω = 0

on a rectangular domain Ω, then – after discretization via FD or FEM – it is tempting to use the fast
solver for the Poisson case (with c(x, y) = 0) for preconditioning.

After FD discretization as in Example 2.2, the problem takes the form of a linear system Ax = b
with A = M + h2C, where M is the Poisson FD matrix approximating −h2∆ and C = diag(cij) with
ci,j = c(xi, yj). For c(x, y) ≥ 0 the given problem is well-posed. With M as preconditioner we obtain

‖M−1A‖2 = ‖I +M−1h2C‖2 ≤ 1 + h2‖M−1‖2 ‖C‖2 ≈ 1 +
h2 ‖c‖∞
2h2π2

= 1 +
‖c‖∞
2π2

independent of h = 1/(n+1), and by a similar argument using the uniform boundedness of A−1 we also
can argue that ‖A−1M‖2 is bounded independently of h. Thus, our ‘Poisson preconditioner’ is expected
to be very effective – on the other hand it cannot be called ‘cheap’ because in each step a Poisson-like
problem has to be solved.

Example 12.2 We compare standard CG and ‘Poisson-preconditioned CG’ for n = 64 and c(x, y) such
that ‖C‖2 ≈ 10. CG satisfies the residual tolerance 1E-10 after 210 steps; with preconditioning we need 6
steps to converge; see Fig. 12.2.

The preconditioner from Example 12.2 is easy to implement, but still the computational effort is signif-
icantly higher than for a single Poisson solution. For such types of problems more advanced and effective
techniques exist which are also applicable for more general differential operators and geometries. We will
discuss such techniques to some extent in Sec. 13 and 14.
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Approximate inverses.

For notational convenience and variety of presentation, we here consider the generation of right precondi-
tioners.

Starting from the observation that the (right) preconditioner M should satisfy AM−1 ≈ I, approximate
inverse preconditioners are directly aiming at a matrix M−1 =: X (hopefully invertible) such that

‖AX − I‖

is small in some norm. The matrix-vector multiplication x 7→ Xx is then taken as the action of the
preconditioner. For this to be viable, the matrix X needs to be sparse. One possible way of generating X
is to prescribe its sparsity pattern and then try to construct X as the minimizer of

min{‖AX − I‖F : X ∈ R
n×n with prescribed sparsity pattern} (12.9)

where the Frobenius matrix norm is given by ‖X‖2F =
∑n

i,j=1X
2
i,j . (An alternative to prescribing the

sparsity pattern of X would again be to employ some dropping strategies, e.g., to keep only the p largest
entries of each row or column of X .)

The choice of the Frobenius norm is, of course, somewhat arbitrary, but is convenient since minimizing
the objective functional

ϕ(X) := ‖AX − I‖2F
is equivalent to minimizing the ‖ · ‖2 -norm of the columns of AX − I, seen as one ‘long vector’. The
corresponding inner product is

(X, Y )F =

n∑

i,j=1

Xi,j Yi,j = trace(Y TX), ‖X‖2F = (X,X)F

Thus, (12.9) is an unconstrained minimization problem, namely simply a standard least squares problem
associated with the over-determined system AX = I of n2 equations in m unknowns, where m is the
number of prescribed non-zero entries for the solution X .

The only formal difference to a standard least squares problem consists in the fact that a matrix X is
looked for. Instead of rewriting this in terms of ‘long vectors’ and proceeding in a standard way, it is more
natural here to stick to the matrix formulation. At the desired solution X , the gradient of ϕ must vanish.
To represent the gradient in form of a matrix D = D(X) ∈ Rn×n (analogous to A and X), we consider
the local linearization of ϕ(X) = ‖AX − I‖2F at some matrix X in the form

ϕ(X+H) = ϕ(X) + (Dϕ(X), H)F +O(‖H‖2F )

Then, D(X) is the matrix representation for the gradient (the Fréchet derivative) of ϕ at X . The question
is now to determine D(X).

Exercise 12.5 Expand ϕ(X+H) to conclude

ϕ(X+H) = ϕ(X)− 2(ATR,H)F + ‖AH‖2F with the residual matrix R = I − AX (12.10)

Note that this expansion is, in fact, exact because ϕ(X) is a quadratic functional.

Equation (12.10) shows that the matrix representation for the gradient D(X) is given by

D(X) = −2ATR = 2AT (AX − I)

Iterative Solution of Large Linear Systems Ed. 2017



116 12 PRECONDITIONING

and the system
D(X) = 0 ⇔ AT(AX − I) = 0

is the system of normal equations for our minimization problem. For the prescribed sparsity pattern of X
with m entries, its dimension is m×m.

In practice (for large matrices A), direct solution of this system is often out of scope. As an alternative,
an iterative technique in the like steepest descent (SD) may be used. The formulation of the corresponding
algorithm is analogous to the SD algorithm from Sec. 7.1, but with respect to the inner product (X, Y )F =
trace(Y TX), with the negative gradient matrix D(X) as search direction, see Alg. 12.4.

However, in this approach the iterates X will tend to become denser at each step. Therefore it is
essential to apply a numerical dropping strategy for the undesired elements. But then descent is no
longer guaranteed, i.e., we do not necessarily have ϕ(Xnew) < ϕ(Xold). An alternative would be to apply
numerical dropping to the search direction S before updating X . However, this does not directly control
the amount of fill-in in the iterates X . See [19] fur further remarks.

Algorithm 12.4 Global Steepest Descent algorithm

1: Choose an initial guess X with given sparsity pattern
2: Until convergence do
3: R = I − AX , S = ATR
4: α = ‖S‖2F /‖AS‖2F
5: X = X + αS
6: Apply numerical dropping to X
7: end do

Alternatively, it has been proposed to use the residual matrix R = I − AX as the search direction, see
Alg. 12.5.

Algorithm 12.5 Global Minimal Residual Descent algorithm

1: Choose an initial guess X with given sparsity pattern
2: Until convergence do
3: R = I − AX
4: α = trace(RTAR)/‖AR‖2F
5: X = X + αR
6: Apply numerical dropping to X
7: end do

Exercise 12.6 Show that (apart from the dropping step) Alg. 12.4 is indeed the steepest descent algorithm for

the problem under consideration. (Cf. the derivation of the SD algorithm in Sec. 7.1, but note the different inner

product.) Furthermore, show that formulation of Alg. 12.5 is correct.

In both algorithms, the residual matrix R needs to be explicitly stored. The occurring scalar quantities,
including ‖AS‖2F and trace(RTAR) can be computed from the successive columns of AS, etc., which can
be successively computed, used, and discarded again. Thus, the matrix products AS and RTAR need not
to be explicitly stored.
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Column-oriented technique.

The objective functional ϕ(X) = ‖AX − I‖2F can also be expressed as

ϕ(X) =
n∑

j=1

‖Axj − ej‖22

in column-wise notation. Since the j-th column xj of X occurs only in the j-th term, minimization of ϕ
evidently decouples into n individual minimization problems

ϕj(X) := ‖Axj − ej‖22 7→ min!, j = 1 . . . n (12.11)

An attractive feature of this formulation is that the minimization can be done for all columns in parallel.
Each minimization can be performed by taking a sparse initial guess and solving approximately the n
parallel linear subproblems (12.11) with a few steps of a nonsymmetric descent-type method. A basic
version based on steepest descent in residual direction(s) is formulated in Alg. 12.6.

Algorithm 12.6 Approximate inverse via MR Iteration

1: X = X0 % initial guess for X , e.g., X = I
2: for each column j = 1 . . . n do
3: set xj = X0 ej
4: for k = 1 . . . until some stopping criterion is met do
5: rj = ej − Axj
6: αj =

(rj ,Arj)

(Arj ,Arj)

7: xj = xj + αj rj
8: apply a dropping strategy for the entries of xj
9: end for
10: end for

In [19], this class of preconditioning techniques is studied in more detail. Among others, this includes
also ‘factored approximate inverses’, a more systematic approach of ILU type.

Polynomial preconditioners.

Another class of preconditioners – in the spirit of finding an approximate inverse – are polynomial pre-
conditioners. From the Cayley-Hamilton Theorem we know that an invertible matrix A ∈ Rn×n can be
represented as A−1 = p(A) for some p ∈ Pn−1. One may hope to find good approximations using poly-
nomials of much smaller degree. The following choices are just two examples. In both cases, computing
a (left-)preconditioned residual amounts to evaluating a term of the form p(A)x with some low degree
polynomial p.

• Neumann polynomials: If A is SPD, then the system Ax = b is equivalent to ωAx = ωb (ω 6= 0). If
we choose the damping parameter 0 < ω < ‖A‖2, then ‖I − ωA‖2 < 1, i.e., the Neumann series

(ωA)−1 =
∞∑

i=0

(I − ωA)i

is convergent. Hence, truncating this series, i.e., taking M−1 =
m∑
i=0

(I − ωA)i for rather small m may

lead to a good preconditioner for the linear system ωAx = ωb.
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• Chebyshev polynomials: We seek a preconditioner M−1 ≈ A−1 in the form M−1 ≈ pm(A) for some
pm ∈ Pm. Aiming at minimizing ‖I − pm(A)A‖ in some norm we are led – as in our discussion of
Chebyshev acceleration in Sec. 6 – to minimizing the spectral radius ρ(I − pm(A)A), i.e., to find
pm ∈ Pm such that max{|1− λpm(λ)| : λ ∈ σ(A)} is minimized.

In practice, the spectrum σ(A) is not known but possibly an inclusion set E ⊆ C with σ(A) ⊆ E.
In this case, we would seek p ∈ Pm such that max

x∈E
|1− xp(x)| is minimized. If, for example, E is an

interval on the real line, then the minimizer pm ∈ Pm is given by the scaled Chebyshev polynomial
described in Corollary 6.1. The preconditioner is then taken as x 7→ M−1x = pm(A)x.

Block preconditioners.

For most preconditioners also block variants exist, e.g., for a matrix A given in block form

A =




A1,1 A1,2 · · · A1,k

A2,1 A2,2 · · · A2,k

...
...

. . .
...

Ak,1 Ak,2 · · · Ak,k




one may choose the preconditioner

M−1
J =




A−1
1,1

A−1
2,2

. . .

A−1
k,k




which is the block Jacobi preconditioner. Here, of course, one assumes that the diagonal blocks Ai,i are
cheaply invertible.

12.6 Further numerical examples

Poisson problem.

The results obtained with the preconditioning methods described when applied to CG and the SPD matrix
‘poisson’ from the Matlab gallery (cf. Example 2.2) are displayed in Table 12.1.

dimension N×N N = 64 N = 256 N = 1,024 N = 4,096 N = 16,384

original 10 28 (0.06) 59 (0.38) 119 (2.31) 239 (17.36)

ICC(0) 11 19 (0.11) 30 (0.50) 55 (3.74) 100 (39.16)

SGS 11 19 (0.11) 34 (0.55) 60 (2.74) 118 (22.19)

Table 12.1: Iteration counts and times obtained using Matlab’s implementation of PCG and ICC applied
to the ‘Poisson’ matrix, with a convergence tolerance of 10−8.

Note that, with the exception of diagonal preconditioning, a decrease in the number of iterations required
to achieve convergence is obtained; however, the computational time is not reduced. This is probably due
to the relatively cheap cost of a CG iteration for this pentadiagonal matrix compared to the setup of the
preconditioning matrix and its inversion. The reduction in the number of iterations required corresponds
to a reduction in the condition number of the preconditioned system.
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Original system, condition number = 13.3333

Incomplete Cholesky preconditioning, condition number of system = 2.569

Symmetric Gauss−Seidel preconditioning, condition number of system = 3.3157

Diagonal preconditioning, condition number of system = 13.3333

Eigenvalues of preconditioned systems, order 16x16

0 1 2 3 4 5 6 7 8

Original system, condition number = 46.2952

Incomplete Cholesky preconditioning, condition number of system = 7.5299

Symmetric Gauss−Seidel preconditioning, condition number of system = 10.7953

Diagonal preconditioning, condition number of system = 46.2952

Eigenvalues of preconditioned systems, order 64x64

Figure 12.3: Eigenvalues of preconditioned versions of the matrix ‘Poisson’ from the Matlab gallery.

For low values of n the eigenvalues of these systems are shown in Fig. 12.3. This also includes diagonal
preconditioning which shifts the spectrum but has no effect on convergence because the diagonal is constant
for this problem.

In general, preconditioning by the diagonal generates some benefit and due to the simplicity of this
method it is often worth an initial investigation – it is simply a rescaling of the problem which might be
useful for the case where the matrix elements strongly varying in size.

A sterner test for preconditioned CG can be constructed from one of the test matrices available from the
large collection at the Matrix Market 59. The matrix selected is NOS6, a matrix resulting from discretizing
Poisson’s equation on an L-shaped domain. The matrix is SPD, dimension 675×675 and with an estimated
condition number of 8×106. The result obtained are displayed in Table 12.2. For this problem we observe
that the diagonal preconditioning did a relatively good job, mostly due to its computational cheapness.

iteration count time (seconds)

original 1408 2.917

ICC(0) 87 0.599

SGS 42 0.277

Diagonal 103 0.388

Table 12.2: Iteration counts and times obtained using Matlab’s implementation of PCG and ICC applied
to the NOS6 matrix, with a convergence tolerance of 10−8.

59 http://math.nist.gov/MatrixMarket: A visual repository of test data for use in comparative studies of algorithms for
numerical linear algebra, featuring nearly 500 sparse matrices from a variety of applications, as well as matrix generation
tools and services.
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iteration count time (seconds)

original 93 + (84× 100) 123.593

ILU(τ) τ = 10−2 10 0.125

ILU(0) 29 0.359

SGS 31 + (11× 100) 20.179

Table 12.3: Iteration counts and times obtained using Matlab’s implementation of restarted GMRES
(restart value 100) and ILU applied to the PORES3 matrix, with a convergence tolerance of 10−8.
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Figure 12.4: Performance of restarted preconditioned GMRES for PORES3

An unsymmetric problem.

Computational results obtained with the preconditioned GMRES algorithm are displayed in Fig. 12.4
and Table 12.3. The matrix considered is PORES3 from the Matrix Market. PORES3 an unsymmetric
matrix resulting from modeling oil reservoirs, with dimension 532×532 and an estimated condition number
of 6.6×105.

From Table 12.3 we see that GMRES is quite responsive to preconditioning: ILU(0) and ILUT(10−4)
perform very well. Fig. 12.4 shows the convergence behavior (residual vs. iteration number) for precondi-
tioned GMRES and restarted GMRES with different restart values. Note a difficulty of restarted GMRES
which quite often arises: If the restart value is too small, then restarted GMRES does not converge.

Although the preconditioning techniques presented here can be quite effective in accelerating the conver-
gence rate of Krylov subspace methods, we typically find that, when applied to discretizations of PDEs,
the number of iterations required to achieve convergence remains linked to size of the problem under
consideration.

Ideally, however, one would like to have preconditioners that perform well irrespective of the problem size.
This goal, the Holy Grail of preconditioning, can be achieved for certain problem classes. For example,
multigrid and the so-called BPX preconditioner achieve this goal for discretizations stemming from elliptic
partial differential equations.
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13 Multigrid Methods (MG)

The performance of classical Krylov techniques such as CG and GMRES coupled with the simple precon-
ditioners discussed above typically deteriorate as the problem size increases, i.e., the number of iterations
required to reach a given accuracy increases as the problem size increases. We now show how multigrid
(MG) techniques can overcome these difficulties. MG can itself be viewed as a ‘stand alone’ iterative
scheme. In particular, however, it can be very successfully employed as a preconditioner for CG or GM-
RES.

Since a MG method combines related problems of different dimensions, we indicate the dimension via
an index, see (13.1a). For iteration, we now use upper indexing, um instead of um.

13.1 1D elliptic model problem. FD vs. FEM approximation

In order to illustrate the main MG idea, we consider solving the linear system arising from the 1D Poisson
Example 2.1. It will be convenient to scale the tridiagonal matrix of Example 2.1 in a different way, as
usual in the FEM context. We consider

AN uN = bN (13.1a)

where the tridiagonal matrix AN ∈ R(N−1)×(N−1) is given by

AN =
1

hN




2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2




(13.1b)

Here the parameter hN is the mesh size given by

hN =
1

N
(13.1c)

In the FD context, the right-hand side bN is given by bN = hN
(
f(x1), f(x2), . . . , f(xN−2), f(xN−1)

)T
with xi = ihN . The solution of the linear system (13.1a) represents approximations to the nodal values of
the exact solution u∗(x) at the mesh points xi.

In the FEM context (see Appendix A), the approximating system is setup in a different manner. Here one
proceeds from the weak formulation of the original problem or its formulation as minimization problem,
cf. Remark 7.1. In the simplest case, an approximation to u∗ is sought for in the space ÛN of piecewise
linear functions ûN = ûN(x) with respect to the given mesh, with zero boundary values. With 60

a(ûN , v̂N) =

ˆ

Ω=(0,1)

û′N v̂
′
N , b(v̂N ) = (f, v̂N)L2(Ω) =

ˆ

Ω=(0,1)

f v̂N (13.2a)

the FEM approximation û∗N ≈ u∗ is defined as the solution of the discrete problem in weak formulation,
via the Galerkin requirement

Find ûN ∈ ÛN such that a(ûN , v̂N) = b(v̂N ) for all v̂N ∈ ÛN . (13.2b)

Functions ûN ∈ ÛN are of the form

ûN(x) =

N−1∑

i=1

ui φ̂N,i(x) (13.3)

60 In practice, (f, v̂N )L2(Ω) is approximated by quadrature.
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where φ̂N,i denotes the i - th piecewise linear hat function satisfying φ̂N,i(xj) = δij . These hat functions

form a basis of the linear space ÛN , and by uN =
(
u1, . . . , uN−1

)T ∈ RN−1 we denote the coefficient vector
of the representation of a function ûN in this basis. It is easy to verify that

a(ûN , v̂N) ≡ (AN uN , vN)

I.e., AN from (13.1a) is also the FEM stiffness matrix in this case. Therefore, (13.2b) is equivalent to

(AN uN , vN) = b(v̂N) ∀ v̂N ∈ ÛN (13.4)

which in turn is equivalent to (13.1a), with bN = b(v̂N ).

The exact solution u∗N of (13.1a), with bN = b(v̂N ) corresponds to the exact solution û∗N of (13.2b). In
this spirit, we identify vectors uN ∈ R

N−1 with piecewise linear functions ûN ∈ C[0, 1] via the relations

ûN(xi) = ui, i = 1 . . . N−1, xi = ihN

In the sequel, we frequently refer to this isomorphism,

uN ∈ R
N−1

! ûN ∈ ÛN ⊆ C[0, 1] (with zero boundary values). (13.5)

13.2 Error smoothing

Example 13.1 We consider the boundary problem −u′′(x) = 1 on Ω = (0, 1), with Dirichlet boundary
conditions u(0) = u(1) = 0. The exact solution is61 u∗(x) =

1
2
x(1− x).

Let us denote by umN the m - th iterate of the Jacobi method applied to (13.1a), with u∗N = exact solution
of (13.1a). Fig. 13.1 shows the convergence history (‖umN − u∗N‖∞ versus the iteration number m, for u0N =
0), for different problem sizes N . Observe, in particular, the well-known degradation of the convergence
behavior as the problem size increases.

A more precise analysis of the convergence behavior of the Jacobi method applied to (13.1a) can be
based on the fact that the eigenvalues and the eigenvectors of the iteration matrix are explicitly known
(see Sec. 2): The vectors wk ∈ RN−1, k = 1 . . . N−1, with

(wk)i = sin(ikπhN ) = sin(kπxi), i = 1 . . .N−1 (13.6a)

are the eigenvectors of AN , with corresponding eigenvalues

λk =
4

hN
sin2(kπ

2
hN), k = 1 . . .N−1 (13.6b)

61For this example, the FD and FEM discretizations are equivalent, with bN = hN

(
1, 1, . . . , 1

)T
. The nodal values u∗(xi)

are exactly reproduced by the discrete solution because the local discretization errors vanish.
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Figure 13.1: Left: Performance of the undamped Jacobi method for solving (13.1a) for different problem
sizes N . Right: Varying, for fixed N , the damping parameter ω does not improve convergence.
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Figure 13.2: Illustration of w1 (low frequency), w5, and wN−1 (high frequency); N = 64.

The eigenvectors wk can be identified with the piecewise linear functions ŵk plotted in Fig. 13.2 for dif-
ferent values of k. Whereas the ‘low frequencies’ ŵk for small values of k correspond to slowly (‘smoothly’)
varying functions, the ‘high frequencies’ ŵk corresponding to large values of k are rapidly oscillating. Note
that at the higher frequencies the oscillating behavior of the analogous original eigenfunctions of −u′′ is
not correctly reproduced on the grid due to an ‘aliasing effect’.

Now we study the performance of the damped Jacobi iteration, with damping factor ω ∈ (0, 2), for
solving (13.1a):

uν+1
N = uνN + ωD−1

N (bN −AN u
ν
N), ν = 0 . . .m− 1 (13.7)

starting from some initial approximation u0N . Here, AN is given by (13.1a) and DN = (2/hN)I is the
diagonal of AN .

Let GN,ω = GJac
N,ω = I − ωD−1

N AN denote the iteration matrix. For all k, the vector wk from (13.6a) is
an eigenvector of the symmetric matrix GN,ω, with eigenvalue

γk(ω) = 1− ω
hN
2
λk = 1− 2ω sin2(kπ

2
hN) (13.8)

Example 13.2 We consider the case N = 64 and analyze the case where the initial error e0N ∈ RN−1 is
one of the eigenmodes, e0N = wk. The error after step m then satisfies (with hN = 1/N)

‖emN‖2 = ‖(GN,ω)
m e0N‖2 = ‖γk(ω)mwk‖2 = |γk(ω)|m = |1− 2ω sin2(kπ

2
hN)|m

As k varies between 1 and N−1, the contraction factor |γk(ω)| varies between 1 − O(h2N) and numbers
that are very close to zero.

• For the case ω = 1, the left plot in Fig. 13.3 illustrates the value |γk(1)| by plotting m ∈ N over k
such that |γk(1)|m ≈ 0.01.

• The center plot in Fig. 13.3 shows the behavior for the case ω = ωopt = 2/3, which gives ‘optimal
damping of high frequencies’ in the sense of Exercise 13.1 below. Components corresponding to high
frequencies are reduced quickly, whereas the low frequency components are not significantly reduced.

• The right plot in Fig. 13.3 shows the convergence history for ω = ωopt = 2/3 for a case where all
modes are equally present in e0N . The error reduction rate is quite good at the beginning, due to the
fact that the high frequency error modes are quickly damped out. Later on, as the error becomes
smoother, the iteration begins to stagnate.
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Figure 13.3: Left: Contraction property of undamped (ω = 1) Jacobi method in dependence on the wave
number k. Center: Contraction property of damped (ω = 2/3) Jacobi method in dependence on the wave
number k. Right: Convergence behavior of damped (ω = 2/3) Jacobi for initial error e0 =

∑N−1
k=1 wk.

Example 13.2 shows that the error components of some of the ‘frequencies’ (or ‘modes’) are reduced
very quickly in a few Jacobi steps, while the error components of other modes are hardly reduced. The
conclusion is that we should design iterative schemes that are based on two principles: Use a damped Jacobi
method to reduce the error of some modes; another procedure will have to be designed to effectively reduce
the error in the remaining modes.

Accepting the fact that we cannot reduce all error components uniformly well, we settle for efficiently
reducing some of them. For reasons that will become clear soon, we wish to reduce the high frequency
components. The optimal value of the damping parameter ω then turns out to be ωopt = 2/3:

Exercise 13.1 Show: the minimizer ωopt of the function

ρ̄(GN,ω) = max
N/2≤k≤N−1

|γk(ω)| = max
N/2≤k≤N−1

∣∣1− 2ω sin2(kπ2 hN )
∣∣

(with hN = 1/N) satisfies lim
N→∞
(hN→0)

ωopt = 2/3. Also show that ρ̄(GN,ωopt) ≤ 1
3 for all hN > 0.

Thus we have identified the optimal damping parameter as ωopt = 2/3. This choice indeed leads to
a quick reduction of the high frequency components corresponding to the the upper half of the discrete
spectrum.

Example 13.3 We again consider the model problem (13.1a) and use the damped Jacobi method with
damping parameter ωopt = 2/3. For N = 32 and a random starting vector x0 we plot the errors ê0N , ê

3
N ,

ê6N , and ê
9
N in Fig. 13.4. We observe that the initial error e0N , being randomly chosen, has high and low

frequency components. The damped Jacobi method damps out the high frequency components quickly:
the strong spikes of ê0N are no longer present in ê3N and the error ê3N (and even more so ê6N ) is rather slowly
varying. Iterating further does not result in a significant error reduction because the contraction rate of
the damped Jacobi method is close to 1 for the low frequency components.

Another reasonable choice is, e.g., ω = 1/2. In this case the ‘medium frequencies’ are damped more
slowly than for ω = 2/3; the overall damping factor for the upper half of the spectrum is only 1

2
instead

of 1
3
. On the other hand, the highest frequencies are those for which the damping effect is most significant

(also note that all eigenvalues of GN, 1
2
are positive). This is illustrated in Fig. 13.5 (left = low frequencies;

right = high frequencies).
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13.3 The two-grid scheme (TG) in abstract formulation

We have seen in Example 13.3 that the Jacobi method with damping parameter ωopt = 2/3 is quite effective
at reducing high frequency error modes. After a few steps, the error emN resp. êmN has become smooth in
the sense that, while possibly being large, it is not strongly varying. Thus, we may hope that we could
construct a good approximation of êmN on a coarser mesh, e.g. with mesh size 2hN . This is the idea of the
two-grid method, which consists of two steps:

1. Smoothing step: Perform m steps of the damped Jacobi method for AN uN = bN to yield umN .

2. Coarse grid correction (CGC): Solve a related problem of size n < N (typically, n = N/2 in the
1D case) whose solution approximates the error emN = umN − u∗N . Then correct umN . The correction
will stem from solving a problem that is posed on a coarser grid with mesh size 2hN .

Let us first describe the coarse grid correction step in a formal, algebraic way. The correction step
is simply one step (perhaps more of them) of a linear iterative scheme, where the original matrix AN

is approximated by its ‘coarse counterpart’ An. In addition, we need a restriction operator Rn,N and a
prolongation (interpolation) operator PN,n acting between the solution spaces of dimension (essentially)
N and n. With an appropriate choice for Rn,N and PN,n, the coarse grid correction step is realized in the
usual way in terms of correction by a linear image of the residual of the smoothed-out approximation umN ,
similarly as in stationary iterative schemes:

umN 7→ uTG
N = umN + PN,nA

−1
n Rn,N (bN −AN u

m
N)

i.e., PN,nA
−1
n Rn,N is used to approximate A−1

N . This may be called the ‘strong form’ of the correction
step and will be appropriate in the setting of FD methods. (Within the FEM context we will use an
appropriate ‘weak’ formulation.)
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Algorithmically, a CGC step amounts to:

1. Compute the residual rmN = bN − AN u
m
N

2. Restrict the residual to the ‘coarser space’ : rmn = Rn,N r
m
N

3. Solve the correction equation An δn = rmn
4. Prolongate the correction δn and add it to umN , i.e., compute uTG

N = umN + PN,n δn

The coarse grid correction PN,n δn is an approximation for the error −emN = u∗N − umN .

Note that the approximation PN,nA
−1
n Rn,N for A−1

N has reduced rank. Therefore the corresponding error
amplification matrix

GCGC
N = IN − PN,nA

−1
n Rn,N AN

cannot be a contraction, because GCGC
N vN = vN forAN vN ∈ ker(Rn,N), which typically consists of ‘un-

smooth’ objects. This shows that coarse-grid correction only makes sense in combination with an appro-
priate smoothing procedure.

Additional smoothing steps following the coarse-grid correction are a further option.

Galerkin approximations on subspaces.

MG methods can be applied in the context of any discretization approach, e.g., finite difference (FD)
methods. In view of application to systems arising from a FEM discretization, a ‘weak’ formulation of
coarse-grid correction is appropriate, involving Galerkin orthogonality analogously as in (13.2b).

Let us first describe, in a general, abstract form, the Galerkin approximation of the solution u∗N ∈ RN−1

of a linear system
AN uN = bN , AN ∈ R

(N−1)×(N−1) (13.9a)

in a smaller subspace of RN−1.

Due to finite dimension, (13.9a) is equivalent to the following weak formulation, with VN := RN−1 :

Find uN ∈ VN such that (AN uN , wN) = (bN , wN) for all wN ∈ VN . (13.9b)

Let Vn ⊆ VN be a subspace of dimension n−1 < N−1. The corresponding Galerkin approximation in Vn
is defined by

Find vn ∈ Vn such that (AN vn, wn) = (bN , wn) for all wn ∈ Vn . (13.10a)

In order to reformulate (13.10a) again as a system of linear algebraic equations, let {p1n, . . . , pn−1
n } be a

basis of Vn. Let PN,n =

p1n

∣∣ . . .
∣∣pn−1

n


 ∈ R(N−1)×(n−1). Seeking vn in the form vn = PN,nyn with

coefficient vector yn ∈ Rn−1 allows us to rewrite (13.10a) as

Find yn ∈ R
n−1 such that (AN PN,n yn, PN,n zn) = (bN , PN,n zn) ∀ zn ∈ R

n−1 , (13.10b)

which in turn is equivalent to the algebraic system

Compute the solution yn ∈ R
n−1 of P T

N,nAN PN,n yn = P T

N,n bN . (13.10c)

Here,

– the matrix PN,n ∈ R
(N−1)×(n−1) is called the prolongation matrix, and

– its transpose Rn,N := P T
N,n ∈ R(n−1)×(N−1) plays the role of a restriction matrix.
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Remark 13.1 The Galerkin subspace approximation (13.10) is analogous to the Galerkin approach un-
derlying Krylov methods of FOM type like CG. Indeed, by rearranging terms in (13.10a), we see that this
is equivalent to the Galerkin residual orthogonality (‘OrthoRes’) requirement

Find vn ∈ Vn such that rn = bN − AN vn ⊥ Vn .

Recognizing this as the defining condition in (10.2a), we can conclude as in the proof of (10.2c) that, for
SPD matrices AN , the Galerkin solution vn satisfies the best approximation property

‖vn − u∗N‖AN
= min

wn∈Vn

‖wn − u∗N‖AN
(13.11)

in the energy norm ‖ · ‖AN
.

Galerkin coarse grid approximation.

The resulting Galerkin form of the coarse grid correction (CGC) for a step of the abstract two-grid method
amounts to the following procedure. After having performed m steps of the damped Jacobi iteration for
AN uN = bN yielding umN with residual rmN = bN −AN u

m
N , the error emN = umN − u∗N satisfies

AN (−emN ) = rmN (13.12)

and −emN would be the ‘exact correction’ of umN since u∗N = umN − emN . Now, as before we consider the weak
form of the error equation (13.12) and approximate −emN by its Galerkin approximation PN,n δn ∈ Vn in an
analogous way as in (13.10), but now with right-hand side rmN . The Galerkin-type coarse grid correction
is computed in the following way. We consider the approximation to AN as in (13.10c),

AGalerkin
n = P T

N,nAN PN,n ∈ R
(n−1)×(n−1) (13.13)

defined via an appropriately chosen Galerkin pair PN,n (prolongation) and Rn,N = P T
N,n (restriction), and

proceed as analogously as before:

1. Compute the residual rmN = bN − AN u
m
N

2. Restrict the residual to the subspace Vn : rmn = P T

N,n r
m
N

3. Solve the correction equation AGalerkin
n δn = rmn

4. Prolongate the correction δn and add it to umN , i.e., compute uTG
N = umN + PN,n δn

PN,n δn is the coarse grid correction to umN .

For the case of an SPD matrix AN , analogously to (13.11) we have

‖uTG
N − u∗N‖AN

= ‖PN,n δn − (−emN )‖AN
= min

wn∈Vn

‖wn − (−emN )‖AN
(13.14)

The error PN,n δn − (−emN ) is orthogonal to Vn with respect to (·, ·)AN
, the coarse grid correction PN,n δn

is the projection of −emN onto Vn with respect to (·, ·)AN
, and PN,nA

−1
n P T

N,nAN is the corresponding AN -
selfadjoint projector:

PN,nA
−1
n P T

N,nAN(−emN ) = PN,nA
−1
n P T

N,n r
m
N = PN,n δn

Exercise 13.2 Check that the two-grid method is a linear iteration. In particular: If SN = GJac
N,ω = I−ωD−1

N AN

is the iteration matrix of the damped Jacobi method (or some other linear smoothing procedure), then the iteration
matrix GTG

N of the two-grid with m smoothing steps is given by

GTG
N = (IN − PN,nA

−1
n PT

N,nAN )Sm
N (13.15a)

with An = AGalerkin
n from (13.13). Conclude that (in any norm)

‖GTG
N ‖ ≤ ‖A−1

N − PN,nA
−1
n PT

N,n‖ ‖ANSm
N ‖ (13.15b)
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Figure 13.6: Piecewise linear functions in ÛN and ÛN/2.

13.4 The two-grid method for the 1D model problem

We return to the design of the coarse grid correction for the 1D Poisson model problem. Our first goal is to
choose an appropriate subspace Vn together with the appropriate prolongation and restriction operators.

In the FD context, all relevant objects (vectors) are to be identified with grid functions. In the FEM
context, it is useful to think in terms of functions ûN and identify them with coefficient vectors uN in a
canonical way, in the spirit of (13.5). To this end we define the space of piecewise affine functions ÛN on
the given (equidistant) mesh by

ÛN = {ûN ∈ C[0, 1] : ûN |Ii ∈ P1 for i = 0 . . .N−1}

with the subintervals

Ii = (xi, xi+1), i = 0 . . .N−1, xi = ihN , hN =
1

N

Note that the isomorphism (13.5), uN ∈ R
N−1

! ûN ∈ ÛN maps uN ∈ R
N−1 to an element of ûN ∈ ÛN .

We choose n = N/2 and consider 62 the spaces ÛN and ÛN/2. Clearly, ÛN/2 ⊆ ÛN , with the natural

injection given by the prolongation operator ÎN,N/2 : ÛN/2 → ÛN . In the two-grid method, this plays the
role of the prolongation PN,N/2.

Exercise 13.3 Define the matrix IN,N/2 by

IN,N/2 =




1
2

1 0
1
2

1
2

0 1
1
2

1
2

0 1 0
1
2

1
2

. . .
. . .

1
1
2




∈ R
(N−1)×(N/2−1) (13.16)

Let ûN/2 ∈ ÛN/2 ⊆ ÛN be associated with the coefficient vector uN/2 ∈ R
N/2−1.

62For simplicity, we assume that N is even – in fact, later we will assume that N = 2L for some L ∈ N.
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a) Show: The vector uN ∈ R
N−1 corresponding to ûN/2 (viewed as an element of ÛN !) is given by uN =

IN,N/2uN/2. This corresponds to linear interpolation (sketch).

b) Give an interpretation of the corresponding restriction operator RN/2,N : ÛN → ÛN/2 represented by the matrix

IT

N,N/2 ∈ R
(N/2−1)×(N−1) (13.17)

Note that this restriction is not the trivial, pointwise one; rather, it involves local weighting.

Remark: The row sums in IT

N,N/2 are 2, not 1. If we scale the inner products on the two levels in a more

natural way by a factor h and 2h, respectively, then the corresponding adjoint is represented by 1
2 I

T

N,N/2.

c) A trivial restriction ĴN/2,N : ÛN → ÛN/2 is represented by the matrix

JN/2,N =




0 1 0
0 1 0

0 1 0

. . .
. . .

. . .

0 1 0




∈ R
(N/2−1)×(N−1) (13.18)

Provide the geometrical interpretation of the trivial restriction operator ĴN/2,N and verify that JN/2,N is the
left-inverse of IN,N/2.

d) Show that the identities
IT

N,N/2AN = AN/2JN/2,N (13.19a)

and
AN/2 = AGalerkin

N/2 := IT

N,N/2AN IN,N/2 (13.19b)

are valid.

e) Show that the AN -conjugate projector onto the range of the prolongation matrix IN,N/2 is given by

IN,N/2A
−1
N/2 I

T

N,N/2AN = IN,N/2JN/2,N : R
N−1 → R

N−1 (13.20)

Remark 13.2 Identity (13.19b) is specific to the 1D model problem, and it simplifies the analysis of the
two-grid method in this case. In general, such an identity does not hold.

In matrix notation, the natural injection IN,N/2 allows us identify a subspace of RN−1 suitable for the
coarse grid correction, namely the space VN/2 = IN,N/2 R

N/2−1 of dimension N/2 − 1. The prolongation

operator ÎN,N/2 represented by the matrix IN,N/2 plays the role of the prolongation PN,n from Sec. 13.3.

We are now ready to turn to the coarse-grid Galerkin approximation of the error emN = umN − u∗N for a
given umN (obtained after m smoothing steps), and formulate it in terms of the algebraic objects (matrices
and coefficient vectors) involved in the numerical computation. The error satisfies AN (−emN) = rmN =
bN − AN u

m
N . The Galerkin correction technique described above, with the subspace VN/2 = IN,N/2R

N/2−1,
gives the correction δN/2 on the coarse grid as the solution of (see (13.19b))

AGalerkin
N/2 δN/2 = IT

N,N/2 r
m
N (13.21)

with IT

N,N/2 from (13.17). The matrix AN/2 = AGalerkin
N/2 is a projected version of AN , similarly as the matrix

Hm = V T
mAVm in the context of Krylov methods (cf. (9.9)).

The outcome is the two-grid algorithm (Alg. 13.1), with the canonical choice for the Galerkin pair, IN,N/2

(prolongation) and IT

N,N/2 (restriction).
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Figure 13.7: Performance of the two-grid method for the 1D Poisson model problem.

Algorithm 13.1 Two-grid method

1: Choose initial guess uTG,0
N

2: for j = 1, 2, . . . until convergence do
3: Smoothing: do m steps of the damped Jacobi method starting from uTG,j−1

N to obtain umN
4: Compute and restrict the residual: IT

N,N/2 r
m
N = IT

N,N/2 (bN − AN u
m
N)

5: Coarse grid correction: solve (13.21) for δN/2
6: Prolongate and apply the correction: uTG,j

N = umN + IN,N/2 δN/2
7: end for

Example 13.4 For the 1D model problem, the two-grid method has very good convergence properties as
is visible in Fig. 13.7. We note in particular that its performance (measured in terms of the amount of
error reduction per iteration) is independent of the problem size.

13.5 Two grid convergence analysis for the 1D model problem

In this section we derive a bound for the spectral norm of the two-grid error amplification matrix
(see (13.15a))

GTG
N = (IN − IN,N/2A

−1
N/2 I

T

N,N/2AN )S
m
N (13.22a)

with AN/2 = AGalerkin
N/2 from (13.19b). This analysis is based on separately estimating the factors in

(see (13.15b))

‖GTG
N ‖ ≤ ‖A−1

N − IN,N/2A
−1
N/2 I

T

N,N/2‖ ‖AN S
m
N ‖ (13.22b)

The following analysis applies in the FEM as well as in the FD context, because the matrices involved are
the same.

Smoothing property.

We consider a smoothing procedure based on damped Jacobi iteration with damping parameter ω = 1
2

(see Fig 13.5). We have

AN S
m
N = AN

(
I − ωD−1

N AN

)m
= AN

(
I − 1

2
h
2
AN

)m
(13.23a)

with eigenvalues (cf. (13.8))
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µk = λk
(
1− 1

2
hN

2
λk
)m
, λk = λk(A) =

4
hN

sin2(kπ
2
hN), k = 1 . . .N − 1, hN =

1

N

Thus,

µk =
1

hN

(
4 sin2(kπ

2
hN )

(
1− 1

4
4 sin2(kπ

2
hN )

)m)
, k = 1 . . .N − 1 (13.23b)

The eigenvalues of Sm are contained in (0, 1) (see (13.8)). Application of the difference operator A has
a strong effect on the small eigenvalues associated with high oscillatory eigenmodes, and a small effect
on the larger eigenvalues associated with smoother eigenmodes. The overall behavior is described in the
following theorem.

Theorem 13.1 For m ≥ 1, the eigenvalues µk of AN S
m
N satisfy the uniform bound

|µk| = µk ≤
1

hN

8

5m+ 3
, k = 1 . . . N − 1 (13.24)

Proof: Each of the µk given in (13.23b) is of the form

µk =
4

hN

(
θk (1− θk)

m) with θk = sin2(kπ
2
hN) ∈ [0, 1] (13.25)

Thus, estimating the µk reduces to an upper estimate for the values of the function ϕ(θ) = θ (1− θ)m for
θ ∈ [0, 1]. Elementary analysis shows that the maximum of ϕ(θ) is attained at θmax = 1/(m+ 1), with

ϕ(θmax) =
1

m+ 1

(
1− 1

m+ 1

)m
=

mm

(m+ 1)m+1

We estimate the denominator from below using three leading terms from its binomial expansion:

(m+ 1)m+1 =

m+1∑

k=0

(
m+ 1

k

)
mk ≥ mm+1 + (m+ 1)mm +

m(m+ 1)

2
mm−1 =

mm

2
(5m+ 3)

This gives
ϕ(θmax) ≤

2

5m+ 3

Together with (13.25) this results in (13.24). �

Since A is selfadjoint with respect to ‖ · ‖2 as well as ‖ · ‖A, we conclude the smoothing property in
the following form:

Corollary 13.1 For AN S
m
N from (13.23a), the bounds

‖AN S
m
N ‖2 ≤

1

hN

8

5m+ 3
, m ≥ 1; hN =

1

N
(13.26)

are valid.

Approximation property.

In view of (13.22b), a bound for
‖A−1

N − IN,N/2A
−1
N/2 I

T

N,N/2‖
remains to be determined. We use the denotation and the results from Exercise 13.3 to rewrite this in the
form
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A−1
N − IN,N/2A

−1
N/2 I

T

N,N/2 =
(
IN,N − IN,N/2A

−1
N/2 I

T

N,N/2AN

)
A−1

N

=
(
IN,N − IN,N/2JN/2,N

)
A−1

N (13.27)

We also recall from Exercise 13.3 that

IN,N/2 JN/2,N =




1
2

1
1
2

1
2

1
1
2

1
2

1
1
2

. . .

. . .
. . . 1

2
. . . 1

1
2




∈ R
(N−1)×(N−1)

(columns with odd index are zero) is the AN - conjugate projector onto the range of the prolongation matrix
IN,N/2 (along the kernel of the restriction matrix IT

N,N/2). Thus,

IN,N − IN,N/2 JN/2,N =




1 −1
2

−1
2

1 −1
2

−1
2

1 −1
2

. . .
. . .

−1
2

1




∈ R
(N−1)×(N−1)

(rows with even index are zero) is the AN - conjugate projector onto the kernel of the restriction matrix
IT

N,N/2 (along the range of the prolongation matrix IN,N/2).

The norm of IN,N − IN,N/2 JN/2,N is O(1). However, in (13.27) it is applied to A−1
N which is the discrete

analog of the Green’s function of the original problem and has a smoothing behavior, and IN,N−IN,N/2 JN/2,N

‘behaves small’ on smooth objects.

In particular, each second (non-zero) line of IN,N − IN,N/2 JN/2,N is identical with the corresponding row
of AN , up to a scalar factor. In fact, we have

IN,N − IN,N/2 JN/2,N = E · hN
2
AN ⇒

(
IN,N − IN,N/2JN/2,N

)
A−1

N =
hN
2
E

with E = diag(1, 0, 1, 0, . . . , 1, 0, 1). Together with ‖E‖2 = 1, these considerations this leads us to the
approximation property :

Theorem 13.2 For A−1
N − IN,N/2A

−1
N/2 I

T

N,N/2 the estimate

‖A−1
N − IN,N/2A

−1
N/2 I

T

N,N/2‖2 = ‖
(
IN,N − IN,N/2JN/2,N

)
A−1

N ‖2 ≤
hN
2

(13.28)

is valid.

Ed. 2017 Iterative Solution of Large Linear Systems



13.6 TG in the FEM context: Formulation in terms of continuous functions 133

Together with the smoothing property (Corollary 13.1) we thus obtain a convergence result for the 2-grid
method:

Theorem 13.3 The spectral norm of the error amplification matrix GTG
N = (IN − IN,N/2A

−1
N/2 I

T

N,N/2AN)S
m
N

of the two-grid method satisfies

‖GTG
N ‖2 ≤

4

5m+ 3
, m ≥ 1 (13.29)

independent(!) of the dimension N .

Remark 13.3

• Together with Theorem 12.1 we see that TG can play the role of an optimal preconditioner for a
Krylov subspace method.

• A similar analysis applies, with respect to the energy norm, for the case where m smoothing steps
are applied before and after the two-grid correction (pre- and post-smoothing).

• In general, relation AN/2 = AGalerkin
N/2 is not satisfied. Then the analysis of the approximation property

is more involved.

13.6 TG in the FEM context: Formulation in terms of continuous functions

In computational practice, the coarse grid correction is an algebraic process, as in Alg. 13.1. However, for
a better theoretical understanding, in particular in the context of FEM discretizations, see Appendix A,
it is useful also to reformulate and view TG in terms of continuous functions.

Modified notation. Here and in the following section, instead of a dimension index we prefer to use the
mesh size parameters h (fine grid) and H (coarse grid) as indices, as in Sec. A.5ff. The nodal basis
functions are now denoted by

v̂h.i, i = 1 . . . N = dim(Ûh)

For each function ûh ∈ Ûh we denote by uh the associated vector of coefficients in its nodal basis rep-
resentation. For a family of quasi-uniform triangulations it can be shown that this natural isomorphism
uh ! ûh is uniformly continuous, i.e., for the standard 2-norm on R

N we have63

ch‖uh‖2 ≤ ‖ûh‖L2(Ω) ≤ Ch‖uh‖2 (13.30)

with universal constants c and C such that C/c is of moderate size.

Also in the sequel, ‘uniformly’ means that the corresponding assertion is valid for all objects in a family
of quasi-uniform triangulations.

Consider umh obtained after m smoothing steps and its associated function ûmh ∈ Ûh, with error êmh =
ûmh − û∗h, where û

∗
h is the exact (discrete) solution at level h. A single step of the two-grid method seeks

an approximation ûTG
h to û∗h of the form

ûTG
h = ûmh + δ̂H

with δ̂H ∈ ÛH ⊆ Ûh. It is natural to aim for δ̂H to be the best approximation to the error −êmH , i.e., we
seek δ̂H such that the error in the energy norm is minimized. The minimizer δ̂H is characterized by the
Galerkin orthogonality property

63(13.30) is valid for the 2D case. Note that we here are assuming that ‖ · ‖2 is the standard norm on RN , i.e., corresponding
to the inner product (uh, vh)2 =

∑
i uh,i vh,i. An alternative would be to scale this inner product by a factor h2 such that it

becomes an direct analogue of (·, ·)L2(Ω), but we do not use such a scaling here.
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a
(
ûTG
h − û∗h, ŵH

)
= a
(
(ûmh + δ̂H)− û∗h, ŵH

)
= 0 ∀ ŵH ∈ ÛH

Rearranging terms results in the equivalent formulation

Find δ̂H ∈ ÛH such that a(δ̂H , ŵH) = a(−êmh , ŵH) ∀ ŵH ∈ ÛH . (13.31a)

From (13.2b) we see that (13.31a) can be rewritten as

Find δ̂H ∈ ÛH such that a(δ̂H , ŵH) = b(ŵH)− a(ûmh , ŵH) ∀ ŵH ∈ ÛH . (13.31b)

Here the right-hand side is the residual of ûmh in the weak sense.

Note that the solution δ̂H of (13.31a) is the projection, with respect to the the energy product a(·, ·), of
−êmh onto the coarse space Ûh: The error δH + êmh is orthogonal to ÛH with respect to a(·, ·).

The functions δ̂H and ŵH are associated with coefficient vectors δH and wH via the FEM isomorphism,
and the canonical embedding ÛH ⊆ Ûh is represented by a prolongation matrix Ph,H , the analog of IN,N/2

above, which corresponds to piecewise linear interpolation also in higher-dimensional cases, e.g., for the
2D Poisson equation.

In matrix notation, (13.31) reads

Find δH such that (AhPh,H δH , Ph,HwH) = (rmh , Ph,HwH) ∀ wH ∈ ÛH .

with the residual rmh = bh − Ahu
m
h ; cf. (13.21).

Remark 13.4 The matrices
Ph,H and RH,h

play the role of Galerkin prolongation and restriction matrices, respectively. In particular, for an SPD
problem the choice RH,h = P T

h,H is natural because the coarse grid Galerkin approximation matrix

AH = AGalerkin
H = RH,hAhPh,H = P T

h,HAhPh,H (13.32)

is also SPD.

In general, AGalerkin
H = AH is not necessarily true, and general multigrid techniques work with AH as

directly given by the discretization on the coarse level. Different choices for Ph,H and RH,h, are possible,
and this choice is one of several parameters influencing the convergence behavior. (The choice of the
smoothing procedure is, of course, also essential, and it is not straightforward in general.)

13.7 Two grid convergence analysis for the 2D Poisson equation

The analysis from Sec. 13.5 is rather brute force – everything is more or less explicitly computed. Now
we aim for a more general TG convergence analysis and we illustrate this for the case of the 2D Poisson
equation

−∆u(x) = f(x) on Ω, u = 0 on ∂Ω (13.33)

on a convex polygonal domain Ω. We consider a FEM approximation of this problem based on a quasi-
uniform triangulation Th of Ω associated with an approximating FEM space Ûh as described in Sec. A.5.
Let TH , with associated space ÛH , be a coarser triangulation of Ω in the sense that each triangle TH ∈ TH

is the union of several smaller triangles Th ∈ Th.

Besides damped Jacobi we shall also consider the symmetric Gauss-Seidel scheme as a smoother.
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Smoothing property.

Let us verify the smoothing property for an appropriately damped Jacobi and the symmetric Gauss-Seidel
method. We consider m smoothing steps

uν+1
h = uνh +W−1

h (bh −Ahu
ν
h), ν = 0 . . .m− 1

starting from an initial approximation u0h, with stiffness matrix Ah and Wh ≈ Ah.

Damped Jacobi smoother. This has the iteration matrix Sh = GJac
h = I −W−1

h Ah with Wh = ω−1Dh. We
have

(Dh)i,i = (Ah)i,i = a(v̂h,i, v̂h,i) ≥ γ ‖v̂h,i‖2H1(Ω) ≥ γ̃

where64 γ̃ depends on the ellipticity parameter γ and on the ratio C/c from (13.30). Thus, ‖D−1
h ‖2 ≤ γ̃−1.

Moreover, since Ah is uniformly sparse with bounded entries (see Sec. A.5 – 2D case!), there exists a
constant c1 with ‖Ah‖2 ≤ c1. Therefore, for the damping parameter ω chosen such that ω < c1 γ̃

−1 we
have

ρ(W−1
h Ah) ≤ ‖W−1

h Ah‖2 = ‖ωD−1
h Ah‖2 < 1

Denoting
Bh :=W

− 1
2

h AhW
− 1

2
h , with σ(Bh) ∈ [0, 1]

after some rearrangement we can write

Ah

(
GJac

h,ω

)m
=W

1
2
h Bh(I − Bh)

mW
1
2
h

The simple spectral argument from the proof of Theorem 13.1 shows ‖Bh(I −Bh)
m‖2 = σ(Bh(I−Bh)

m) ≤
2/(5m+ 3). In this way we obtain the smoothing property in the form

‖AhS
m
h ‖2 ≤ ‖Bh(I − Bh)

m‖2 ‖Wh‖2 ≤
2ω−1

5m+ 3
‖Dh‖2 ≤

2ω−1

5m+ 3
‖Ah‖2 for Sh = GJac

h,ω (13.34)

It can be seen that for general triangulations the appropriate damping parameter ω may be problematic to
estimate. In contrast, for the symmetric Gauss-Seidel smoother we do not need damping to ensure error
smoothing, as we show now.

Symmetric Gauss-Seidel smoother. From (5.14b), this has the iteration matrix GSGS
h = I − W−1

h Ah,
where, with Ah = Lh +Dh + LT

h,

Wh = (Lh +Dh)D
−1
h (Dh + LT

h) = Ah + LhD
−1
h LT

h ≥ Ah

which due to Lemma 5.2, (ii) and (iv), also implies

Bh =W
− 1

2
h AhW

− 1
2

h ≤ I and σ(Bh) ∈ [0, 1]

Furthermore, ‖Wh‖2 can be estimated in terms of ‖Ah‖2 by the following reasoning. The support of each
basis function v̂h,i has a nonempty intersection only with a small number of supports of other basis func-
tions. For a family quasi-uniform triangulations this number is independent on the actual grid considered.
This implies that there exists a moderate-sized constant C such that

‖Lh‖22 ≤ ‖Lh‖1‖Lh‖∞ =
(
max

i

∑

j<i

|(Ah)i,j |
)(

max
i

∑

j >i

|(Ah)i,j|
)
≤ C

(
max
i,j

|(Ah)i,j|
)2

≤ C ‖Ah‖22

Thus, observing ‖D−1
h ‖2 ≤ c1 γ̃

−1 ‖Ah‖−1 we see that there exists a moderate-sized constant C with

‖Wh‖2 = ‖Ah + LhD
−1
h LT

h‖2 ≤ ‖Ah‖2 + ‖Lh‖22‖D−1
h ‖2 ≤ C ‖Ah‖2 (13.35)

64Simplest case: For the uniform triangulation of the 2D Poisson equation on the unit square we have γ̃ = 4.
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Now, in an analogous way as for damped Jacobi, we obtain the smoothing property

‖AhS
m
h ‖2 ≤

2C

5m+ 3
‖Ah‖2, with C from (13.35), for Sh = GSGS

h (13.36)

Approximation property.

In view of (13.36), we now aim for proving an approximation property in the form

‖(Ph,HA
−1
H P T

h,H −A−1
h )bh‖2 ≤ CA ‖Ah‖−1

2 ‖bh‖2 (13.37a)

with the Galerkin coarse grid approximation matrix (13.32), for arbitrary right-hand sides bh. With the
denotation uh = A−1

h bh and uH = A−1
H P T

h,H bh, the desired estimate (13.37a) is equivalent to

‖Ph,H uH − uh‖2 ≤ CA ‖Ah‖−1
2 ‖bh‖2 (13.37b)

To link the desired estimate to FEM approximation properties, we consider the functions ûh ∈ Ûh, ûH ∈ ÛH

associated with uh, uH . These are the solutions of

a(ûh, v̂h) = (b̂h, v̂h)L2(Ω) for all v̂h ∈ Ûh,

a(ûH , v̂H) = (b̂h, (Ph,H vH)
∧)L2(Ω) = (b̂h, v̂H)L2(Ω) for all v̂H ∈ ÛH

where b̂h is associated with bh. To relate ûh and ûH to each other we consider the solution u of

a(u, v) = (b̂h, v)L2(Ω) for all v ∈ H1
0 (Ω)

Now we can invoke the regularity and FEM convergence results from Appendix A (see Theorem A.3,
Theorem A.5 and, in particular, the refined convergence estimate (A.27)) to conclude

‖ûh − u‖L2(Ω) ≤ Ch2‖b̂h‖L2(Ω), ‖ûH − u‖L2(Ω) ≤ CH2‖b̂h‖L2(Ω)

This implies

‖ûH − ûh‖L2(Ω) ≤ Ch2 ‖b̂h‖L2(Ω)

and in turn, together with (13.30),

‖Ph,H uH − uh‖2 ≤ C1‖bh‖2 = C1‖Ah‖2‖Ah‖−1
2 ‖bh‖2 (13.38)

with an appropriate constant C1.

Furthermore, by construction (see Sec. A.5) the elements of the stiffness matrix Ah are O(1), and due
to its sparse structure this implies the existence (uniform for h → 0) of a constant C2 with ‖Ah‖2 ≤ C2.
Combining this with (13.38) gives the desired estimate (13.37b) with CA = C1C2.

Convergence of the TG method.

Combining (13.34) or (13.36), respectively, with (13.37a) we obtain an result analogous to Theorem 13.3,
namely contractivity of the TG iteration matrix GTG

h in the 2-norm for a sufficiently large number of
smoothing sweeps.
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13.8 Another look at TG for SPD systems. TG as a preconditioner for CG

In the following exercises we study a two-grid (TG) scheme with symmetric smoothing, i.e. the smoothing
procedure applied after the coarse grid correction is adjoint to the initial smoother. In particular, in
Exercise 13.5 we consider TG as a preconditioner for CG. It should be noted that the results of these
exercises can be extended to general multigrid schemes of Galerkin type (see Sec. 13.9 below).

Exercise 13.4 Let A = AN ∈ R
N×N be SPD. The iteration matrix (amplification matrix) of a TG scheme with

symmetric pre- and post-smoothing has the form

GTG = (I −HTA)(I − CA)(I −HA) =: (I − TA) (13.39)

with a smoother S = I − HA and its adjoint I − HTA, and C = PA−1
n PT where P ∈ R

N×n is a prolongation
matrix and 0 < An = PTAP ∈ R

n×n is the Galerkin approximation of A on a coarser level, i.e., in a subspace Vn

of dimension n < N .

(This may result from our context of ‘geometric multigrid’ (GMG) as introduced above, where we identify vectors
with functions. However, it can also be seen in the context of ‘algebraic multigrid’ (AMG), which directly works
with the matrix-vector formulation.)

We assume that P ∈ R
N×n has full rank n, and Vn = image(P ). Then, PPT ∈ R

N×N with image(PPT) = Vn.
Show:

a) The A -adjoint of (I −HA) is (I −HA)A = (I −HTA).

b) I − CA is A -selfadjoint, and the same is true for GTG = I − TA.

c) I−CA is non-expansive (in the A -norm), i.e., ρ(I−CA) = ‖I−CA‖A = 1, hence ‖GTG‖A = ‖I−TA‖A < 1,
provided ‖I −HA‖A < 1.

(Note: ‖GTG‖A ‘significantly < 1’ requires an appropriate smoother.)

Hint: The subpace- (coarse grid-) correction is a Galerkin approximation. With the error e = u−u∗ for given u
we have r = b−Au = −Ae. The Galerkin subspace (two-grid-) correction is given by δ = −PA−1

n PTAe, and
this is nothing but the A -best approximation in Vn for the ‘exact correction’ −e. Check once more this fact,
i.e., check the Galerkin orthogonality relation (δ + e) ⊥A Vn by evaluating the inner product (δ + e, PPTy)A
for arbitrary vectors y ∈ R

N . Conclude that I −GA is non-expansive (Pythagoras).

d) Show that the Galerkin approximation operator

CA = P A−1
n PTA

is the A -orthogonal projector onto Vn. (This property is equivalent to Galerkin (A-)orthogonality.)

Exercise 13.5 Let A be SPD and assume that the TG amplification matrix GTG = I − TA from (13.39) is
contractive, i.e., ρ(gTG) = ρ(I − TA) < 1 (see Exercise 13.4).

Show: The preconditioner T defined in this way is SPD, as required for CG preconditioning.

Hint: Verify that T is symmetric and that ρ(I − TA) = ‖I − TA‖A < 1 holds. The desired property T > 0 then

follows by means of a spectral argument.

Remark 13.5 Algorithmically, TG as preconditioner for CG is realized as follows:

For a given iterate u, with error e = u− u∗ and residual r = b−Au = −Ae, we wish to approximate the
exact correction −e, which is the solution ε = −e of the system Aε = r. To this end we approximate this
solution by a TG step applied to Aε = r starting from ε0 = 0, i.e. (in the notation from (13.39))

ε = ε0 + T (r −Aε0) = T r ≈ −e
This means that T ≈ A−1 exactly plays the role of the preconditioner M−1, as expected. If you use
Matlab/pcg, specify a function MFUN(r) which performs such a TG step for the system Aε = r starting
from ε0 = 0. The result is the preconditioned residual r̂ = ε = T r ≈ −e.
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13.9 Multigrid (MG)

Multigrid in 1D.

The two-grid method is mainly of theoretical interest, since implementation of Alg. 13.1 requires the exact
solution of a problem of size N/2 in each step of the iteration. As we have discovered in Exercise 13.3, for
the 1D Poisson model the Galerkin coarse grid approximation IT

N,N/2ANIN,N/2 is actually identical to AN/2.

The coarse grid problem to be solved is of the same type as the original problem. This suggests to
proceed in a recursive fashion: Instead of solving exactly on the coarse grid, we treat it just like the fine
grid problem by performing some smoothing steps and then move to an even coarser grid. In this way we
proceed further until the coarse grid problem is sufficiently small to be solved by a direct method.

Assuming (for simplicity of presentation) that the initial problem size satisfies

N = 2L

for some L ∈ N, this idea leads to Alg. 13.2, in recursive formulation, which realizes one so-called cycle of
a basic MG algorithm. It is called with some initial guess u0; the number of ‘pre-smoothing’ steps mpre

and optional ‘post-smoothing’ steps mpost are up to the user.

Note that 0 is the natural initial choice for the correction δ at all coarser levels.

As discussed above, in the 1D case the natural Galerkin choice for the restriction and prolongation
operators is RN/2,N = IT

N,N/2,PN,N/2 = IN,N/2.

Algorithm 13.2 Basic MG cycle (1D)

% calling sequence: u = MG(u0, b, N); input: initial guess u0; output: approximation u

1: if N is sufficiently small, compute u = A−1
N b

2: else
3: do m = mpre steps of smoothing (e.g., damped Jacobi) with initial guess u0 to obtain umN
4: rm = b− AN u

m
N

5: δ = MG(0, RN/2,N rm, N/2) % solve for correction recursively with initial guess 0
6: ũ = umN + PN,N/2 δ
7: do m = mpost steps of smoothing (e.g., damped Jacobi) with initial guess ũ to obtain u
8: end if
9: return u

Example 13.5 We illustrate the convergence behavior of the basic MG algorithm applied to the 1D model
problem in Fig. 13.8. The plot shows the performance of the iteration ui+1 = MG(ui, b, N) for different
values of h = 1/N . Here, mpre = 3 and mpost = 0 were used.

The convergence behavior of the MG method in Example 13.5 is quite satisfactory. The following
exercise shows that the complexity of the algorithm is also optimal, i.e., one cycle of the MG algorithm
has computational complexity O(N).

Exercise 13.6 Denote by CMG(N) the cost of one MG cycle (Alg. 13.2) called with problem size N = 2L. Show:

CMG(N) ≤ CMG(N/2) + c(1 + mpre + mpost)N for some constant c > 0. Conclude that the cost of a complete

cycle is O(N).
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Figure 13.8: Convergence behavior of basic MG: left: ‖umN − u‖∞; right: ‖rm‖∞.

Multigrid in more generality.

Alg. 13.2 is formulated for the 1D model problem. A more general view, which is also applicable to
problems in higher dimensions, is the following. We stick to a FEM-like terminology oriented to elliptic
problems. Suppose a sequence of meshes Tl, l = 0, 1 . . . with corresponding approximation spaces (in the
standard case, spaces of piecewise linear functions). For simplicity we assume:

(i) The mesh size hl of mesh Tl is hl ∼ 2−l.

(ii) The spaces are nested : Ûl ⊆ Ûl+1 for l = 0, 1 . . . We write Nl = dimVl.

The spaces Ûl are spanned by bases (e.g., the piecewise linear hat functions); the natural embedding Ûl ⊆
Ûl+1 then corresponds to a prolongation operator (matrix) Pl+1,l ∈ RNl+1×Nl . Its transpose Rl,l+1 = P T

l+1,l

is the restriction operator. By Al we denote the stiffness matrix arising from the underlying bilinear form
a(·, ·) and the choice of basis for the space Ûl. In simple standard situations, Pl+1,l can be chosen in such
a way that the Galerkin identity

Al−1 = P T

l,l−1AlPl,l−1

remains valid. We have seen that this facilitates the convergence analysis, but the formulation of the MG
algorithm does not depend on this property; it also not valid or desirable in all applications. Also a choice
of the restriction operator Rl−1,l 6= P T

l,l−1 may be reasonable.

The basic MG algorithm 13.2 is reformulated as Alg. 13.3. Note that the assumption hl ∼ 2−l guarantees
that Nl ∼ 2 l d, where d ∈ N is the spatial dimension.

Alg. 13.3 is called the V-cycle; see Fig. 13.9. Instead of solving exactly on a coarser level, which
corresponds to the two-grid algorithm, one single approximate solution step is performed by a recursive
call at each level l.

Error amplification operator of the V-cycle: recursive representation.

For convergence analysis, an MG cycle is interpreted in a recursive way as a perturbed TG cycle. For the
TG cycle on level l, let us denote the iteration matrix (or error amplification operator) by

GTG
l = S

(post)
l (Il − CTG

l Al)S
(pre)
l , CTG

l = Pl,l−1A
−1
l−1Rl−1,l (13.40)
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Figure 13.9: Three V-cycles

Algorithm 13.3 Basic MG (‘V-Cycle’)

% calling sequence: u = MG(u0, b, l); input: initial guess u0; output: approximation x

1: if level l is sufficiently small, compute u = A−1
l b

2: else
3: do m = mpre steps of smoothing (damped Jacobi) with initial guess u0 to obtain umN
4: rm = b− Alu

m
N

5: δ = MG(0, Rl−1,lrm, l−1) % solve for correction recursively with initial guess 0
6: ũ = umN + Pl,l−1 δ
7: do m = mpost steps of smoothing (damped Jacobi) with initial guess ũ to obtain u
8: end if
9: return u

In the level - l MG version of the V-cycle, A−1
l−1 is replaced by its level - (l−1) MG approximation, which

we denote by N
(l−1)
l−1 . For the resulting MG analog of (13.40) we write

G
(l)
l = S

(post)
l (Il − C

(l−1)
l Al)S

(pre)
l , C

(l−1)
l = Pl,l−1N

(l−1)
l−1 Rl−1,l (13.41a)

Here, the approximate inverse operator N
(l−1)
l−1 is related to the corresponding level - (l−1) MG amplification

operator G
(l−1)
l−1 by

G
(l−1)
l−1 = Il−1 −N

(l−1)
l−1 Al−1, i.e., N

(l−1)
l−1 = A−1

l−1 −G
(l−1)
l−1 A−1

l−1

Thus,
C

(l−1)
l = Pl,l−1N

(l−1)
l−1 Rl−1,l = Pl,l−1A

−1
l−1Rl−1,l︸ ︷︷ ︸

= CTG
l

−Pl,l−1G
(l−1)
l−1 A−1

l−1 Rl−1,l

hence (13.41a) can be written in the recursive form

G
(l)
l = S

(post)
l (Il − CTG

l Al)S
(pre)
l︸ ︷︷ ︸

= GTG
l

+ S
(post)
l Pl,l−1G

(l−1)
l−1 A−1

l−1Rl−1,lAlS
(pre)
l (13.41b)

Assuming ‖S(post)
l ‖ < 1, ‖S(pre)

l ‖ < 1, ‖P l,l−1
l ‖ < C, and

‖A−1
l−1Rl−1,lAlS

(pre)
l ‖ ≤ C, C a uniform constant (typically ≥ 1), (13.42)

this gives the recursive estimate
‖G(l)

l ‖ ≤ ‖GTG
l ‖+ C ‖G(l−1)

l−1 ‖
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Figure 13.10: A W-cycle

with some constant C. With the abbreviations

κTG
l = ‖GTG

l ‖, κ
(l)
l = ‖G(l)

l ‖

this gives the recursion

κ
(2)
2 = κTG

2 , and κ
(l)
l ≤ κTG

l + Cκ
(l−1)
l−1 , l = 3, 4, . . . (13.43)

We see that, even for ‖κTG
l ‖ < 1 on all levels l (i.e., uniform contractivity of the TG cycle), it is not

possible to derive uniform contraction bounds for the V-cycle in this way. Actually, existing convergence
proofs for the V-cycle rely on a more explicit representation for G

(l)
l ; see for instance [18, Sec. 3.3].

W-cycle, µ -cycle.

Viewing MG as a (linear) iteration scheme, it is natural to attempt to improve the approximation by
µ repeated recursive calls. This leads to the so-called µ-cycle formulated in Alg. 13.4. The case µ = 1
corresponds to the V-cycle (Alg. 13.3); the case µ = 2 leads to the so-called W-cycle, visualized in
Fig. 13.10.

We modify the above recursive representation for the case of the µ-cycle. Again we start with the normal
TG cycle (13.40): 65

GTG
l = S

(post)
l (Il − CTG

l Al)S
(pre)
l , CTG

l = Pp,l−1A
−1
l−1Rl−1,l (13.44)

In the level - l MG version of the µ-cycle, A−1
l−1 is replaced by its level-(l−1) µ-cycle approximation N

(l−1)
l−1 .

For the resulting µ-cycle MG analog of (13.44) we write

G
(l)
l = S

(post)
l (Il − C

(l−1)
l Al)S

(pre)
l , C

(l)
l = Pl,l−1N

(l−1)
l−1 Rl−1,l (13.45a)

Here, the (approximate inverse) operator N
(l−1)
l−1 is related to µ-fold application of the corresponding level-

(l−1) MG amplification operator:
(
G

(l−1)
l−1

)µ
= Il−1 −N

(l−1)
l−1 Al−1, i.e., N

(l−1)
l−1 = A−1

l−1 −
(
G

(l−1)
l−1

)µ
A−1

l−1

Thus, (13.45a) can be written in the recursive form

G
(l)
l = S

(post)
l (Il − CTG

l Al)S
(pre)
l︸ ︷︷ ︸

= GTG
l

+ S
(post)
l Pl,l−1

(
G

(l−1)
l−1

)µ
A−1

l−1Rl−1,lAlS
(pre)
l (13.45b)

65This is slightly simplified: According to Alg. 13.4, we would start with µ TG coarse grid corrections. The difference
between these versions is not essential.
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In a similar way as for the V-cycle (see (13.43)) this gives the recursive estimate

κ
(2)
2 = κTG

2 , and κ
(l)
l ≤ κTG

l + C
(
κ
(l−1)
l−1

)µ
, l = 3, 4, . . . (13.46)

for the contraction rate of the µ-cycle.

Exercise 13.7 Assume µ = 2 and κTG
l ≤ ρ ≤ 1

4C on all levels l, where C ≥ 1 is the constant in (13.46). (Thus,

ρ ≤ 1
4 is necessarily assumed.) Show: The W -cycle contraction rate κ

(l)
l can be uniformly bounded by

κ
(l)
l ≤ 1−√

1− 4Cρ

2C
≤ 2ρ ≤ 1

2

on all levels l = 2, 3, 4, . . ..

Hint: The sequence (κ
(l)
l ) is strictly increasing and majorized by the sequence defined by

ξ2 = ρ, ξl = ρ+ C ξ2l−1, l = 3, 4, . . .

Consider the latter as a monotonously increasing fixed point iteration.

This argument can also be generalized to the case µ > 2.

Algorithm 13.4 Multigrid (µ-Cycle)

% Calling sequence: u = MG(u0, b, l, µ); input: initial guess u0; output: approximation u

% µ = 1 → V-cycle; µ = 2 → W-cycle

1: if level l is sufficiently small, compute u = A−1
l b

2: else
3: do m = mpre steps of smoothing (damped Jacobi) with initial guess u0 to obtain umN
4: rm = b− Alu

m
N

5: δ(0) = 0
6: for ν = 1 to µ do δ(ν) = MG(δ(ν−1), Rl−1,lrm, l−1, µ)
7: ũ = umN + Pl,l−1δ

(µ)

8: do m = mpost steps of smoothing (damped Jacobi) with initial guess ũ to obtain u
9: end if
10: return u

On the basis the recursion (13.46), Exercise 13.7 provides a rather general convergence argument for the
W-cycle. Still, we have assumed that (13.42) holds, i.e.,

‖A−1
l−1Rl−1,lAlSl‖ ≤ C

which looks quite natural but needs to be argued. Direct evaluation for the 1D and 2D Poisson examples
shows that, with respect to the energy norms involved, C is indeed a moderate-sized a uniform constant
≥ 1. In the Galerkin context one may think of rewriting this as

A−1
l−1Rl−1,lAlSl = A−1

l−1Rl−1,lAlPl,l−1︸ ︷︷ ︸
= Il−1

Rl−1,lSl + A−1
l−1Rl−1,lAl (Il − Pl,l−1Rl−1,l)Sl

and try to estimate (in norm) the second term on the right hand side, which is still not straightforward.

The cost of the µ-cycle MG method clearly grows with µ. The next exercise shows the trend.
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Exercise 13.8 Let d ≥ 1 be the spatial dimension and N = NL be the problem size of the finest mesh. Show:

The cost of the µ-cycle is O(N) for µ ≤ 2d − 1 and O(N logN) for µ = 2d.

Example 13.6 The TG and the MG methods are linear iterations. For the 1D model problem, Ta-
ble 13.1 shows estimates for the corresponding contraction rates in the energy norm, obtained by numer-
ical experiment: We observe the error reduction of MG for a random initial vector u0, with mpre = m
presmoothing steps and mpost = 0 postsmoothing steps. As to be expected, the two-grid method has the
best contraction rate. The W-cycle (µ=2) is very close to the TG method.

We also see that the contraction rate is rather small even for µ=1 (V-cycle).

V-cycle

N 23 24 25 26 27 28 29 210

m = 1 0.333 0.330 0.327 0.323 0.320 0.320 0.313 0.312

m = 2 0.156 0.175 0.191 0.198 0.203 0.205 0.207 0.207

m = 3 0.089 0.105 0.118 0.127 0.131 0.134 0.136 0.138

W-cycle

N 23 24 25 26 27 28 29 210

m = 1 0.333 0.329 0.312 0.320 0.330 0.329 0.328 0.327

m = 2 0.116 0.116 0.114 0.116 0.116 0.115 0.115 0.114

m = 3 0.073 0.077 0.077 0.078 0.076 0.077 0.077 0.077

Two-grid method

N 23 24 25 26 27 28 29 210

m = 1 0.333 0.314 0.326 0.321 0.329 0.326 0.327 0.325

m = 2 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

m = 3 0.074 0.076 0.076 0.078 0.078 0.078 0.078 0.077

Table 13.1: Estimated contraction rates for V-cycle (µ = 1), W-cycle (µ = 2), and two-grid method.

Remark 13.6 The so-called F-cycle (‘flexible cycle’) is an intermediate version between V-cycle and W-
cycle. A recursive call of the F-cycle corresponds to one recursive call of a V-cycle follows by one recursive
call of a W-cycle.

13.10 Nested Iteration and Full Multigrid (FMG)

One of the basic questions in iterative solution techniques is finding a good starting vector. Nested iteration
is a general technique for this. The basic idea is the following: A good starting vector u0 for the fine grid
problem AN u = bN , might be the appropriately prolongated solution of a coarse grid problem. Since the
coarse grid problem cannot be solved exactly either, we solve it iteratively and need a good starting vector
for that iteration as well.

Effectively, we start at the coarsest level, where an exact solution is available; then, we prolongate this
solution to a finer level where an approximate solution technique such as MG can be used; the approximate
solution obtained in this way is transferred to the next fine grid as a starting point for a MG iteration,
etc., until we reach the finest level with a good initial guess for the final MG cycle.
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Figure 13.11: Full Multigrid (FMG)

In Fig. 13.11 a single pass of this procedure is visualized (think of starting from the left, with exact
solution at the coarsest level, and ‘going up’). However, such a single pass not necessarily yields a suffi-
ciently accurate result, and the process is again iterated. To this end we use a recursive approach: For an
intermediate approximation on level l, we compute the new approximation by coarse grid correction using
FMG on level l −1, see Alg. 13.5, with 0 as the natural initial guess for the correction. In general, one
pass of the FMG procedure uses µ′ MG cycles of the type µ-cycle (Alg. 13.4) at each level l.

Algorithm 13.5 Full Multigrid

% calling sequence: u = FMG(u0, b, l); input: initial guess u0; output: approximation u

% µ, µ′ ≥ 1 given

1: if l is sufficiently small, compute u = A−1
l b

2: else
3: rl = b−Al u0
4: δ = FMG(0, Rl−1,l rl, l−1)
5: u(0) = u0 + Pl,l−1 δ
6: for ν = 1 to µ′ do u(ν) = MG(u(ν−1), b, l, µ)
7: u = u(ν)

8: end if
9: returnu

Unless some initial approximation u0 is available, the process is initiated by calling FMG(0, b, l), i.e.,
u0 = 0 with initial residual b. Thus, FMG(0, Rl−1,l b, l−1) is called in order to obtain a good initial solution.
Due to the recursion, this means that we ‘go up’ from the bottom level with FMG, interpolation and µ′

additional MG steps to obtain a first approximation u1 on level l, with residual rl = b − Au1. When
applying FMG iteratively, in the second iteration FMG(u1, b, l) calls FMG(0, Rl−1,l rl, l−1), and again
we go up from the bottom level with FMG, interpolation and µ′ additional MG steps to obtain a next
approximation u2 on level l, etc.

Example 13.7 We illustrate the performance of the FMG algorithm for the 1D model problem in
Fig. 13.12, i.e., we plot the errors ‖um − u‖∞ and the energy norm error ‖um − u‖AL

of the iteration
um+1 = FMG(um, f, L) for different values of L (with N = 2L). We note the considerable performance
improvement due to the good initial guesses. Here, mpre = 3 and mpost = 0 and µ = µ′ = 1.

The FMG method is of course more expensive. However, the cost of one cyle of FMG is still O(N) as
for the standard MG cycle.

Optimal convergence properties of FMG.

The numerical evidence of Example 13.7 shows that the advantage of FMG becomes more pronounced as
the problem size N increases. The following Theorem 13.4 is a way of formalizing this observation. We
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N 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

tFMG

tMG
3.3 3.2 3.9 4.6 5 4.6 4.8 4.3 4 3.4 2.9 2.6 2.5 2.5 2.5 2.5

Table 13.2: Ratio of CPU-time per iteration of FMG vs. MG (mpre = 3).
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Figure 13.12: Convergence behavior of FMG compared with MG.

consider again a sequence of meshes Tl with mesh sizes hl ∼ 2−l. We assume that the exact (Galerkin)
approximationul ∈ Ûl on level l to the exact solution u∗ of the original (PDE) problem satisfies (typically,
in the energy norm ‖ · ‖ = ‖ · ‖A),

‖ul − u∗‖ ≤ Khpl (13.47)

for some p > 0 and all l.

Theorem 13.4 Let c̄ = supl hl−1/hl, and let κ = κ(µ) be the contraction rate of the multigrid µ-cycle.
Let p be as in (13.47), and let µ′ be the number of µ-cycles used in the FMG algorithm 13.5. Assume
c̄ pκµ

′

< 1. Then there exists a constant C ′ > 0 such that one cycle of FMG results in an approximation
ũl ∈ Ûl which satisfies

‖ũl − u∗‖ ≤ C ′Khpl

Proof: We proceed by induction on l. For the approximations ũl (obtained by FMG) to the exact solutions
ul on level l, we denote the ‘algebraic’ FMG error on level l by ẽl = ũl−ul. Clearly, ẽ0 = 0. FMG on level l
consists of µ′ steps of classical MG (with contraction rate κ = κ(µ)), with an initial error ẽl−1 = ũl−1−ul.
Hence,

‖ẽl‖ ≤ κµ
′‖ũl−1 − ul‖ ≤ κµ

′
(
‖ũl−1 − ul−1‖+ ‖ul−1 − ul‖

)

≤ κµ
′
(
‖ũl−1 − ul−1‖+ ‖ul−1 − u∗‖+ ‖ul − u∗‖

)

≤ κµ
′
(
‖ẽl−1‖+Khpl−1 +Khpl

)
≤ κµ

′
(
‖ẽl−1‖+ (1 + c̄ p)Khpl

)

Iterating this inequality, we obtain with ẽ0 = 0:

‖ẽl‖ ≤ K (1 + c̄ p)κµ
′
(
hpl + κµ

′

hpl−1 + κ2µ
′

hpl−2 + · · ·+ κlµ
′

hp0
)
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Figure 13.13: Convergence behavior of MG and FMG for µ = 1, µ′ = 1, mpost = 0. Left: mpre = 1. Right:
mpre = 3. For comparison: the discretization errors (in energy norm) for l = 10, l = 15, and l = 20 are:
e10 = 2.8210−4, e15 = 8.8110−4,e20 = 2.7510−7.

The definition of c̄ implies hl−i ≤ c̄ihl. Hence, together with assumption c̄ pκµ
′

< 1 we obtain

‖ẽl‖ ≤ K (1 + c̄)κµ
′

hpl
(
1 + κµ

′

c̄ p + κ2µ
′

c̄2p + · · ·+ κlµ
′

c̄lp
)
≤ K(1 + c̄)

1− κµ′ c̄ p
κµ

′

hpl

Thus,
‖ũl − u∗‖ ≤ ‖ẽl‖+ ‖ul − u∗‖ ≤ C ′Khpl

with an appropriate constant C ′. �

Theorem 13.4 implies the following observations:

• Consider FMG for linear systems arising after discretization of elliptic boundary value problems.
The exact solutions ul ∈ Ûl are approximations to the unknown solution u∗. Therefore, it suffices to
obtain approximations ũl ≈ ul up to the discretization error ul − u∗ ∼ hpl . Theorem 13.4 shows that
this can be achieved with one cycle of FMG. The cost for one cycle of FMG is O(NL).

• Standard MG starts with the initial guess 0. Hence, with a level-independent contraction rate ρ < 1,
the error after k steps of MG isO(ρk). Thus, to reach the level of the discretization error uL−u∗ ∼ hpL,
one needs O(| log hL|p) = O(L) steps. In terms of the problem size NL ∼ hdL, we need O(logNL)
steps; the total cost is therefore O(NL logNL).

• The condition c̄ pκµ
′

< 1 could, in principle, be enforced by increasing µ′ (note: µ′ enters only linearly
in the complexity estimates for FMG), or by increasing the number of smoothing steps.

Example 13.8 In Fig. 13.13 we demonstrate the behavior of the MG method compared with the FMG
method for the 1D model problem −u′′ = 1. The left figure shows the case mpre = 1, whereas the right
figure shows the case mpre = 3. We note that FMG with mpre = 1 attains an approximation at the level
of the discretization error after a single pass.

Remark 13.7 Using multigrid as a preconditioner for a Krylov subspace method works in an analogous
way as for a two-grid preconditioner; see Remark 13.5.
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13.11 Nonlinear problems

Like other stationary iterative schemes, MG is not a priori a linear technique. It can be adapted to
nonlinear problems, with some reorganization concerning the correction steps, where nonlinearity is taken
into account.

Full approximation scheme (FAS).

The basic idea is rather general. Consider a system of equations in the form

AN(u) = bN (13.48)

with a nonlinear mapping AN : RN → RN . We assume that the problem is well-posed (with, at least, a
locally unique solution) and consider a (simpler) approximation ÃN(u) ≈ AN(u). The mapping ÃN is an
(in general, also nonlinear) preconditioner for AN .

Assume that a first guess u0 for the solution u∗ of (13.48) is available. For ÃN(u) ≈ AN(u) we may
expect

ÃN (u∗)− ÃN (u0) ≈ AN (u∗)−AN (u0) = bN −AN (u0) = r0 (13.49)

Here, the right hand side is the residual r0 of u0 with respect to (13.48). This suggests to compute a
corrected approximation u1 as the solution of

ÃN (u1) = ÃN(u0) + r0 = bN + (ÃN − AN)u0 (13.50)

If ÃN is linear, this can be written as the usual ‘correction scheme’ as in stationary iteration methods,
where the correction δ is a linear image of the residual,

ÃN δ = r0, u1 = u0 + δ (13.51)

In the general, nonlinear case, (13.50) is solved directly for the new approximation u1. This is called a
‘full approximation scheme’ (FAS).

In the context of MG, ÃN is defined via a coarse grid approximation An of AN of dimension n < N ,
and we have to be careful concerning the intergrid transfer. Assume that u0 is an appropriately smoothed
approximation on the finer grid. With our usual notation for the restriction and prolongation operators,
the nonlinear FAS-type two-grid method reads:

1. Restrict u0 to the coarser space: ũ0 = Rn,N u0

2. Compute the residual and restrict it to the coarser space: r̃0 = Rn,N r0 = Rn,N(bN −AN (u0))

3. Solve An(ṽ) = An(ũ0) + r̃0

4. Compute the correction on the coarse grid: δ = ṽ − ũ0

5. Prolongate the correction δ and add it to u0, i.e., compute u1 = u0 + PN,n δ

Note that the coarse grid solution ṽ is not directly prolongated, but the coarse-grid correction δ obtained
by the FAS step is prolongated and added to u0. In this way, for the linear case the two-grid FAS scheme
becomes equivalent to our two-grid ‘correction scheme’ (CS) formulation.

The generalization to FAS-type multigrid is straightforward (V-cycle, µ-cycle, FMG). Note that the
multigrid version requires the solution of a nonlinear problem only on the coarsest grid, e.g., by a procedure
of Newton type. More implementation details and examples for applying FAS-type multigrid to nonlinear
boundary value problems can be found in [4].
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Exercise 13.9 Formulate the nonlinear FAS-type TG coarse grid correction in detail for a standard finite
difference discretization of

−u′′ + φ(u)u = f(x)

with homogeneous Dirichlet boundary conditions. (This problem is well-posed for φ(u) ≥ 0.)

The smoothing procedure can usually be chosen in a similar way as for related linear(ized) problem.

Example 13.9 For the problem from Exercise 13.9, for instance, discretization leads to an algebraic
system of the form

(AN + ΦN(u))u = bN

with a nonlinear diagonal mapping ΦN(u)u = (φ(u1)u1, . . . , φ(un)uN). The corresponding damped Jacobi
smoother is based on inverting the corresponding ‘diagonal preconditioner’

SN(u) = (DN + ΦN(u))u, DN = diag(AN)

A standard Jacobi step can be defined in an FAS-type manner:

u0 7→ u1 = solution of SN (u1) = SN(u0) + r0, r0 = bN − (AN + ΦN (u0))u0

In practice, this is realized by a (scalar) Newton procedure, with the Jacobian

DSN(u) = DN +DΦN (u)

A single Newton step starting from u0 takes the form

u
(1)
1 = u0 − (DSN(u0))

−1r0

or equivalently, u
(1)
1 = u0 + δ, where the correction δ is the solution of

DSN(u0)δ = r0

For damped Jacobi we set u
(1)
1 = u0 + ωδ, with an appropriate damping factor ω.

Naturally, the detailed choice for the algorithmic components is not obvious in the nonlinear case. Some
detailed case studies are presented in [4].

Nonlinear Galerkin and FAS type two-grid scheme.

The weakly nonlinear Poisson problem from Exercise 13.9 is an example of a nonlinear elliptic problem for
which the linear theory can be extended in a rather straightforward manner. An introduction to the theory
of nonlinear elliptic problems can be found in [23]. Here, we restrict ourselves to the abstract specification
of the weak formulation, together with the Galerkin/FEM approximation and the corresponding two-grid
procedure.

The weak formulation of a nonlinear elliptic problem takes the form

a(u, v) = f(v) ∀ v ∈ V (13.52)

with a bilinear form a(u, v) which depends in a nonlinear way on u. (In the simplest case of a second order
problem posed on a domain Ω with homogeneous Dirichlet boundary conditions, V = H1

0 (Ω).)
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As in the linear case, a Galerkin/FEM approximation defined on a finite-dimensional subspace ÛN ⊆ V
via the (nonlinear) Galerkin conditions

a(û, v̂) = f(v̂) ∀ v̂ ∈ ÛN (13.53)

With the usual FEM isomorphism u ∈ R
N−1

! û ∈ ÛN , this corresponds to a nonlinear algebraic system

AN(u) = bN

Consider an approximation û0 ∈ ÛN for the solution ûN of (13.53) obtained after smoothing,66 with error
ê0 = û0 − ûN . Error and residual are related via 67

a(û0 − ê0︸ ︷︷ ︸
= ûN

, v̂)− a(û0, v̂) = f(v̂)− a(û0, v̂) ∀ v̂ ∈ ÛN (13.54)

In the nonlinear two-grid method we seek an approximation ûTG
N to ûN of the form

ûTG
N = û0 + δ̂N/2

with δ̂N/2 ∈ ÛN/2 ⊆ ÛN . As in the linear case, the coarse-grid correction δ̂N/2 is an approximation to the
unknown ‘exact correction’ −ê0; from (13.54) we see that, at least formally, it is defined in a natural way
by the Galerkin condition

a(û0 + δ̂N/2, ŵ)− a(û0, ŵ) = f(ŵ)− a(û0, ŵ) =: r̂0(ŵ) ∀ ŵ ∈ ÛN/2 (13.55)

which simplifies to (13.31b) in the linear case. Since the coarse grid correction step is realized within the
smaller subspace ÛN/2,on the left-hand side of (13.55) we replace û0 by ˜̂u0 ∈ ÛN/2. This leads to

Find δ̂N/2 ∈ ÛN/2 such that a(˜̂u0 + δ̂N/2︸ ︷︷ ︸
=: v̂N/2

, ŵ)− a(˜̂u0, ŵ) = r̂0(ŵ) ∀ ŵ ∈ ÛN/2 . (13.56)

This is realized by an FAS step:

Compute v̂N/2 ∈ ÛN/2 such that a(v̂N/2, ŵ) = a(˜̂u0, ŵ) + r̂0(ŵ) ∀ ŵ ∈ ÛN/2 (13.57)

followed by
δ̂N/2 = v̂N/2 − ˜̂u0

and the new approximation û1 is obtained in the form

û1 = û0 + δ̂N/2

We see that this process is nothing but a ‘weak formulation’ of the FAS coarse grid correction scheme from
Sec. 13.11. In matrix/vector formulation it is the same, with an appropriate definition of the coarse grid
Galerkin approximation AN/2 = AN/2(u).

66Remark concerning notation: In the linear case we have used the notation um instead of u0 (Sec. 13.6). All other
denotations, in particular for the natural restriction and prolongation operators, are the same as in Sec. 13.6.

67The right hand side of (13.54) is called the weak residual of û0; more precisely: the weak residual of û0 is the û0-dependent
functional r̂0 : v̂ 7→ f(v̂)− a(û0, v̂).
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14 Substructuring Methods

Multigrid techniques are relatively easy to implement on simple geometries and regular grids. If more
complicated geometries are involved, it is often useful to use substructuring techniques, e.g., by parti-
tioning the underlying domains into several subdomains and use some divide-and-conquer technique in
the preconditioning process. An example is an L-shaped domain in R2 partitioned into three rectangles.
This approach is called domain decomposition. Domain decomposition may also be motivated by storage
limitations (the solver need to be based on smaller problems). Some of these techniques are also natural
candidates for parallelization. Domain decomposition is also a useful approach if the underlying prob-
lem is of a different nature in different parts of the domain, or if fast direct solvers can be used for the
subproblems.

Like multigrid methods, substructuring techniques are frequently used for preconditioning Krylov sub-
space methods like CG or GMRES.

14.1 Subspace corrections

In this section we introduce substructuring techniques using a general, abstract formulation. We will also
see that many of the methods discussed before fit naturally into this framework. We consider an abstract
variational problem, in weak formulation, on a finite-dimensional space V ,

Find u ∈ V such that a(u, v) = f(v) ∀ v ∈ V (14.1)

with a bounded SPD 68 bilinear form a(·, ·) and associated energy norm ‖u‖A =
√
a(u, u).

Assume that an approximation u0 for the exact solution u∗ of (14.1) is given, with error e0 = u0 − u∗
and weak residual r0,

r0(v) = f(v)− a(u0, v) = a(−e0, v), v ∈ V (14.2)

Exact solution of the the correction equation

Find δ ∈ V such that a(δ, v) = r0(v) ∀ v ∈ V (14.3)

would result in the negative error, δ = −e0, i.e., the exact correction such that u0 + δ = u∗. For the
construction of a preconditioner we approximate (14.3) by means of subspace correction techniques.

Let V1 ⊆ V be a linear subspace of V . Analogously as for the two-grid method, the associated ‘subspace
correction’, i.e., the solution δ1 ∈ V1 of

a(δ1, v1) = r0(v1) ∀ v1 ∈ V1 (14.4)

is the projection69 with respect to the a(·, ·) inner product of the negative error −e0 = u∗ − u0 onto the
subspace V1. The improved approximation

u1 = u0 + δ1 (14.5)

is optimal in the following sense: It satisfies the Galerkin orthogonality relation

68Here, SPD means that a(·, ·) is symmetric and coercive, or ‘elliptic’, i.e., a(u, u) ≥ γ (u, u) > 0 uniformly for all u ∈ V .
69Projection of −e0:

a(δ + e0, v1) = 0 ∀ v1 ∈ V1

⇔ a(δ, v1) = a(−e0, v1) = r0(v1) ∀ v1 ∈ V1
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e1 = u1 − u∗ = δ1 − (−e0) ⊥A V1

which can be written in terms of the new residual r1(v) = f(v)− a(u1, v) = a(−e1, v),

r1(v1) = f(v1)− a(u1, v1) = a(−e1, v1)
= f(v1)− a(u0, v1)︸ ︷︷ ︸

= r0(v1)

− a(δ1, v1)︸ ︷︷ ︸
= r0(v1)

= 0 ∀ v1 ∈ V1 (14.6)

This means that the new residual r1(v) vanishes on the subspace V1, and is in turn equivalent to the best
approximation property

‖u1 − u∗‖A = min
v1∈V1

‖v1 − u∗‖A (14.7)

More generally, we consider a family of subspaces V0, . . . , VN which span V ,

N∑

i=0

Vi = V (14.8)

i.e., each v ∈ V can be written in the form v =
∑N

i=0 vi with vi ∈ Vi. The sum in (14.8) is not necessarily
assumed to be a direct sum (

⊕
): Some of the Vi may be ‘overlapping’ (i.e., the intersections Vi ∩ Vj may

have a positive dimension). In this case the representation v =
∑N

i=0 vi is not unique.

Moreover, the individual subspace corrections analogous to (14.4) may be not exact. We assume that
the subspace corrections are of a more general form, obtained as the solutions δi ∈ Vi of

ai(δi, vi) = r0(vi) ∀ vi ∈ Vi (14.9)

where ai(·, ·) is an SPD bilinear form on Vi which is not necessarily identical with the action of the given
form a(·, ·) restricted to Vi. (Think, for instance, of a multigrid cycle playing the role of an approximate
local solver.)

Different versions of substructuring methods are characterized by the way how the corresponding sub-
space corrections are combined. We will see that, typically, the outcome is a preconditioner for (14.1)
which may also be written in a weak form, analogous to (14.1),

Find δ ∈ V such that b(δ, v) = r0(v) ∀ v ∈ V (14.10)

The bilinear form b(·, ·) is an approximation for a(·, ·); it represents the preconditioner. It is usually
not written down explicitly; rather, it is implicitly defined by the particular type of subspace correction
algorithm used.

For studying the properties of b(·, ·) it is not essential what particular functional appears on the right
hand side in (14.10). Therefore, to study the action of the preconditioner we again write

Find ũ ∈ V such that b(ũ, v) = f(v) ∀ v ∈ V (14.11)

in analogy to (14.1), and we consider ‘subspace solutions’ instead of ‘subspace corrections’.
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14.2 Additive Schwarz (AS) methods

The simplest version of a global technique is to compute independent subspace solutions ui ∈ Vi and add
them up,

ũ =
N∑

i=0

ui (14.12a)

where the ui are the solutions of

ai(ui, vi) = f(vi) ∀ vi ∈ Vi, i = 0 . . . N (14.12b)

For historical reasons, this is called an additive Schwarz method (AS). Naturally, the ui can be computed
in parallel because there is no data dependency between the subproblems. Note that even for the case of
exact local solvers, ai = a|Vi

, and despite
∑N

i=0 Vi = V , the add-up subspace solution ũ from (14.12a) is
not the exact solution of (14.1).

For a study of the properties of an AS preconditioner it is favorable to refer to an explicit basis repre-
sentation.

Representation of an AS preconditioner.

We identify the n-dimensional space V with70
R

n, and choose a basis {x1, . . . , xn} for V and arbitrary
bases {xi,1, . . . , xi,ni

} for each subspace Vi, where n = dim(V ) and ni = dim(Vi). Let

X =


x1

∣∣∣ . . .
∣∣∣xn

 ∈ R

n×n and Xi =


xi,1

∣∣∣ . . .
∣∣∣xi,ni


 ∈ R

n×ni, i = 0 . . . N

be the columnwise matrix representations of these bases. For the representation of vectors v, vi with
respect to these bases we use the denotation 71 (with v ∈ V, v′ ∈ Rn, and vi ∈ Vi, v

′′
i ∈ Rni),

v = Xv′ and vi = Xi v
′′
i , i = 0 . . .N

With respect to the global basis X , the stiffness matrix A ∈ Rn×n, i.e., the SPD matrix representation of
a(·, ·) is given by

A =
(
aj,k
)
= a(xj , xk)

Let the Ai ∈ Rni×ni analogously defined as the local stiffness matrices of the (inexact) bilinear forms ai(·, ·)
with respect to the bases of the Vi, i.e.,

Ai =
(
(ai)j,k

)
= ai(xi,j , xi,k), i = 0 . . .N

By assumption on the ai(·, ·), the matrices Ai are also SPD.

The linear functional f(v) is represented in a similar way: For v = Xv′ we have

f(v) = f ′Tv′

(Riesz representation with some f ′ ∈ Rn), and for vi = Xi v
′′
i we have a representation

f(vi) = f ′′
i

T
v′′i , i = 0 . . .N

70As usual, this corresponds to a canonical isomorphism, e.g., between functions and associated coordinate vectors in the
FEM context.

71For each i, the index ′′ is used as a ‘generic’ symbol for the individual coordinate vectors with respect to the individual
bases in the subspaces Vi.
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with f ′′
i ∈ Rni. In this notation, the original and subspace problems take the form

Au′ = f ′, and Aiu
′′
i = f ′′

i , i = 0 . . . N

Let Ei ∈ Rn×ni denote the matrix representation of the embedding Vi ⊆ V , i.e., Ei is defined by XEi = Xi,

Ei = X−1Xi ∈ R
n×ni, i = 0 . . . N (14.13)

In other words, Ei transforms the i-th coordinate representation of some vi ∈ Vi into the global coordinate
representation with respect to the basis X . In particular, for each fixed i and vi ∈ Vi we have

vi = Xv′i = Xi v
′′
i , ⇒ v′i = Ei v

′′
i (14.14a)

and
f(vi) = f ′Tv′i = f ′′

i
T
v′′i ⇒ f ′′

i = ET

i f
′ (14.14b)

We see that the Ei and E
T
i play the role of prolongation and restriction operators, respectively.

Now each individual subspace solution ui from (14.12b) is represented as ui = Xiu
′′
i , where u

′′
i is the

solution of
Aiu

′′
i = f ′′

i , i = 0 . . . N (14.15)

Thus, 72

u′i = Ei u
′′
i = EiA

−1
i f ′′

i = EiA
−1
i ET

i f
′
i =: B̂i f

′
i , i = 0 . . . N (14.16)

Lemma 14.1 For any choice of bases X and Xi, the matrix representation of the preconditioner defined
by (14.12) is given in the following way: The symmetric matrix

B̂ :=

N∑

i=0

B̂i =

N∑

i=0

EiA
−1
i ET

i ∈ R
n×n (14.17a)

is SPD, and B := B̂−1 is the matrix representation of the AS preconditioner ũ from (14.11), i.e., we have
ũ = X ũ′, where ũ′ is the solution of

B ũ′ = f ′ (14.17b)

Remark 14.1 Note that
B ≈ A and B̂ = B−1 ≈ A−1

We also note that for an exact Galerkin subspace correction, i.e. ai(·, ·) = a(·, ·), we have

Ai = ET
i AEi, and B̂i = Ei

(
ET

i AEi

)−1
ET

i

and B̂iA is the A-orthogonal projector onto the range of Ei : (B̂iA)
A = A−1(B̂iA)

TA = B̂iA, and

(
B̂iA

)2
= Ei

(
ET

i AEi

)−1
ET

i AEi

(
ET

i AEi

)−1
ET

i A = B̂iA

For general Ai, we call B̂iA with the symmetric matrix B̂i from (14.16) a ‘projection-like’ operator.

Proof: (of Lemma 14.1) For arbitrary f ′ ∈ Rn we have

(
B̂f ′, f ′) =

( N∑

i=0

EiA
−1
i ET

i f
′, f ′
)
=

N∑

i=0

(
EiA

−1
i ET

i f
′, f ′) =

N∑

i=0

(
A−1

i ET

i f
′, ET

i f
′)

with ET
i f

′ ∈ Rni . For f ′ 6= 0 each term in the sum is positive because the Ai have been assumed to be
SPD. This proves that the matrix B̂ defined in (14.17a) is also SPD.

72Note that the matrices B̂i as well as B̂ below refer to the global basis X .
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Furthermore, the AS subspace solution is defined by the summing up the individual subspace solutions
ui, cf. (14.12). With (14.16) we obtain

ũ′ =
N∑

i=0

B̂i f
′ = B̂ f ′ = B−1f ′

This completes the proof. �

The SPD matrix B = B̂−1 is implicitly defined by (14.17a), and the solution of (14.17b) represents the
action of AS preconditioning with respect to the basis X . The SPD matrix B represents an SPD bilinear
form b(·, ·) in V via the identity

b(u, v) = (Bu′, v′) for u = Xu′, v = Xv′ (14.18a)

Therefore the action of AS preconditioning corresponds to the solution of an approximate variational
problem of the form

Find ũ ∈ V such that b(ũ, v) = f(v) ∀ v ∈ V (14.18b)

with b(·, ·) from (14.18a). This may also be written in the form

Find ũ ∈ V such that a(P−1
AS ũ, v) = f(v) ∀ v ∈ V (14.19a)

where PAS is defined as the projection-like operator PAS : V → V (cf. Remark 14.1) with matrix represen-
tation

PAS ! P ′
AS

= B−1A = B̂A =
N∑

i=0

B̂iA (14.19b)

with B̂i = EiA
−1
i ET

i defined in (14.17a). This corresponds to writing AP ′
AS

−1
ũ′ = f ′ instead of B ũ′ = f ′.

The operator PAS can also be defined in the following way equivalent to (14.19a),

b(PASu, v) = a(u, v) for all u, v ∈ V (14.20)

We also define the individual projection-like operators Pi : V → Vi with matrix representation

Pi ! P ′
i = B̂iA = EiA

−1
i ET

i A, i = 0 . . .N (14.21)

such that

PAS =
N∑

i=0

Pi (14.22)

Consider arbitrary u = Xu′ ∈ V and vi = Xv′i ∈ Vi and observe P ′
i u

′ = Ei (A
−1
i ET

i A)u
′, i.e., (A−1

i ET
i A)u

′

is the representation of P ′
i u

′ in the local coordinate system in Vi (cf. (14.14a)). This gives

ai(Piu, vi) = (AiA
−1
i ET

i Au
′, v′′i ) = (Au′, Ei v

′′
i ) = (Au′, v′i) = a(u, vi)

which yields the fundamental identity analogous to (14.20),

ai(Piu, vi) = a(u, vi) for all u ∈ V, vi ∈ Vi (14.23)

Lemma 14.2 The operators Pi, i = 0 . . . N , and PAS are selfadjoint with respect to a(·, ·).
Proof: Let u, v ∈ V . Using the symmetry of a(·, ·), ai(·, ·), and the fact that Pi u, Pi v ∈ Vi we obtain,
making use of (14.23), 73

a(Piu, v) = a(v, Piu) = ai(Pi v, Pi u) = ai(Pi u, Pi v) = a(u, Pi v)

For PAS the result follows by summation. �

73 In matrix formulation: (P ′

i )
A = A−1 (B̂iA)

TA = A−1AB̂iA = P ′

i (analogously as in Remark 14.1).
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Lemma 14.3 The operators Pi, i = 0 . . . N and PAS are coercive (positive definite) with respect to a(·, ·),
i.e.,

a(Piu, u) > 0 for all 0 6= u ∈ V (14.24a)

and they satisfy the Cauchy-Schwarz inequality

a(Pi u, v) ≤
(
a(Pi u, u)

)1
2
(
a(Pi v, v)

) 1
2 (14.24b)

Proof: From the definition (14.21) of the Pi we have

a(Piu, u) = (AEiA
−1
i ET

i Au
′, u′) = (A−1

i ET

i Au
′, ET

i Au
′) > 0

since the Ai are SPD. Together with Lemma 14.2 this shows that a(Piu, v) is a symmetric and coercive
bilinear form on V , which implies (14.24b). �

Lemma 14.1 shows that B is SPD. Our goal is to find constants γ,Γ such that the estimate

γB ≤ A ≤ ΓB . . . ‘spectral equivalence’

is valid. If these constants are available then, as in Exercise 12.4, we infer for the matrix P ′
AS

= B−1A :

κ = κσ(P
′
AS
) =

λmax(P
′
AS
)

λmin(P
′
AS)

≤ Γ

γ
(14.25)

In view of Exercise 12.4, the quantity κ allows us to assess the convergence behavior of the corresponding
preconditioned CG method (PCG). The goal is the design of preconditioners B that are cheap (i.e.,
r 7→ B−1 r is simple to evaluate), while the ratio Γ/γ is as small as possible.

Example 14.1 Let A ∈ RN×N be SPD. Denote by ei, i = 1 . . .N , the Euclidean unit vectors in RN .
Let V = RN , Vi = span{ei}, and let the bilinear forms ai(·, ·) be obtained by restricting a(·, ·) to the
one-dimensional spaces Vi, i.e., ai(u, v) = a(u, v) for u, v ∈ Vi. The corresponding subspace solution
ui ∈ Vi = span{ei} is the solution of (14.12b),

ai(ui, vi) = f(vi) ∀ v ∈ Vi

Each single correction affects the i-th solution component only, and all these corrections are added up. In
matrix terminology (cf. Lemma 14.1) we have, with respect to the Euclidean basis,

Ei =
(
0, . . . , 0, 1, 0, . . . , 0

)T
, Ai =

(
a(ei, ei)

)
=
(
ai,i
)

From (14.17a) we obtain
B−1 = diag

(
a−1
1,1, . . . , a

−1
N,N

)

The corresponding AS preconditioner is precisely the Jacobi preconditioner, i.e., the preconditioning matrix
B is the diagonal D = diag(A) of the stiffness matrix A.

In FEM terminology, for the Poisson equation with Dirichlet boundary conditions, discretized over mesh
points xi, this means that each single correction ui ∈ Vi is a multiple of the i-th basis function (hat
function) over the local patch Ωi around xi, and ui is the solution of a local discrete Poisson problem with
homogeneous Dirichlet boundary condition on ∂Ωi. All these local solutions added up give rise to the value
of the Jacobi preconditioner. In terms of degrees of freedom, this is a ‘non-overlapping’ method; however,
from a geometric point of view, the local subdomains (patches) Ωi are of course overlapping.

In this interpretation, Jacobi is a simple but ineffective example of a domain decomposition technique.
More advanced techniques for domain decomposition are considered in Sec. 14.4.

Iterative Solution of Large Linear Systems Ed. 2017



156 14 SUBSTRUCTURING METHODS

This example shows that AS is a generalization of the classical Jacobi preconditioner in the sense:
‘Compute the actual residual, choose a family of subspaces, compute the Galerkin correction in each
individual subspace, and sum up the corrections’. In general we also allow that the subproblems are only
approximately solved and that the subspaces may be overlapping.

Exercise 14.1 Provide an interpretation of Jacobi line relaxation (block relaxation, where the blocks of variables

are associated with grid lines of a regular mesh) in the spirit of Example 14.1.

Abstract theory for AS.

In the following we characterize the AS preconditioner B by three parameters: C0, ρ(E), and ω, which
enter via assumptions on the subspaces Vi and the bilinear forms ai(·, ·) representing the approximate local
problems.

Assumption 14.1 (stable decomposition)

There exists a constant C0 > 0 such that every u ∈ V admits a decomposition u =
∑N

i=0 ui with ui ∈ Vi
such that

N∑

i=0

ai(ui, ui) ≤ C2
0 a(u, u) (14.26)

Assumption 14.2 (strengthened Cauchy-Schwarz inequality)

For i, j = 1 . . .N , let Ei,j = Ej,i ∈ [0, 1] be defined by the inequalities

|a(ui, uj)|2 ≤ E2
i,j a(ui, ui)a(uj , uj) ∀ ui ∈ Vi, uj ∈ Vj (14.27)

By ρ(E) we denote the spectral radius of the symmetric matrix E = (Ei,j) ∈ RN×N . The particular
assumption is that we have a nontrivial bound for ρ(E) to our disposal.

Note that due to Ei,j ≤ 1 (Cauchy-Schwarz inequality), the trivial bound ρ(E) = ‖E‖2 ≤
√
‖E‖1‖E‖∞ ≤

N always holds. For particular Schwarz-type methods one aims at bounds for ρ(E) which are independent
of N .

Assumption 14.3 (local stability)

There exists ω > 0 such that for all i = 1 . . . N :

a(ui, ui) ≤ ωai(ui, ui) ∀ ui ∈ Vi (14.28)

Remark 14.2 The space V0 is not included in the definition of E ; as we will see below, this space is
allowed to play a special role.

Ei,j = 0 means that the spaces Vi and Vj are orthogonal (in the a(·, ·) - inner product). We will see below
that small ρ(E) is desirable. We will also see that a small C0 is desirable.

The parameter ω represents a one-sided measure of the approximation properties of the inexact solvers
ai. If the local solver is of exact Galerkin type, i.e, ai(u, v) ≡ a(u, v) for u, v ∈ Vi, then ω = 1. However,
this does not necessarily imply that Assumptions 14.1 and 14.2 are also satisfied.
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Lemma 14.4 [P.L. Lions]

Let PAS be defined by (14.19b) resp. (14.20). Then, under Assumption 14.1,

(i) PAS : V → V is a bijection, and

a(u, u) ≤ C2
0 a(PASu, u) = C2

0

N∑

i=0

a(Piu, u) ∀ u ∈ V (14.29)

(ii) Characterization of b(u, u) :

b(u, u) = a(P−1
AS
u, u) = min

{ N∑

i=0

ai(ui, ui) : u =
N∑

i=0

ui, ui ∈ Vi

}
(14.30)

Proof: We make use of (14.22), the fundamental identity (14.23), and Cauchy-Schwarz inequalites.

(i): Let u ∈ V and u =
∑

i ui be a decomposition of stable type guaranteed by Assumption 14.1. Then,
by means of the fundamental identity (14.23) and the Cauchy-Schwarz inequality we obtain

a(u, u) = a(u,
∑

i ui) =
∑

i a(u, ui) =
∑

i ai(Piu, ui) ≤
∑

i

√
ai(Piu, Piu) ai(ui, ui)

=
∑

i

√
a(u, Piu) ai(ui, ui) ≤

√∑
i a(u, Piu)

√∑
i ai(ui, ui)

=
√
a(u, PASu)

√∑
i ai(ui, ui) ≤

√
a(u, PASu) C0

√
a(u, u)

This implies the estimate (14.29). In particular, it follows that PAS is injective, because with (14.29),
PASu = 0 implies a(u, u) = 0, hence u = 0. Due to finite dimension, we conclude that PAS is bijective.

(ii): We first show that the minimum on the right-hand side of (14.30) cannot be smaller than a(P−1
AS u, u).

To this end, we consider an arbitrary decomposition u =
∑

i ui with ui ∈ Vi and estimate

a(P−1
AS
u, u) =

∑
i a(P

−1
AS
u, ui) =

∑
i ai(PiP

−1
AS
u, ui)

≤
√∑

i ai(PiP
−1
AS u, PiP

−1
AS u)

√∑
i ai(ui, ui)

=
√∑

i a(P
−1
AS u, PiP

−1
AS u)

√∑
i ai(ui, ui)

=
√
a
(
P−1

AS u,
∑

i PiP
−1
AS u)

√∑
i ai(ui, ui) =

√
a(P−1

AS u, u)
√∑

i ai(ui, ui)

(Here we have used the identity
∑

i PiP
−1
AS

= I, see (14.22)). This shows a(P−1
AS
u, u) ≤ ∑

i ai(ui, ui). In
order to see that a(P−1

AS
u, u) is indeed the minimum of the right-hand side of (14.30), we define ui =

PiP
−1
AS u. Then, ui ∈ Vi and

∑
i ui = u, and

∑
i ai(ui, ui) =

∑
i ai(PiP

−1
AS u, PiP

−1
AS u) =

∑
i a(P

−1
AS u, PiP

−1
AS u)

= a(P−1
AS
u,
∑

i PiP
−1
AS
u) = a(P−1

AS
u, u)

We see that the minimum is attained for these special ui, and the value of the minimum is a(P−1
AS
u, u).

This concludes the proof. �

The matrix P ′
AS = B−1A from (14.19b) is the matrix representation of the operator PAS. Since PAS

is selfadjoint in the A - inner product (see Lemma 14.2), we can estimate the smallest and the largest
eigenvalue of B−1A by

λmin(B
−1A) = inf

0 6=u∈V

a(PASu, u)

a(u, u)
, λmax(B

−1A) = sup
0 6=u∈V

a(PASu, u)

a(u, u)
(14.31)

Lemma 14.4, (i) in conjunction with Assumption 14.1 readily yields the lower bound

λmin(B
−1A) ≥ 1

C2
0

An upper bound for λmax(B
−1A) is obtained with the help of the following lemma.
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Lemma 14.5 Under Assumptions 14.2 and 14.3 we have

‖Pi‖A ≤ ω, i = 0 . . . N (14.32a)

a(PASu, u) ≤ ω (1 + ρ(E))a(u, u) for all u ∈ V (14.32b)

Proof:

– Proof of (14.32a): From Assumption 14.3 (inequality (14.28)) and again using the fundamental inequality
(14.23) we infer for all u ∈ V :

‖Piu‖2A = a(Piu, Piu) ≤ ωai(Piu, Piu) = ωa(u, Piu) ≤ ω ‖u‖A ‖Piu‖A (14.33)

which implies (14.32a).

– For the proof of (14.32b), we observe that the space V0 is assumed to play a special role. We define

P̂ =
N∑

i=1

Pi = PAS − P0 (14.34)

Assumptions 14.2 and 14.3 then allows us to bound 74

a(P̂ u, P̂ u) =
N∑

i,j=1

a(Piu, Pj u) ≤
N∑

i,j=1

Ei,j
√
a(Piu, Piu)

√
a(Pj u, Pj u)

≤ ω

N∑

i,j=1

Ei,j
√
ai(Piu, Piu)

√
aj(Pj u, Pj u) ≤ ωρ(E)

N∑

i=1

ai(Piu, Piu) (14.35)

= ωρ(E)
N∑

i=1

a(u, Piu) = ωρ(E)a(u, P̂ u) ≤ ωρ(E)‖u‖A ‖P̂ u‖A

from which we extract
‖P̂ u‖A ≤ ωρ(E)‖u‖A (14.36)

From (14.32a) we have ‖P0u‖A ≤ ω ‖u‖A. Combining this with (14.36) gives

a(PASu, u) = a(P̂ u, u) + a(P0u, u) ≤ ‖P̂ u‖A ‖u‖A + ‖P0u‖A ‖u‖A ≤ ω (1 + ρ(E))‖u‖2A
which is the desired estimate. �

Theorem 14.1 Let C0, ω, ρ(E) be defined by Assumptions 14.1–14.3. Then,

λmin(P
′
AS
) ≥ 1

C2
0

and λmax(P
′
AS
) ≤ ω (1 + ρ(E))

Proof: Follows from Lemmas 14.4 and 14.5 in conjunction with (14.31). �

Theorem 14.1 permits us to conclude spectral equivalence, i.e., we obtain a bound the spectral condition
number of B−1A! PAS (cf. (14.25)) in terms of the parameters C0, ω and ρ(E),

κ = κσ(P
′
AS
) ≤ C2

0 ω (1 + ρ(E)) (14.37)

74 In the second line of (14.35), a quadratic form in terms of E is estimated from above in terms of ‖E‖2. Note that E is
symmetric, such that ‖E‖2 = ρ(E).
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The error amplification operator associated with the AS preconditioner (in the sense of one step of a
stationary iteration scheme) is given by

GAS := I − PAS ! I − P ′
AS = I − B−1A

Note that the above results to not imply ‖GAS‖A < 1, i.e., AS as a stationary iteration is not guaranteed
to be convergent under the above assumptions.

Example 14.2 (cf. Example 14.1) Let A ∈ R
(N−1)×(N−1) be the SPD stiffness matrix for the 1D Poisson

model problem,

A =
1

h




2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2




, h =
1

N

and
B = diag(A) = 1

h
diag

(
2, . . . , 2

)

corresponding to the Jacobi preconditioner.

Denote by ei, i = 1 . . . N − 1, the Euclidean unit vectors in RN−1. Let V = RN−1, V0 = {} (!), and
Vi = span{ei}, i = 1 . . .N − 1. The bilinear form associated with A is

a(u, u) = (Au, u)

The bilinear forms ai(u, v) = (Aiu, v)are the restrictions of a(·, ·) to the (one-dimensional) spaces Vi =
span{ei}. With

Ei =
(
0, . . . , 0, 1, 0, . . . , 0

)T

we have
Ai = ET

i AEi =
(
ai,i
)
=
( 2

h

)

Let us check Assumptions 14.1–14.3:

1. Stable decomposition: For u = (u1, . . . , uN−1)
T =

∑N−1
i=1 ui ei we have

N−1∑

i=0

ai(ui ei, ui ei) =
2

h

N−1∑

i=0

u2i = (Bu, u) =
2

h
(u, u) ≤ 2

h

1

λmin(A)
(Au, u)

with λmin(A) = 4
h
sin2(πh) ≈ 4π2h. Thus, Assumption 14.1 is satisfied with the h -dependent

constant
C2

0 =̇
1

2π2h2

or equivalently

C2
0 =

1

λmin(B−1A)

2. Strengthened Cauchy-Schwarz inequality: With

a(ui ei, uj ej) = uiuj (Aei, ej) = ai,j uiuj

and a(ui ei, ui ei) = ai,iu
2
i we have
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|a(ui ei, uj ej)|2 ≤ E2
i,j a(ui ei, ui ei)a(uj ej , uj ej) with E2

i,j =
|ai,j|2
ai,iaj,j

In particular, Ei,i = 1, Ei,j = 1
2
for |i− j| = 1, and Ei,j = 0 for |i− j| > 1, which gives

ρ(E) ≤ 2 independent of h

3. Local stability: Due to

a(ui ei, ui ei) = u2i (Aei, ei) = u2i (Bei, ei) = u2i
2
h
= ai(ui ei, ui ei)

the local stability estimate (14.28) is satisfied with stability constant ω = 1.

Now, application of Theorem 14.1 shows that for the Jacobi preconditioner we have

λmin(P
′
AS) = λmin(B

−1A) ≥̇ 2π2h2 and λmax(P
′
AS) = λmax(B

−1A) ≤ 1 · (1 + 2) = 3

In this simple example, these parameters can of course also be computed directly:

λmin(B
−1A) =

h

2
λmin(A) =̇ 2π2h2 and λmax(B

−1A) =
h

2
λmax(A) < 2

We see that

κσ(B
−1A) =

λmax(B
−1A)

λmin(B−1A)
= O(h−2)

and therefore the Jacobi preconditioner has no effect for the Poisson problem. This is also obvious due to
the fact that the diagonal of A is constant. In other words: Jacobi is equivalent to a ‘naive’ substructuring
method which does not yield a useful preconditioner.

14.3 Multiplicative Schwarz (MS) methods

In multiplicative versions of Schwarz methods, subspace corrections are immediately applied, and the new
residual is evaluated before proceeding – analogously as in the Gauss-Seidel method compared to Jacobi.
With the same denotation as for AS methods, this amounts to the following procedure, starting from some
initial u0 with (weak) residual r0(·) = f(·)− a(u0, · ) :

Find δ0 ∈ V0 such that a0(δ0, v0) = r0(v0) ∀ v0 ∈ V0

Update approximation: u0,0 = u0 + δ0 (14.38a)

Update residual: r0,0(·) = f(·)− a(u0,0, · ) = r0(·)− a(δ0, · )
and continuing this over the subspaces V1, V2, . . . : For i = 1, 2, . . .,

Find δi ∈ Vi such that ai(δi, vi) = r0,i−1(vi) ∀ vi ∈ Vi

Update approximation: u0,i = u0,i−1 + δi (14.38b)

Update residual: r0,i(·) = f(·)− a(u0,i, · ) = r0,i−1(·)− a(δi, · )

Remark 14.3 This procedure is analogous to, or rather a generalization of a Gauss-Seidel sweep, or
preconditioner, applied to a linear system Au = f starting from some initial u0 with residual r0. For
a better understanding, let us reformulate such a Gauss-Seidel sweep in the following way equivalent
to (5.8b). We start with 75

u0 = (u10, . . . , u
n
0)

T

and associated residual
r0 = f −Au0 = (r10, . . . , r

n
0 )

T

75 We use conventional matrix/vector notation and indexing beginning with 1 instead of 0; however, vector indices are
denoted by superscripts for the moment.
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1. Solve
a11 δ

1 = r10

and update u0,
u0,1 = u0 + (δ1, 0, . . . , 0)

T

and update the residual,

r0,1 = f − Au0,1 = r0 −




a11 δ
1

a21 δ
1

...

an1 δ
1



=




r10,1
r20,1
...

rn0,1




2. Solve
a22 δ

2 = r20,1

and update u0,1,
u0,2 = u0,1 + (0, δ2, 0, . . . , 0)

T
= u0 + (δ1, δ2, 0, . . . , 0)

T

and update the residual,

r0,2 = f − Au0,2 = r0,1 −




a12 δ
2

a22 δ
2

a32 δ
2

...

an2 δ
2




=




r10,2
r20,2
r30,2
...

rn0,2




3. Solve
a33 δ

3 = r30,2

and update u0,2,

u0,3 = u0,2 + (0, 0, δ3, 0, . . . , 0)
T
= u0 + (δ1, δ2, δ3, 0, . . . , 0)

T

and update the residual,

r0,3 = f − Au0,3 = r0,2 −




a13 δ
3

a23 δ
3

a33 δ
3

...

an3 δ
3




=




r10,3
r20,3
...
...

rn0,3




and so on. Formally, the full residuals r0,i = f − Au0,i are involved in each step, but only the underlined
residual components enter the local (componentwise) corrections.

Turning back to the general MS scheme in coordinate representation we obtain the following iteration for
i = 0, 1, . . .. As for AS, for simplicity of notation we formulate the ’subspace solution variant’ 76 analogous
to the solution of (L+D)u = f with Gauss-Seidel preconditioner L+D.

76 If MS is used as a preconditioner, f is again replaced by the residual r0 of a given u0, and the result of an MS sweep is
the preconditioned residual; see (14.38).

Iterative Solution of Large Linear Systems Ed. 2017



162 14 SUBSTRUCTURING METHODS

Let u′0,−1 = 0, r′0,−1 := f ′. For i = 0, 1, 2, . . .,

Solve Ai δ
′′
i = ET

i r
′
0,i−1

Let δ′i = Ei δ
′′
i , update u′0,i = u′0,i−1 + δ′i

Update the residual: r′0,i = r′0,i−1 −Aδ′i

After N+1 steps, we see that the new approximation u′1 = u′0,N is given by

u′1 = u′0 +
N∑

i=0

δ′i

with
δ′i = EiA

−1
i ET

i r
′
0,i−1, i = 0, 1, . . .

r′0,i = r′0,i−1 − Aδ′i, i = 0, 1, . . .

i.e.,
δ′0 = E0A

−1
0 ET

0 r
′
0

δ′1 = E1A
−1
1 ET

1 r
′
0,1

= E1A
−1
1 ET

1 (r
′
0 − Aδ′0)

= E1A
−1
1 ET

1 (I − E0A
−1
0 ET

0A)r
′
0

. . .

With P ′
i = B̂iA = EiA

−1
i ET

i A (the matrix representation of the projection-like operators (14.21)) an
induction argument leads us to the representation

δ′i = B̂i (I − P ′
i ) · · · (I − P ′

0)r
′
0

For the successive residuals we obtain, with Q′
i = AEiA

−1
i ET

i :

r′0,0 = (I − Q′
0)r

′
0

r′0,1 = (I − Q′
1)r

′
0,0 = (I − Q′

1)(I − Q′
0)r

′
0

. . .

After a complete sweep over all subspaces Vi, we end up with

r′1 = r′0,N = (I − Q′
N ) · · · (I − Q′

0)r
′
0

For the error e′1 = −Ar′1 we obtain 77

e′1 = (I − P ′
N) · · · (I − P ′

0)e
′
0 =: G′

MS e
′
0

which motivates the name ‘multiplicative method’. The operator GMS : V → V ,

GMS = (I − PN) · · · (I − P0), with Pi ! P ′
i = B̂iA = EiA

−1
i ET

i A (14.39)

represents error amplification operator of one sweep of MS.

The abstract theory from the preceding section can be extended to the MS case. In particular, repeated
application of MS sweeps yields a convergent stationary iteration scheme, provided the parameter ω from
Assumption 14.3 satisfies ω ∈ (0, 2). The following Theorem 14.2 can be interpreted as s generalization of
Theorem 5.3 on the convergence of the SOR scheme.

77Note that A−1(I − Q′

N ) · · · (I − Q′

0)A = (I − P ′

N ) · · · (I − P ′

0) – an exercise.
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Lemma 14.6 Let
G−1 = I and Gj := (I − Pj) · · · (I − P0), j = 0 . . . N

Then,

I −Gj =

j∑

i=0

PiGi−1, j = 1 . . . N (14.40a)

and for ω ∈ (0, 2),

(2− ω)
N∑

i=0

a(Pi Gi−1u,Gi−1u) ≤ ‖u‖2A − ‖GMSu‖2A ∀ u ∈ V (14.40b)

Proof: Due to
Gi = Gi−1 − Pi Gi−1 (14.41)

the sum in (14.40a) is telescoping, and the result immediately follows.

– In order to prove (14.40b) we proceed as follows: Using (14.41) and Lemma 14.2 (A - selfadjointness of
the Pi), a short calculation shows

‖Gi−1u‖2A − ‖Giu‖2A = a(Gi−1u,Gi−1u
)
− a(Giu,Giu)

= a(Gi−1u,Gi−1u
)
− a(Gi−1u− Pi Gi−1u,Gi−1u− Pi Gi−1u

)

= 2a(Pi Gi−1u,Gi−1u)− a(Pi Gi−1u, Pi Gi−1u)

≥ (2− ω)a(Pi Gi−1u,Gi−1u)

where the last inequality follows from Assumption 14.3 in combination with the fundamental inequal-
ity (14.23). Summing up these inequalities, with GN = GMS, gives (14.40b). �

Theorem 14.2 Let C0, ω, ρ(E) be defined by Assumptions 14.1–14.3, and suppose ω ∈ (0, 2). Then, the
MS error amplification operator (14.39) satisfies 78

‖GMS‖2A ≤ 1− 2− ω

C2
0 (1 + ω2ρ(E))2

< 1 (14.42)

Proof: We use the denotation and the assertions from Lemma 14.6.

Estimate (14.42) is equivalent to

‖u‖2A ≤ 1

δ

(
‖u‖2A − ‖GMSu‖2A

)
∀ u ∈ V, with δ =

2− ω

C2
0 (1 + ω2ρ(E))2

In view of Lemma 14.6, (14.40b), it is sufficient to show (again, j = 0 plays a special role)

‖u‖2A = a(u, u) ≤ 2− ω

δ︸ ︷︷ ︸
= C2

0 (1+ω2ρ(E))2

{
a(P0u, u) +

N∑

j=1

a(Pj Gj−1u,Gj−1u)
}

∀ u ∈ V

Due to Lemma 14.4, (14.29), it thus remains to show that

78The right-hand side of (14.42) can be forced to be < 1 by choosing C0 in Assumption 14.1 large enough. The ‘critical’
condition ω ∈ (0, 2) originates from Lemma 14.6; it is reminiscent of the condition on the relaxation parameter in the SOR
method.
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C2
0 a(P0u, u) + C2

0

N∑

j=1

a(Pj u, u) ≤ C2
0

(
1 + ω2ρ(E)

)2{
a(P0u, u) +

N∑

j=0

a(Pj Gj−1u,Gj−1u)
}

∀ u ∈ V

or equivalently,

N∑

j=1

a(Pj u, u) ≤
(
2ω2ρ(E)+ω4ρ(E)2

)
a(P0u, u)+

(
1+ω2ρ(E)

)2 N∑

j=1

a(Pj Gj−1u,Gj−1u) ∀ u ∈ V (14.43)

In order to show (14.43), we rewrite the terms on the left-hand side using Lemma 14.6, (14.40a),

a(Pj u, u) = a(Pj u,Gj−1u) + a(Pj u, (I −Gj−1)u)

= (Pj u,Gj−1u)︸ ︷︷ ︸
(i)

+

j−1∑

i=0

a(Pj u, PiGi−1u)

︸ ︷︷ ︸
(ii)

, j = 1 . . . N (14.44)

and estimate the sums of both contributions (i), (ii). For (14.44(i)), the Cauchy-Schwarz inequality (14.24b)
gives

N∑

j=1

a(Pj u,Gj−1u) ≤
( N∑

j=1

a(Pj u, u)
) 1

2
( N∑

j=1

a(Pj Gj−1u,Gj−1u)
) 1

2
(14.45a)

Concerning (14.44(ii)), isolating the terms with i = 0 and estimating the terms with i > 0 in the same
way as in the proof of Lemma 14.5 gives

N∑

j=1

j−1∑

i=0

a(Pj u, PiGi−1u) =
N∑

j=1

a(Pj u, P0u)

︸ ︷︷ ︸
= a(P̂ u,P0u) (see (14.34))

+
N∑

j=1

j−1∑

i=1

a(Pj u, PiGi−1u)

≤ a(P̂ u, P0u) + ωρ(E)
( N∑

j=1

a(Pj u, u)
)1

2
( N∑

j=1

a(Pj Gj−1u,Gj−1u)
) 1

2

(14.45b)

Combining (14.44) with (14.45) leads to

N∑

j=1

a(Pj u, u) ≤ a(P̂ u, P0u) +
(
1 + ωρ(E)

)( N∑

j=1

a(Pj u, u)
) 1

2
( N∑

j=1

a(Pj Gj−1u,Gj−1u)
)1

2

The first term on the right-hand side can be estimated by (see (14.36),(14.33))

a(P̂ u, P0u) ≤ ‖P̂‖A a(P0u, P0u) ≤ ωρ(E) a(P0u, P0u) ≤ ω2ρ(E) a(P0u, u)

and finally, (14.43) follows by applying the arithmetic/geometric mean inequality to the second term and
simple rearranging. �

In a sense, Theorem 14.2 is a stronger result as obtained above for the AS case. It also implies a bound
for the condition number of PMS := I − GMS (the analog of PAS for the AS case): Let q < 1 denote the
bound for ‖GMS‖A from Theorem 14.2. Then,

‖PMS‖A ≤ 1 + q < 2

and PMS is invertible, with

‖P−1
MS

‖A = ‖(I − GMS)
−1‖A ≤ 1

1− q

Ed. 2017 Iterative Solution of Large Linear Systems



14.4 Introduction to domain decomposition techniques 165

hence

κA(PMS) ≤
2

1− q

We see that q ≈ 1 leads to an unfavorable behavior, which is typical for the standard Gauss-Seidel case
(see Example 14.3 below).

Note that, since PMS is not symmetric, it cannot be used in a straightforward way as for preconditioning
the CG method. A symmetric version can be obtained in the same way as for the symmetric Gauss-Seidel
method by repeating the multiplicative correction procedure, starting with VN , down to V0.

Example 14.3 We revisit Example 14.2, but consider Gauss-Seidel iteration, which corresponds to MS
with the same partitioning. In Example 14.2 we have seen that

C2
0 =̇

1

2π2h2
, ρ(E) ≤ 2, ω = 1

Thus, Theorem 14.2 shows

‖GMS‖2A = ‖(L+D)−1A‖2 = 1−O(h2)

and thus,

κA(PMS) = O(h−2)

In spite of this (well-known) ‘negative’ result (analogous to the Jacobi case), Gauss-Seidel precondition-
ing usually has a positive effect on the convergence behavior of Krylov solvers, but it deteriorates with
increasing dimension similarly as the unpreconditioned version.

Remark 14.4 Line relaxation techniques (block-Jacobi, block-Gauss-Seidel and similar techiques) natu-
rally fit into the AS/MS framework, with appropriate subspaces Vi representing the respective blocking,
i.e., the agglomeration of variables.

Multigrid methods can also be formulated in the context of subspace correction methods, based on
hierarchical decompositions of the given space V .

Now the question is what type of substructuring yields to an efficient AS or MS preconditioner. It turns
out that, in the context of domain decomposition (Sec. 14.4), overlapping domains are advantageous in
this respect, but less simple to realize computationally. In any case, including a basic global approximation
on a coarse mesh (associated with the subspace V0) ensures stability.

14.4 Introduction to domain decomposition techniques

The most important practical realization of the abstract idea of additive or multiplicative Schwarz methods
is domain decomposition. A standard text on this topic is the book [21]. The abstract theory from
Sections 14.2 and 14.3 provides a framework which has proven quite helpful in the design and analysis of
a number of old and new domain decomposition techniques.

Often, the approximate local solvers are realized in terms of MG cycles, or sometimes special direct
solvers (e.g., based on FFT techniques). In this section we discuss two typical domain decomposition
techniques for elliptic problems. In particular, we consider the 2D Poisson equation on a domain Ω ⊆ R2

as a prominent example.
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An overlapping additive two-level method.

Let Th be a quasi-uniform mesh (consisting of triangles), with mesh size h, of Ω ⊂ R2. We consider the
Dirichlet problem −∆u = f on Ω, u = 0 on ∂Ω (14.46)

discretized by FEM with piecewise linear functions from the FEM space Vh ⊆ H1
0 (Ω), giving rise to a

discrete system Ahu
′
h = f ′

h.

To generate a preconditioner for the resulting linear system we employ the AS framework. To fix ideas
and to keep the exposition simple, we assume that a second, coarse triangulation TH with mesh size H is
chosen. The FEM space on this mesh is VH ⊆ H1

0 (Ω). Furthermore we assume VH ⊆ Vh, i.e., the mesh
lines of TH are also mesh lines of Th.

For simplicity of exposition we assume that the local solvers are exact, i.e., the FEM systems on the
subdomains are solved exactly, such that Assumption 14.3 is trivially satisfied with ω = 1.

The space VH is associated with the special subspace V0 from our abstract AS setting. Its purpose is to
provide an initial, coarse approximation which enables us to start the AS procedure.

We assume that N subdomains Ωi, i = 1 . . .N , of Ω are given which consist of unions of elements
(triangles). We set

Vi = Vh ∩ H1
0 (Ωi), i = 1 . . .N

We assume that the subdomains Ωi satisfy:

• Ω =
⋃N

i=1Ωi

• The Ωi are assumed to be overlapping; in particular, for the AS convergence theory the ‘amount of
overlap’ is an essential parameter.

• Not more than M subdomains are simultaneously overlapping, i.e., sup
i=1...N

∣∣{j : Ωi ∩ Ωj 6= ∅}
∣∣ ≤M .

• The fine mesh Th is compatible with the decomposition of Ω, giving rise to N local meshes Th,i on

the subdomains Ωi, such that Vh =
∑N

i=1 Vi. In particular, the boundaries ∂Ωi consist of mesh lines
from Th.

One step of our AS preconditioner amounts to the following procedure:

1. Solve the FEM equations AH u
′
H = f ′

H on the coarse mesh TH , giving uH ∈ VH .

2. Embedding uH into the fine mesh gives rise to u0 ∈ V0, where V0 ⊆ Vh is the space of all interpolants
from VH to Vh (described by the range of the corresponding interpolation operator).

3. For i = 1 . . .N :

Solve the subproblems Ah,iu
′′
h,i = f ′′

h,i, where the local stiffness matrices Ah,i refer to the local meshes
over the subdomains Ωi, with the appropriately restricted versions f ′′

h,i of f
′
h and with homogeneous

Dirichlet boundary conditions on the boundaries ∂Ωi.

4. Extend (prolongate) the uh,i to functions ui defined on the overall grid Th (zero outside Ω̄i), and set

ũ = u0 +
∑N

i=1 ui.

A formally complete description involves the precise definition of prolongation operators Ei and their
transposes ET

i , such that the method exactly fits into our abstract AS framework.

One may also think of omitting the coarse space V0. However, convergence theory tells us that this has
an unfavorable effect on the condition number of the preconditioner for h→ 0, similarly as for the Jacobi
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case. One should also bear in mind that, if the method is used as a preconditioner, e.g., for CG, then the
right hand side of the given problem f is actually some intermediate residual.

Usually, the cost for performing a preconditioning step is significantly smaller than solving the full system
exactly, at least if the coarser problem is also treated by some substructuring technique.

Apart from the acceleration effect, the most favorable feature of such a preconditioner is given by the fact
that complex geometries can be reduced to simpler subgeometries, and the fact that individual subdomain
corrections can be computed in parallel. This is the major advantage of additive compared to multiplicative
approaches, and this is more important for practice than the observation that multiplicative preconditioners
are usually more accurate.

However, due to the overlapping domains this requires some local communication, e.g., if each domain
is mapped to an individual processor. This motivated the search for non-overlapping techniques; a typical
example for such a technique is discussed later in this section.

A bit of theory. Application of Theorems 14.1.

The assumption on the maximal amount of simultaneous overlap of the subdomains implies that the
spectral radius ρ(E) appearing in Theorems 14.1 and 14.2 is bounded by M , the maximal number of
simultaneous overlaps. We prove this with the help of the following lemma, which can be regarded as a
sharpened version of the standard inequality ‖E‖2 ≤ ‖E‖F .

Lemma 14.7 Let E ∈ RN×N be a symmetric matrix with M ≤ N non-zero entries per row and column.
Then, ‖E‖2 ≤

√
M max

j=1...N
‖Ej‖2

where Ej denotes the j-th column of E .
In particular, if |Ei,j| ≤ 1 for all i, j ∈ {1, . . . , N}, then

‖E‖2 ≤M

Proof: For each i, let J(i) ⊆ {1, . . . , N} denote the set of indices j with Ei,j 6= 0. Then, for any x ∈ RN

application of the Cauchy-Schwarz inequality yields

‖Ex‖22 =
∑

i

∣∣∣
∑

j∈J(i)

Ei,j xj
∣∣∣
2

≤
∑

i

( ∑

j∈J(i)

x2j ·
∑

j∈J(i)

Ei,j2
)

≤
(∑

i

∣∣∣
∑

j∈J(i)

x2j

∣∣∣
)

· max
i

∑

j∈J(i)

Ei,j2

≤
( ∑

i,j
Ei,j 6=0

x2j

)
· max

j
‖Ej‖22 ≤M ‖x‖22 · max

j
‖Ej‖22

by assumption on the sparsity structure of E . This implies the first assertion, and the second assertion
follows from the fact that for |E|i,j ≤ 1 we have ‖Ej‖2 ≤

√
M for all j. �

Now we consider the matrix

E =
(
Ei,j
)
, with Ei,j = sup

0 6=ui∈Vi
0 6=uj ∈Vj

|a(ui, uj)|2
a(ui, ui)a(uj, uj)

≤ 1

involved in Assumption 14.2. For Ωi ∩ Ωj = ∅ we have Ei,j = 0 because (using the notation of Sec. 14.2)

a(ui, uj) = (ET

i Aiu
′′
i , E

T

j Aj u
′′
j ) = (Aiu

′′
i , EiE

T

j Aj u
′′
j ) with EiE

T

j = 0
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Therefore, due to our assumption on the maximal simultaneous overlap, the matrix E satisfies the assump-
tions of Lemma 14.7. This shows ρ(E) ≤M .

In order to apply Theorem 14.1 it remains to verify that the decomposition ist stable in the sense of
Assumption 14.1. This is the topic of the following theorem.

Theorem 14.3 [AS with ‘generous’ overlap] Given the above hypotheses on the problem and the subdo-
mains, there exists C > 0 such that any u ∈ Vh can be decomposed as u =

∑N
i=0 ui with ui ∈ Vi and

N∑

i=0

‖ui‖2H1(Ω) ≤ C
(
1 +

H2

δ2

)
‖u‖2H1(Ω)

where δ > 0 is a parameter characterizing the ‘amount of overlap’. (δ can be defined in terms of the
characteristic functions of the subdomains Ωi.)

Proof: See [21]. The 1D version is an exercise. �

The boundedness and ellipticity of a(·, ·) implies a(ui, ui) ≤ C ‖ui‖2H1(Ω) and ‖u‖2H1(Ω) ≤ C a(u, u). This
shows that Theorem 14.3 implies that Assumption 14.1 is satisfied with

C2
0 = C

(
1 +

H2

δ2

)
.

Together with Theorem 14.1 shows that the condition number of the AS preconditioner grows at most
like O(1 +H2/δ2). Thus, the condition number is bounded uniformly in h. Furthermore, if the overlap is
‘generous’, i.e., δ ≥ cH , then the condition number is bounded uniformly in both h and H .

Remark 14.5 At first sight, the two-level approach might appear unnatural, namely to add all the local
solutions to a coarse approximation u0. In fact, in a classical iterative Schwarz procedure this step would
not be included. However, this is nothing but an additional, global overlap, and the role of the coarse
space V0 is to ensure that information obtained by the subdomain solves is communicated to the other
subdomains.

The spectral condition number for the MS preconditioner can be estimated in an analogous way on the
basis of Theorem 14.2.

Exercise 14.2 Realize the AS preconditioner for the 1D Poisson example on Ω = [0, 1] (FD discretization) with

a coarse and a fine mesh and two overlapping subdomains (subintervals) Ω1 = [0, a], Ω2 = [b, 1] with a > b,

a− b = δ = H. Choose, e.g., H = 0.1 (fixed), h = 0.01, and reduce the size of h. Observe the performance of pcg

preconditioned in this way.

Exercise 14.3 Devise the multiplicative (MS) analog of the two-level AS procedure introduced above.

Hint: Compute the residual after each single step before proceeding.

Ed. 2017 Iterative Solution of Large Linear Systems



14.4 Introduction to domain decomposition techniques 169

 

 

 

 

!

!

!

 

 

 

 

 

 

Γ

Ω1

Ω2

 

 

 

 

 

 

Figure 14.1: An edge patch ΩΓ = Ω1 ∪ Ω2 ∪ Γ, with nodes and mesh lines.

A non-overlapping additive two-level method.

We again consider the problem (14.46). We introduce a non-overlapping decomposition method involving
appropriate subdomain solvers. We will concentrate on the conceptual and algorithmic aspects, assuming
ai ≡ a (‘exact solvers’) for simplicity. To fix ideas for the definition of the subspaces involved in the
non-overlapping approach, we assume:

• The triangulation Th is a refinement of a coarse triangulation TH (consisting of triangles).

• The subdomains79 Ωi are taken exactly as the triangles of the coarse triangulation TH .

• The method works on the union of the patches of neighboring triangles; we will consider a version
where these patches are chosen as Ωi,j = Ωi ∪ Ωj , all unions of pairs of neighboring triangles Ωi, Ωj

sharing a common edge Γi,j.

Of course, the triangulations TH and Th are assumed to be admissible in the sense of Sec. A.5.

See Fig. 14.1 for the simplest case of a decomposition into two subdomains only.

Before we proceed with the formal definition of the subspaces that comprise the splitting of Vh for this
method, we recall that the unknowns (degrees of freedom) in the original discrete problem correspond
in a one-to-one fashion to the nodes of the fine triangulation. We split the set of nodes N of the fine
triangulation Th into:

• N0 : the nodes of the coarse triangulation TH ,

• Ni : the nodes in the interior of the subdomains Ωi (= triangles of the coarse triangulation),

• Ni,j : the nodes on the edges Γi,j = Ω̄i∩ Ω̄j of the coarse triangulation which are not contained in N0.

Again, Vh denotes the FEM space associated with Th. We construct a non-overlapping splitting of Vh in
the form

Vh = V0 +
∑

i

Vi +
∑

i,j

Vi,j (14.47)

Of course, the patches Ωi,j are overlapping to some extent; however, the term ‘non-overlapping’ refers to
the fact that we design (14.47) as a direct sum. To this end we associate the subspaces V0, Vi and Vi,j
with the nodal sets N0, Ni and Ni,j, i.e., V0 is associated with N0, each Vi with the nodes of Ni (i.e., with
the interior of the subdomain Ωi), and each Vi,j with the set Ni,j (i.e., with the edge Γi,j). That (14.47)
is indeed a direct sum will follow from the fact that, for each of the sets V0, Vi, Vi,j, we will construct
a basis which has a ‘Kronecker δ-property’ for the nodes of the corresponding nodal set N0, Ni, or Ni,j,
respectively.

In detail, the spaces that make up the splitting of Vh are defined as follows:
79The splitting of Vh will be based on the subdomains Ωi as well as so-called edge patches Ωi,j to be defined below.

Iterative Solution of Large Linear Systems Ed. 2017



170 14 SUBSTRUCTURING METHODS

• V0 is the space of piecewise linears on TH : V0 = VH .

• For each subdomain Ωi we set Vi = Vh ∩H1
0 (Ωi).

• For each edge Γi,j of the coarse triangulation (Γi,j denoting the edge shared by the subdomains Ωi

and Ωj), we define the ‘edge space’ Vi,j as the set of functions from Vh,

(i) which are supported by the edge patch Ωi,j = Ωi ∪ Ωj ∪ Γi,j,

(ii) and which are discrete harmonic, i.e.,

u ∈ Vi,j ⇔
{

supp u ⊆ Ωi,j and

a(u, v) = 0 ∀ v ∈ Vi ⊕ Vj
(14.48)

Note that dim(Vi,j) = |Nij|.

In this way we obtain a splitting

Vh = V0 ⊕
N∑

i=1

Vi ⊕
∑

i,j
Γi,j 6=∅

Vi,j (14.49)

and a dimension argument shows that this is in fact a direct sum.

In the notation of Sec. 14.2, the non-overlapping AS preconditioner is now defined according to (cf. (14.17a)):

B−1 =

N∑

i=0

EiA
−1
i ET

i +
∑

i,j

Ei,j A
−1
i,j E

T

i,j (14.50)

where Ei and Ei,j are the matrix representations of the embeddings Vi ⊆ Vh and Vi,j ⊆ Vh; the matrices
Ai and Ai,j are the stiffness matrices for the subspaces Vi and Vi,j.

The stiffness matrices Ai and the matrices Ei corresponding to the problems based on the spaces Vi and
the coarse space V0 are defined in a straightforward way: As for the overlapping method from Sec. 14.4,
A0 corresponds to the stiffness matrix for the approximation of the given problem on the coarse mesh
TH , and the subproblems to be solved on the Vi, i = 1 . . .N , are local discrete Dirichlet problems on the
subdomains Ωi, with homogeneous boundary conditions on ∂Ωi.

The appropriate interpretation of the stiffness matrices Ai,j for the edge spaces Vi,j is more subtle. These
are defined over the edge patches Ωi,j = Ωi∪Ωj∪Γi,j with internal interface Γi,j. The correct interpretation
of these subproblems is essential for understanding the nature of the non-overlapping AS, which is defined
by (14.50) in a purely formal way. For the case where the stiffness matrix Ah is not formed explicitly but
only the matrix-vector multiplication u′h 7→ Ahu

′
h is available, this will also show how the data for the

local ‘edge problems’ have to be assembled and how these subproblems are to be solved.

The appropriate interpretation of the local edge problems is the topic of the following considerations,
where we are ignoring discretization issues for a moment. To fix ideas, we consider a single edge Γ that is
shared by two subdomains Ω1 and Ω2, i.e., Γ is an interior interface between Ω1 and Ω2, see Fig. 14.2. We
denote the corresponding edge patch by Ω = ΩΓ = Ω1 ∪ Ω2 ∪ Γ.

• We interpret the edge subproblems in the following way: Consider the local solutions u1, u2 of
−∆u = f on Ω1,Ω2, with homogeneous Dirichlet boundary conditions on ∂Ω1, ∂Ω2 (including Γ).
These solutions are independent of each other. Now, evaluate the jump 80

[∂nuI ] := ∂n1u1 + ∂n2u2 (14.51)

80 [∂nuI ] = ∂n1u1 + ∂n2u2 denotes the jump of the normal derivative over the interface Γ, where the ∂ni
ui are oriented

outward Ωi.
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Figure 14.2: A combined domain Ω1 ∪ Ω2 ∪ Γ with interface Γ.

across the interface Γ, and consider the continuous solution w of the ‘interface problem’

−∆w = 0 on ΩΓ, w = 0 on ∂ΩΓ, [∂nw] = gΓ := −[∂nuI ] on Γ (14.52)

(observe the minus sign with the jump term). We call w the harmonic extension of its trace w|Γ
to ΩΓ. Then, by construction, the linear combination u = u1 + u2 + w is the solution of 81

−∆u = f on ΩΓ, u = 0 on ∂ΩΓ

with [∂nu] = 0 on Γ. In this way, we have solved the Dirichlet problem on ΩΓ by means of solving
two independent problems in Ω1, Ω2 and the additional interface problem (14.52).

At the discrete level, the solution of the subproblems on Ω1 and Ω2 is straightforward and gives rise
to discrete approximations for u1 and u2. We now investigate the nature of the auxiliary interface
problem (14.52),

• Problem (14.52) is of the type

−∆w = 0 on ΩΓ, w = 0 on ∂ΩΓ, [∂nw] = gΓ on Γ (14.53a)

with a prescribed jump gΓ over the interface. (In (14.52) we have gΓ = −[∂nuI ].)

To obtain the weak form of (14.53a) we use partial integration (A.7) on both subdomains Ωi, with
test functions v ∈ H1

0 (ΩΓ) :
ˆ

Ω1

∆w v =

ˆ

∂Ω1

∂n1w v −
ˆ

Ω1

∇w · ∇v

=

ˆ

∂Ω1\Γ
∂nw v +

ˆ

Γ

∂n1wv −
ˆ

Ω1

∇w · ∇v

= 0 +

ˆ

Γ

∂n1w v −
ˆ

Ω1

∇w · ∇v

and analogously,
ˆ

Ω2

∆w v = 0 +

ˆ

Γ

∂n2w v −
ˆ

Ω2

∇w · ∇v

Adding up these identities yields
ˆ

ΩΓ

∆w v =

ˆ

Γ

[∂nw]v −
ˆ

ΩΓ

∇w · ∇v

81Here u1 is extended by 0 to Ω2, and vice versa.
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This leads us to the weak form of (14.53a):

Find w ∈ H1
0(ΩΓ) such that

ˆ

ΩΓ

∇w · ∇v =

ˆ

Γ

gΓ v ∀ v ∈ H1
0 (ΩΓ) (14.53b)

• Now we consider the discretized version of (14.53), 82


AΓ,Γ AΓ,I

AI,Γ AI,I






w′

Γ

w′
I


=



g′Γ

0 ′


 (14.54)

with the appropriately blocked local stiffness matrix over ΩΓ and the appropriate coordinate vectors.
The indices Γ and I refer to the interface and interior components, respectively, and we have combined
the interior nodes from N1 and N2 into the set NI of all interior nodes. The block structure of the
sparse stiffness matrix in (14.54) has to be interpreted accordingly.

Note: Of course, we may now simply solve the system (14.54). However, having the case of a larger
number of subdomains in mind (with overlapping patches) we are interested in a inexact but ‘local-
ized’ procedure to be used as a preconditioner, and which also lends itself better to parallelization.
This can be achieved in the following way:

Elimination of the variable w′
I from (14.54) gives rise to a linear system for the edge component w′

Γ :

Sw′
Γ = g′Γ (14.55a)

where S is the Schur complement of AΓ,Γ,

S = AΓ,Γ − AΓ,IA
−1
I,IAI,Γ (14.55b)

As soon as w′
Γ is determined, the component w′

I is obtained as

w′
I = −A−1

I,IAI,Γw
′
Γ (14.56)

We can interpret these operations in the following way:

– The action of S has the nature of a (discrete) Dirichlet-to-Neumann map: It transfers Dirichlet
(i.e., pointwise) data w′

Γ on Γ to Neumann data g′Γ on Γ.

– The action of S−1 has the nature of a (discrete) Neumann-to-Dirichlet map: The Dirichlet data
w′

Γ on the interface Γ are computed from the solution of (14.55a) with a Neumann condition
on Γ.

– Furthermore, w′
I is the discrete harmonic extension of w′

Γ to the interior of ΩΓ, as explained
below.

In order to understand the computational realization of (14.55),(14.56), the notion of discrete harmonic
extension and the action of S and S−1 has to be understood more precisely. This is the topic of the
following considerations.

• Discrete harmonic extension: Let Dirichlet data w′
Γ on Γ be given. We denote −A−1

I,IAI,Γ by E
and consider (cf. (14.56))

w′
I = E w′

Γ = −A−1
I,IAI,Γw

′
Γ

w′
I is the discrete harmonic extension of w′

Γ to the interior nodes in ΩΓ. To see what this means,
insert w′

Γ and w′
I into (14.54) to obtain

82Think of a straightforwardGalerkin/FEM approximation on ΩΓ with piecewise linear elements and appropriate numerical
quadrature for setting up the system. For evaluating the right hand side, this involves square and line quadratures yielding
f ′

I and g′Γ.
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AΓ,Γ AΓ,I

AI,Γ AI,I





w′

Γ

w′
I


=



Sw′

Γ

0 ′


 (14.57)

This means that

w′ =



w′

Γ

w′
I


=




w′
Γ

Ew′
Γ


 (14.58)

can be interpreted as the solution of a problem of the form (14.54), the discrete version of (14.53),
with Neumann data Sw′

Γ on Γ. Thus, w′ is the coordinate representation of an element w from the
edge space VΓ := V1,2 (see (14.48)). The interior component w′

I is uniquely determined by w′
Γ. We

call E = −A−1
I,IAI,Γ the (discrete) harmonic extension operator.

• Action of S : For any given (discrete) Dirichlet data w′
Γ on the interface Γ, consider its discrete

harmonic extension (14.58). Relation (14.57) leads to the following interpretation:

g′Γ = Sw′
Γ is a discretized version of the jump [∂nw] across the interface Γ (14.59)

i.e., a discrete Dirichlet-to-Neumann map.

• Action of S−1 : For any given (discrete) Neumann g′Γ on the interface Γ, relation (14.57) leads to
the following interpretation:

w′
Γ = S−1 g′Γ is the solution of (14.54) evaluated at the interface Γ (14.60)

i.e., a discrete Neumann-to-Dirichlet map. The inner component w′
I of the solution w

′ is the discrete
harmonic extension of w′

Γ.

For the solution of the original, continuous problem (14.53), a similar interpretation in terms of a harmonic
extension can be given. The corresponding Neumann-to-Dirichlet map is called the Poincaré-Steklov
operator. For the precise theoretical foundation of this clever construction in the PDE context, see [17]; it
involves a multi-domain formulation using local Poincaré-Steklov operators and harmonic extensions.

Exercise 14.4 Show that, with appropriate subblocking,




AΓ,Γ AΓ,I

AI,Γ AI,I


=




AΓ,Γ AΓ,1 AΓ,2

A1,Γ A1,1 0

A2,Γ 0 A2,2




(14.61a)

the Schur complement (14.55b) can be expressed as

S = AΓ,Γ −AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
2,2A2,Γ (14.61b)

In the case of a single domain Ω = ΩΓ with two subdomains Ω1 and Ω2, we see that, from the computa-
tional point of view, the solution of the original problem

−∆u = f on ΩΓ, u = 0 on ∂ΩΓ (14.62)

amounts, after discretization, to the following steps:

• Assemble the stiffness matrices in (14.61a).

• For i = 1, 2, compute the inverse matrices A−1
i,i , and determine the discrete approximations u′i of the

subdomain problems
−∆ui = f on ΩI , u = 0 on ∂ΩI
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• Extend u′1 by 0 to Ω2 and vice versa.

• Evaluate the jump terms
g′Γ = ([∂nuI ])

′ = (∂n1u1)
′ + (∂n2u2)

′

(see (14.51)).

• Assemble the Schur complement (see (14.61b))

S = AΓ,Γ − AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
2,2A2,Γ

• Solve the Schur complement system, i.e., the discrete interface problem (14.55a),

Sw′
Γ = g′Γ

• Extend w′
Γ to w′ via discrete harmonic extension (14.56),

w′
I = Ew′

Γ = −A−1
I,IAI,Γw

′
Γ

• Determine u′ on ΩΓ as
u′ = u′1 + u′2 + w′

By construction, this gives rise to the exact discrete solution.

Exercise 14.5 Reproduce the above considerations, at the continuous and the discrete level, for the 1D Poisson

problem with Ω1 = (0, c), Ω2 = (c, 1), and Γ = {c}.

The full preconditioner:

Returning to the case of a general decomposition into an arbitrary number of subdomains Ωi, we can now
describe our non-overlapping AS preconditioner, which is formally defined by (14.50), in precise detail:

• Solve the given problem on the coarse triangulation TH , giving rise to u0.

• Apply the local solution procedure described above, over all subdomains Ωi and Ωj and all edge
patches Ωi,j. This gives local contributions

– ui defined over Ωi and extended by 0 outside Ωi, and

– wi,j defined over all edge patches Ωi,j after local discrete harmonic extension, which are also

extended by 0 outside Ωi,j .

• Adding up defines the action of the preconditioner (cf. 14.50)):

ũ = u0 +

N∑

i=1

ui +
∑

i,j
Γi,j 6=∅

wi,j (14.63)

In particular, to determine the wi,j, subproblems of the type (14.53b) are solved, in the way as described
above, for all edge patches ΩΓ = Ωi,j. All interior local subproblems are of the original type −∆u = f , with
local homogeneous boundary conditions as in the overlapping case. However, as we have seen, the edge
subproblems are set up in a more subtle way described above, using discrete harmonic extensions. This
patching procedure realizes an alternative way of communication between local subdomains, compared to
overlapping.
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In fact, this non-overlapping method has an ‘overlapping taste’, because the edge patches Ωi,j have some
overlap from a geometric point of view. However, the method is non-overlapping in an algebraic sense;
it can more easily be parallelized than the an overlapping method. In particular, with subblocking as in
Exercise 14.4, assembling the Schur complement matrices for the edge systems can be readily parallelized
over the subdomains.

Theory shows that the combined strategy involving a globally defined, coarse ‘skeleton’ approximation
u0 (as for the overlapping AS) is essential for the successful performance of the preconditioner; see [17],[21].

Remark 14.6 Of course, for the case of more than N > 2 subdomains, this preconditioner is not exact
(in contrast to the simplest case N = 2 considered above).

Concerning the concrete implementation of the preconditioner (14.63), realizing it by explicitly computing
all the (rather small) local inverses Ai,i and using this for setting up the Schur complement matrices (14.61b)
is a common technique. This can be interpreted in the sense that, in a first step of the process, all
interior nodes are eliminated, which is called static condensation. However, from (14.61b) we also see
that, actually, not the ‘complete’ inverses A−1

i,i are required but only A−1
i,i Ai,Γ, which has some potential

for further optimization of the computational effort.

Explicit inversion of the Ai,i is avoided, if iterative approximate local solvers are to be applied for the
Schur complement systems: Each evaluation of a matrix-vector product u 7→ Su involves the invocation
of two subdomain solvers, which can be performed in parallel.

In the following we consider one possible simplification of our preconditioner.

A Neumann-Neumann preconditioner.

A common technique is to approximate the Schur complement system (14.55) in the following way. Con-
sider (14.55a),

Sw′
Γ = g′Γ

with S written in the form (14.61b),

S = AΓ,Γ − AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
2,2A2,Γ (14.64)

For any pair of nodes (x, x′) on the interface Γ, the corresponding entry (AΓ,Γ)x,x′ of AΓ,Γ is given by

(AΓ,Γ)x,x′ =

ˆ

ΩΓ

∇vhx · ∇vh,x′ =

ˆ

Ω1

∇vhx · ∇vh,x′ +

ˆ

Ω2

∇vhx · ∇vh,x′ (14.65)

where vh,x and vh,x′ denote the nodal basis functions (hat functions) associated with these nodes. In (14.65)
we have split the integral into two contributions associated with the subdomains Ωi, giving rise to a splitting

AΓ,Γ = AΓ,Γ;1 + AΓ,Γ;2

and
S = S1 + S2, with Si = AΓ,Γ;i −AΓ,iA

−1
i,i Ai,Γ

We are aiming for a simplified approximation of the Schur complement S from (14.64), i.e., a preconditioner
S̃ ≈ S. One possible choice is S̃ = S1 (or S2). Consider the action of S−1

1 , i.e., the computation
of w′

Γ,1 = S−1
1 g′Γ : Analogously as in (14.54)ff., this is equivalent to solving the system 83 with mixed

boundary conditions, 

AΓ,Γ;1 AΓ,1

A1,Γ A1,1





w′

Γ,1

w′
1


=



g′Γ

0 ′


 (14.66)

83 See Exercise 14.6.
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and extracting the interface part w′
Γ,1 from the solution vector (w′

Γ,1, w
′
1)

T. This system is similar to (14.54),
but smaller, and only the subdomain Ω1 is involved. This is a localization property which is useful in view
of capability for parallelization.

The action of this preconditioner is equivalent to the solution of S1w
′
Γ,1 = g′Γ. The so-called Neumann-

Neumann preconditioner is obtained if Ω1 and Ω2 are treated in a way having equal rights, i.e., we solve

S1w
′
Γ,1 = ω1 g

′
Γ and S2w

′
Γ,1 = ω2 g

′
Γ

and compute w̃′
Γ = w′

Γ,1 + w′
Γ,2. Here it appears natural to choose ω1 + ω2 = 1, but the concrete choice of

the ωi is not straightforward. This means that S−1 is approximated by ω1S
−1
1 + ω2S

−1
2 .

Exercise 14.6 In an analogous way as (14.54) is related to problem (14.53), the system (14.66) is related to a
Poisson problem posed on Ω1 with a Neumann condition on the interface Γ,

−∆w = 0 on Ω1, w = 0 on ∂Ω1\Γ, ∂nw = gΓ on Γ (14.67)

Verify the relationship between (14.67) and (14.66) via consideration of the weak form of (14.67), with test

functions v ∈ H1
0 (Ω1). (Cf. (14.53)–(14.54).)

The full preconditioner:

Returning again to the case of a general decomposition into an arbitrary number of subdomains Ωi, a
Neumann-Neumann preconditioner is described in the literature as follows. First of all, the subdomain
solutions u0, u1, . . . , uN are determined in the same way as before (see (14.63)), and the associated Neumann
jumps over all interfaces are evaluated.

Then, instead of computing the wi,j from (14.63) by considering all possible edge patches, it is more
practical to consider again all subdomains Ωi (here we are assuming triangles) with boundaries consisting
of several edges Γk. Let Ah denote the global stiffness matrix. Now, with appropriate numbering,

• each block-row of Ah associated with the interior nodes in some the subdomains Ωi consists of a
quadratic subblock Ai,i and one or several non-vanishing block Ai,γ, where the index γ refers to an
edge which is part of ∂Ωi;

• each block-row of Ah associated with nodes along some interior edge Γγ consists of a quadratic
subblock Aγ,γ and at least two non-vanishing subblocks Aγ,i, where the index i refers to subdomains
neighboring Γγ.

For the simple setting illustrated in Fig. 14.3 for instance, with subdomains numbered by 1, 2, 3 and inner
edges numbered by a, b, the global stiffness matrix has the block structure

Ah =




A1,1 A1,a

Aa,1 Aa,a Aa,2

A2,a A2,2 A2,b

Ab.2 Ab,b Ab,3

A3,b A3,3




(14.68)

Here the subblocks associated with subdomain Ω2 have been highlighted, and we exemplify the procedure
(which is applied to all Ωi) for subdomain Ω2: ‘Cut out’ and solve the highlighted subsystem, i.e., solve
the localized system

A
(2)
h w′

2 =




g′a
0
g′b


 (14.69a)
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Figure 14.3: Decomposition of a polygonal domain into three triangles. In this simple example the
boundaries of all subdomains meet the boundary of the full domain, i.e., there are no ‘strictly interior’
subdomains.

with stiffness matrix

A
(2)
h =




Aa,a Aa,2

A2,a A2,2 A2,b

Ab.2 Ab,b




(14.69b)

and where g′a, g
′
b stem from the Neumann jumps at the interfaces a and b. This system can be solved using

the Schur complement of A2,2,

S2,2 =



Aa,a

Ab,b


−



Aa,2

Ab,2


· A−1

2,2 ·

 A2,a A2,b


=



Aa,a − Aa,2A

−1
2,2A2,a −Aa,2A

−1
2,2A2,b

−Ab,2A
−1
2,2A2,a Ab,b − Ab,2A

−1
2,2A2,b




to obtain the interface parts of the solution w′
2.

In the general case, this procedure is executed for all subdomains Ωi, the resulting interface (edge)
contributions are summed up. Finally, the discrete harmonic extensions over all subdomains associated
with all the edges are computed (again by solving local mixed boundary value problems on all subdomains),
and they are added to

∑N
i=0 ui. This includes extension by zero and appropriate weighting. Usually, the

weight for an interface node is chosen as the inverse of the number of Ω̄i sharing this node.

However, we are confronted with the fact that for a strictly interior subdomain Ωi the associated localized
system has Neumann data on the complete boundary ∂Ωi, which means the the corresponding local stiffness
matrix (the analog of (14.69b)) is singular. It therefore is a common technique to apply a pseudo-inverse.
The classical Moore-Penrose inverse bases on the singular value decomposition is generally applicable to
this purpose but computationally rather expensive. Depending on the problem at hand, cheaper and more
specific techniques van be used, see [21].

Remark 14.7 The localized system of the type (14.69) are ‘memory-overlapping’, because each edge is
subset of several ∂Ωi. In a parallel implementation this requires some moderate amount of local commu-
nication, but the solution of the localized systems can be performed in parallel.

Remark 14.8 For theoretical discussion of several preconditioning techniques in the FEM context based
on substructuring see for instance [18]. In particular, for the Poisson problem, spectral equivalence of the
preconditioners considered here can be proved; see [18, Section 4.4].
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A FETI preconditioner.

Various domain decomposition methods for constructing efficient preconditioners, in particular for complex
geometries are the topic of many recent research activities, see [17], [21]. A prominent class are the so-called
FETI techniques (‘Finite Element Tearing and Interconnecting’).

To discuss the basic idea, we again consider the case of two subdomains Ω1,Ω2 with an interface Γ,
as in Fig. 14.2. Instead of the full problem posed on Ω = Ω1 ∪ Ω2 ∪ Γ, we consider two local mixed
Dirichlet/Neumann boundary value problems posed on the subdomains Ωi; after discretization, these take
the form 


A

(i)
Γ,Γ A

(i)
Γ,I

A
(i)
I,Γ A

(i)
I,I






u′(i)Γ

u′(i)I


=



f ′(i)

Γ + g′(i)Γ

f ′(i)
I


, i = 1, 2 (14.70)

If we find solutions of these two subdomain problems with continuous normal derivative along the interface,
i.e.,

g′Γ := g′(1)Γ = −g′(2)Γ (14.71)

then we have solved the full problem on Ω. But the correct value of g′Γ is of course unknown.

The interface parts of the two subdomain solutions are given by

u′
(i)
Γ = S(i)−1(

s′
(i)
Γ + g′

(i)
Γ

)
, with s′

(i)
Γ = f ′(i)

Γ − A
(i)
Γ,IA

(i)
I,I

−1
f ′(i)

I

where the S(i) are the Schur complements of the A
(i)
I,I . We require u′Γ := u′(1)Γ = u′(2)Γ (continuity along the

interface). This gives the equation

(
S(1)−1

+ S(2)−1)
g′Γ = S(2)−1

s′(2)Γ − S(1)−1
s′(1)Γ =: d′Γ (14.72)

for the determination of the normal derivative g′Γ (see (14.71)) along the interface, which was sought for
in order to obtain the solution of the full problem on Ω.

For preconditioning, the matrix S(1)−1
+S(2)−1

in (14.72) is approximated by (S(1) + S(2))
−1
, which gives

the directly computable approximation

(S(1) + S(2))d′Γ ≈ g′Γ (14.73)

for the normal derivative along the interface. Evaluating (14.73) and solving the resulting pair of subdomain
problems (14.70) with the corresponding approximation g′Γ defines a preconditioner for the full problem
posed on Ω.

This special way of using Dirichlet-Neumann maps for defining a preconditioner is the basis for general
FETI-type multi-domain preconditioners.

Remark 14.9 The terminology ‘FETI’ stems from the fact that inexact solution of (14.72), i.e., using the
preconditioner (14.73) instead, leads to a solution which is discontinuous along the interface (‘tearing’). If
we use the preconditioner to define a stationary iteration scheme, on convergence we have ‘interconnected’
this along the interface, giving the exact continuous solution.

Remark 14.10 Various domain decomposition methods for constructing efficient preconditioners, in par-
ticular for complex geometries are the topic of many recent research activities, see [17],[18],[21]. The
so-called BPX-preconditioner, for instance, is based on hierarchical domain decomposition, which is for-
mally similar to multigrid techniques.
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15 Krylov Subspace Methods for Eigenvalue Problems

We consider the eigenvalue problem for a (large, sparse) symmetric 84 matrix A ∈ Rn×n. We assume that
the eigenvalues λi ∈ R are ordered according to

λ1 ≥ λ2 ≥ . . . ≥ λn

The Lanczos process (see Sec. 9.3) starting from some initial vector z0 ∈ Rn yields an orthonormal basis
Vm ∈ Rn×m of the Krylov space Km = Km(A, z0) and the symmetric tridiagonal matrix

Tm = V T

mAVm ∈ R
m×m (15.1)

For m not too large, the eigenvalues µ
(m)
i of Tm, the so-called Ritz values, can be computed by standard

methods, e.g., the QR algorithm. The Ritz values serve as approximations to the eigenvalues λi of A.

15.1 Auxiliary results

We make use of the following classical results.

Lemma 15.1 Let A ∈ Rn×n be symmetric. If for µ ∈ R and x ∈ Rn there holds

‖Ax− µx‖2 = ε‖x‖2 , ε > 0 (15.2)

then there exists an eigenvalue λ of A with

|λ− µ| ≤ ε

Proof: W.l.o.g. we assume that µ 6∈ σ(A). Then, A− µI is symmetric and invertible, and we have

max
λ∈σ(A)

1

|λ− µ| = ‖(A− µI)−1‖2 = sup
y 6=0

‖(A− µI)−1y‖
‖y‖2

For y = Ax− µx this gives

max
λ∈σ(A)

1

|λ− µ| ≥
‖(A− µI)−1y‖2

‖y‖2
=

‖x‖2
‖Ax− µx‖2

=
1

ε

Thus, there exists λ ∈ σ(A) with
1

|λ− µ| ≥
1

ε

which concludes the proof. �

Remark 15.1 A pair (µ, x) satisfying (15.2) is called a ε -pseudo-eigenpair (pseudo-eigenvalue, pseudo-
eigenvector).

Theorem 15.1 [Courant-Fischer; variational characterization of eigenvalues] Let A ∈ Rn×n be symmet-
ric and {z1, . . . , zn} ⊆ Rn be an orthonormal system, Zk = span{z1, . . . , zk}. Let λ1 ≥ λ2 ≥ . . . ≥ λn
denote the eigenvalues of A, with associated orthonormal eigenvectors x1, . . . , xn. Then, for k = 1 . . . n,

(i)
min

0 6=z∈Zk

zTAz

zT z
≤ λk

and (ii) equality holds for Zk = Xk = span{x1, . . . , xk}, i.e., the maximum of all possible minima in (i)
is λk.

Proof: See, e.g., [14]. �

84All assertions are also valid for A ∈ Cn×n Hermitian.
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15.2 Monotonicity of approximation

Theorem 15.2 Let µ
(k)
1 ≥ µ

(k)
2 ≥ . . . ≥ µ

(k)
k be the eigenvalues of the matrices Tk ∈ Rk×k, k = 1, 2, . . . .

Then, for i = 1 . . . k the inequalities

λn−i+1 ≤ µ
(k+1)
k+1−i+1 ≤ µ

(k)
k−i+1 and µ

(k)
i ≤ µ

(k+1)
i ≤ λi (15.3)

are valid.

Proof: Let

z
(k)
i = Vku

(k)
i , i = 1 . . . k, where u

(k)
i = eigenvector of Tk associated with eigenvalue µ

(k)
i , ‖u(k)i ‖2 = 1

Since {u(k)1 , . . . , u
(k)
k } ⊆ Rk is an orthonormal system, the same is true for {z(k)1 , . . . , z

(k)
k } ⊆ Rn (recall that

V T
k Vk = Ik). Let us denote U (k)

i = span{u(k)1 , . . . , u
(k)
i }.

– Step 1. Claim:
µ
(k)
i ≤ λi, i = 1 . . . k

To prove this, we apply Theorem 15.1, (ii) to Tk:

µ
(k)
i = min

0 6=u∈U(k)
i

uTTk u

uTu
(15.4)

For z = Vk u we have zTz = uTu, z ∈ Z(k)
i = span{z(k)1 , . . . , z

(k)
i }, and uTTk u = uTV T

k AVk u = zTAz.
Using (15.4) and applying Theorem 15.1, (i) to A we thus obtain

µ
(k)
i = min

0 6=z∈Z(k)
i

zTAz

zTz
≤ λi

for i = 1 . . . k, as asserted.

– Step 2. Claim:
µ
(k)
i ≤ µ

(k+1)
i , i = 1 . . . k

The proof uses a similar argument as in step 1. We observe that Vk u = Vk+1 û with û =


 u

0


∈ Rk+1.

We consider the corresponding set {û1, . . . , ûi} ⊆ Rk+1, Ûi = span{û1, . . . , ûi}. From (15.4) we have

µ
(k)
i = min

0 6=u∈U(k)
i

uTV T
k AVku

uTu
= min

0 6= û∈Ûi

ûTV T
k+1AVk+1 û

ûTû
= min

0 6= û∈Ûi

ûTTk+1 û

ûTû
≤ µ

(k+1)
i

where the last inequality again holds due to Theorem 15.1, (i). This concludes the proof of step 2.

Combining step 1 and step 2 shows the second assertion in (15.3). The first assertion is obtained from
applying the same arguments to the matrix −A. �

Theorem 15.2 says that, for increasing dimension k of Kk,

• the leftmost (smallest) eigenvalue of Tk is monotonously ↓ and ≥ the smallest eigenvalue of A,

• the second-leftmost (second-smallest) eigenvalue of Tk is monotonously ↓ and ≥ the second-smallest
eigenvalue of A,

. . .
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λ
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2
.
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.

k

  

Figure 15.1: Ritz values and exact spectrum (Figure from [11]).

• the rightmost (largest) eigenvalue of Tk is monotonously ↑ and ≤ the largest eigenvalue of A,

• the second-rightmost (second-largest) eigenvalue of Tk is monotonously ↑ and ≤ the second-largest
eigenvalue of A,

• . . .

The theorem does not include an assertion concerning convergence. The accuracy of the Ritz values can
be assessed in an a posteriori sense, however; see Theorem 15.3.

Example 15.1 Figure 15.1 illustrates the behavior of the Ritz values for k = 1, 2, . . . compared to the
exact spectrum for the symmetric matrix A ∈ R100×100 with coefficients aij = π2 i(n − j + 1)/(n + 1)3

(i ≤ j). We see that the convergence behavior is quite good for the dominant, largest eigenvalues.

15.3 An a posteriori error estimate

Computable a posteriori estimates are of major practical relevance, in particular if a priori bounds are not
available or too pessimistic. For the Lanzcos approximation to eigenvalues the following estimate is valid:

Theorem 15.3 [a posteriori estimate] Let (µ, w) be an eigenpair of Tm with ‖w‖2 = 1, and let ωm denote
the last component of w, ωm = eTmw. Then, A has an eigenvalue λ satisfying

|λ− µ| ≤ |βm+1| |ωm|
where βm+1(= hm+1,m) is the lower right entry in the matrix T̄m ∈ R(m+1)×m.

Proof: From identity (9.7) we have, in the notation from Sec. 9.3,

AVm − VmTm = hm+1,m vm+1 e
T

m = βm+1 vm+1 e
T

m

For x = Vmw with ‖x‖2 = ‖w‖2 = 1 this gives85

Ax− µx = AVmw − Vm (µw) = (AVm − VmTm)w = βm+1 vm+1 e
T

mw = βm+1ωm vm+1

Together with ‖vm+1‖2 and βm+1 > 0 this leads to

‖Ax− µx‖2 ≤ |βm+1| |ωm| = |βm+1| |ωm|‖x‖2
and the result follows from Lemma 15.1. �

85Like in other cases connected with Krylov methods, the residual is a multiple of vm+1.
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A The Finite Element Method (FEM) in a Nutshell

Starting from an abstract setting we will then mainly focus on the 2D Poisson equation (14.46) as a model
problem. Most proofs are omitted or just indicated. A standard text on the topic is [3], for instance.

A.1 Elliptic bilinear forms and abstract variational problems

Let H denote a real Hilbert space with inner product (·, ·) and associated norm ‖ · ‖.

Definition A.1 A continuous (= bounded) bilinear form on a Hilbert space H is a mapping a(·, ·) :
H×H → R with the properties

(i) a(u, ·) and a(·, u) is a continuous linear functional for each fixed u ∈ H,

(ii) a(·, ·) is bounded, i.e.
|a(u, v) | ≤M ‖u‖‖v‖ for all u, v ∈ H (A.1)

A bilinear form a(·, ·) is called elliptic, or coercive, if there exists a constant γ>0with

a(u, u) ≥ γ ‖u‖2 for all u ∈ H (A.2)

Evidently, γ ≤M holds true.

Lemma A.1 Let the continuous bilinear form a(·, ·) be symmetric, i.e.,

a(u, v) ≡ a(v, u) (A.3)

Furthermore, let g be a linear functional on H. Then, u∗ ∈ H is a solution of the minimization problem

J(u) = 1
2
a(u, u)− g(u) → min! (A.4)

iff u∗ is the solution of the variational equation

a(u, v) = g(v) for all v ∈ H (A.5)

Remark A.1

• For the finite-dimensional version of this assertions see (7.1).

• For the non-symmetric case, the Lax-Milgram Lemma states that the variational equation (A.5) still
has a unique solution u∗ satisfying

‖u∗‖ ≤ 1

γ
‖g‖′ (A.6)

where ‖ · ‖′ denotes the dual norm. See (1.2) for the finite-dimensional analogon of this assertion.

However, this is not directly related to a minimization problem.
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A.2 Weak derivatives and Sobolev spaces

Let86 Ω ⊆ R2 be an open domain with piecewise smooth boundary. The space L2(Ω) of square-integrable
functions on Ω is a Hilbert space with inner product and norm

(u, v)L2(Ω) =

ˆ

Ω

uv, ‖u‖L2(Ω) =
√

(u, u)L2(Ω)

For derivatives of functions u : Ω → R we adopt the usual denotation in terms of a double index α =
(α1, α2), αi ≥ 0, with |α| = α1 + α2. A function Dαu ∈ L2(Ω) is called the weak derivative of order α if

ˆ

Ω

Dαuw = (−1)|α|
ˆ

Ω

uDαw for all w ∈ C∞
0 (Ω)

The space of all functions u for which the weak derivatives up to order |α| = p exist is denoted by Hp(Ω)
and is called a Sobolev space. It is a Hilbert space with inner product and norm

(u, v)Hp(Ω) =
∑

|α|≤p

(Dαu,Dαv)L2(Ω) ‖u‖Hp(Ω) = (u, u)
1
2

Hp(Ω)

For p = 1, for instance H1(Ω) is equipped with inner product and norm

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω), ‖u‖H1(Ω) = (u, u)
1
2

H1(Ω),

where ∇ is to be understood in the weak sense.

The space of H1-functions with zero trace on the boundary ∂Ω is denoted by H1
0 (Ω). On this space, the

H1-norm and the H1-seminorm
|u|H1(Ω) = ‖∇u‖L2(Ω)

can show to be equivalent (a consequence of the so-called Poincaré inequality).

The seminorm |u|H2(Ω) is defined in an analogous way.

Partial integration

Lemma A.2 [partial integration in R2 (Green’s formula)] For arbitrary u ∈ C2(Ω̄), v ∈ C1(Ω̄),
ˆ

Ω

∆u v =

ˆ

∂Ω

∂nuv −
ˆ

Ω

∇u ·∇v (A.7)

where ∂nu denotes the normal derivative of u along ∂Ω with outward orientation.

A.3 The 2D Poisson equation; weak and variational formulation

Wir consider the homogeneous Dirichlet boundary value problem

−∆u(x) = f(x), x ∈ Ω, (A.8a)

u(x) = 0, x ∈ ∂Ω (A.8b)

with f ∈ L2(Ω). For the associated bilinear form

a(u, v) = (−∆u, v)L2(Ω) =

ˆ

Ω

−∆uv (A.9)

86Analogous definitions in Rd for d arbitrary.
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and sufficiently smooth u, v with zero boundary values, partial integration (A.7) gives

a(u, v) =

ˆ

Ω

∇u · ∇v (A.10)

This motivates the more general, weak formulation of the given boundary value problem:

Find u ∈ H1
0 (Ω) such that

ˆ

Ω

∇u · ∇v
︸ ︷︷ ︸

a(u,v)

=

ˆ

Ω

f v

︸ ︷︷ ︸
(f,v)

for all v ∈ H1
0 (Ω) (A.11)

The following theorem is based on the fact that for the bilinear form (A.10) is elliptic and bounded
(see Sec. A.1) on the space H1

0 (Ω) with norm ‖ · ‖H1(Ω); cf. e.g. [3].

Theorem A.1 Problem (A.11) admits a unique solution u∗ ∈ H1
0 (Ω).

Moreover, since the bilinear form (A.10) is also symmetric, it satisfies the assumptions of Lemma A.1
with H = H1

0 (Ω) and g(u) = (f, u)L2(Ω).

Theorem A.2 [Dirichlet principle] The unique solution u∗ ∈ H1
0 (Ω) of (A.11) is characterized by the

property that it is also the unique minimizer of the energy functional

J(u) = 1
2
a(u, u)− (f, u)L2(Ω) =

1
2

ˆ

Ω

∇u ·∇u −
ˆ

Ω

f u (A.12)

Regularity

Theorem A.3 [H2-regularity] If the domain Ω is convex or if the boundary ∂Ω is of class C2, then the
solution u∗ of (A.11) is contained in H1

0 (Ω) ∩H2(Ω) and satisfies

|u∗|H2(Ω) ≤ C ‖f‖L2(Ω) (A.13)

with a constant C depending on Ω.

A.4 Variational methods: Ritz, Galerkin

Consider the setting of Sec. A.1. Variational methods seek for an approximation of the solution u∗ an
n-dimensional linear subspace87 Vh ⊆ H . For concrete realization one chooses a basis {v1 . . . vn} of Vh,
such that each vh ∈ Vh is uniquely represented as

vh = ξ1 v1 + . . .+ ξn vn

87In view of application to PDEs in the FEM context to be discussed in the sequel, the index h reprepresents the mesh
width of the underlying discretization of the domain Ω, with h → 0 as n → ∞.
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The Ritz approach.

Let a(·, ·) be symmetric. We seek for the minimizer of the energy functional J(u) from (A.4) over Vh, and
the corresponding element uh ∈ Vh satisfying

J(uh) = min
vh∈Vh

J(vh) (A.14)

is taken as an approximation for the exact solution u∗.

Due to
J(vh) = J(ξ1 v1 + . . .+ ξn vn) =

1
2
a
( n∑

i=1

ξi vi,

n∑

j=1

ξj vj

)
− g
( n∑

j=1

ξj vj

)

= 1
2

n∑

i=1

n∑

j=1

ξi ξj a(vi, vj)−
n∑

j=1

ξj g(vj).

Thus, minimization of J(·) over Vh is equivalent to minimization of the quadratic functional φ : Rn → R,

φ(u) := 1
2
(Au, u)− (b, u) (A.15)

over all88 u ∈ Rn, where

A =




a(v1, v1) · · · a(v1, vn)
...

...

a(vn, v1) · · · a(vn, vn)



, b =




g(v1)
...

g(vn)




(A.16a)

with the so-called stiffness matrix A ∈ R
n×n. Due to the symmetry and ellipticity of a(·, ·), the stiffness

matrix is SPD.

The unique minimizer of (A.15) is obtained as the solution of the SPD system

Au = b (A.16b)

see (7.1). This approach is addressed as the Ritz method.

The Galerkin approach.

More generally, with a(·, ·) not necessarily symmetric, one starts from the variational problem (A.5) (in
the PDE case this corresponds to the weak formulation, see (A.11)). We seek for uh ∈ Vh satisfying

a(uh, vh) = g(vh) for all vh ∈ Vh (A.17)

This is equivalent to
a(uh, vj) = g(vj), j = 1 . . . n, (A.18a)

or with uh = ξ1 v1 + . . .+ ξn vn,

a
( n∑

i=1

ξivi, vj

)
=

n∑

i=1

ξia(vi, vj) = g(vj), j = 1 . . . n (A.18b)

In matrix-vector notation this results in the same system of equations as in (A.16) for the coefficient vector
u = (ξ1, . . . , ξn)

T. If a(·, ·) is not symmetric then A will also be unsymmetric. In the general case, the
unique solvability of the system Ax = b is a consequence of the Lax-Milgram Lemma (see Remark A.1);
see also Assertion 8 from Sec. 1.3.

The following lemma relates the approximation error uh − u∗ to the accuracy in which elements of H
can be approximated by elements of the subspace Vh.

88Coefficient vectors in Rn associated with uh are simply denoted by u.
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Lemma A.3 [Céa] Let a(·, ·) be a (not necessarily symmetric) bounded and elliptic bilinear form (see
Def. A.1) on a Hilbertspace H and Vh ⊆ H a linear subspace of H. Then the difference between the
solutions u∗ ∈ H and uh ∈ Vh of the variational problems (A.17) and (A.5) satisfies

‖uh − u∗‖ ≤ M

γ
inf

vh∈Vh

‖vh − u∗‖ (A.19)

Proof: With Vh ⊆ H we have
a(u∗, vh) = g(vh) for all vh ∈ Vh

Due to (A.17) and with the linearity of a(·, vh) this gives

a(uh − u∗, vh) = 0 for all vh ∈ Vh (Galerkin orthogonality) (A.20)

Furthermore,
a(uh − u∗, uh) = 0

This implies

a(uh − u∗, uh − u∗) = a(uh − u∗, uh)− a(uh − u∗, u∗) =

= 0 − a(uh − u∗, u∗) =

= a(uh − u∗, vh)− a(uh − u∗, u∗) = a(uh − u∗, vh − u∗)

for all vh ∈ Vh. Due to the continuity and ellipticity of a(·, ·) this implies

γ ‖uh − u∗‖2 ≤M ‖uh − u∗‖‖vh − u∗‖ for all vh ∈ Vh

from which the estimate (A.19) immediately follows. �

A.5 FEM illustrated for the case of the 2D Poisson equation

We consider the Dirichlet problem for the 2D Poisson equation, see Sec. A.3. For the moment we assume
that Ω = (0, 1)2 is the unit square, and we consider the simplest variational approximation based on piece-
wise linear functions over a uniform triangulation Th of Ω associated with a regular grid with meshwidth h
and consisting of elements in the form of triangles, see Fig. A.1.

As approximating space we choose the finite-dimensional subspace Vh ⊆ H1
0 (Ω) which consists of con-

tinuous functions vh(x) linear
89 on each triangle and vanish on the boundary ∂Ω. Each inner grid point

xi,j = (ih, j h) is associated with a linear hat function vi,j(x) satisfying vi,j(xi,j) = 1, and vi,j(xk,ℓ) = 0 for
(k, ℓ) 6= (i, j). The support of vi,j is a so-called patch Ωi,j consisting of 6 neighboring triangles.

89‘Higher-order elements’ based on higher-degree polynomial ansatz functions are not considered here.
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Figure A.1: Triangulation of a square; basis function (hat function)
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Figure A.2: Nonuniform admissible triangulation of a polygonal domain, with local refinement

These hat functions vi,j form a basis of Vh, the so-called nodal basis.

In this way we obtain a Galerkin system according to Sec. A.4. The coefficients a(vi,j, vk,ℓ) in the ‘Galerkin
matrix’ A from (A.16a) are given by

a(vi,j, vk,ℓ) =

ˆ

Ωi,j ∩Ωk,ℓ

∇vi,j · ∇vk,ℓ (A.21)

with piecewise constant integrands which are O(h−2) since the gradients involved are O(h−1). Due to local
support with measure O(h−2) this results in a matrix A of small bandwith with entries of size O(1). In
fact, after lexicographic ordering of grid points, up to a factor h2 it is exactly the same matrix as for the
standard FD discretization, see Example 2.2.90

The coefficients bi,j of the right-hand side b are obtained as

(f, vi,j)L2(Ω) =

ˆ

Ω

f vi,j =

ˆ

Ωi,j

f vi,j (A.22)

In practice this has to be approximated by an appropriate quadrature formula.

The same procedure can be applied to the case of a general domain, and triangles (or other types
of elements) of flexible size and shape. In general, an admissible triangulation Th of means that91 Ω
is subdivided into a finite number of triangles in a way such that two triangles have either an empty
intersection, a common edge, or a common vertex; see Fig. A.2. For such an admissible triangulation, the
approximating subspace Vh and the associated nodal basis are well-defined.

The approximation results presented in the following section depend on the solution behavior as well as
certain characteristics of the triangulation. For a triangle T ⊆ Th, let ̺(T ) and ς(T ) denote the diameters
of its subscribed and superscribed circles, respectively. The parameter h is to be associated with max

t∈Th
ς(T ).

Furthermore, the condition

max
T ∈Th

ς(T )

̺(T )
≤ Cangle (A.23)

with a moderate-sized constant C, which can be interpreted as a minimal angle condition, plays an essential
role. A triangulation for which this condition is satisfied is called quasi-uniform.

90Note the dependence on dimension: For problem dimension d the elements of the the stiffness matrix are O(hd−2).
91See Fig. Approximating curvilinear boundaries is an additional aspect.
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A.6 FEM approximation properties

We assume that Ω is a polygonal domain and that Th is an admissible triangulation of Ω such that
Ω =

⋃{T : T ∈ Th}. The first step in a FEM convergence analysis ist to study the approximation
properties of the subspace Vh associated with Th. The following theorem is based a scaling argument
combined with an analysis of the corresponding approximation properties on a simple reference triangle.

Theorem A.4 [local error estimate for piecewise linear FEM-interpolation in 2D] Let T ∈ Th be a triangle,
and let Ihu denote the piecewise linear interpolant of a function u ∈ H2(T ) (interpolation an the vertices
of T ). Then the interpolation error Ihu− u satisfies the estimates

‖Ihu− u‖L2(T ) ≤ Ch2 |u |H2(T ) (A.24a)

|Ihu− u |H1(T ) ≤ Ch |u |H2(T ) (A.24b)

with a constant C independent of u but affected by the constant Cangle from the minimum angle condi-
tion (A.23).

Theorem A.4 implies the following global error estimate:

Corollary A.1 [global error estimate for piecewise linear FEM-interpolation in 2D] Let Ω ⊆ R2 be a
bounded polygonal domain and Th an admissible quasi-uniform triangulation of Ω. For u ∈ H2(Ω), let Ihu
denote its continuous piecewise linear interpolant over Th (interpolation an the vertices of T ). Then the
interpolation error Ihu− u satisfies the estimate

‖Ihu− u‖H1(Ω) ≤ Ch |u|H2(Ω) (A.25)

with a constant C independent of u but affected by the constant Cangle from the minimum angle condi-
tion (A.23).

Combination with the Céa Lemma (Lemma A.3) leads to the following convergence result. (Cf. Theo-
rem A.3 for the underlying regularity requirement u∗ ∈ H2(Ω).)

Theorem A.5 [FEM-convergence in 2D, a-priori error estimate for the Poisson equation] Let Ω ⊆ R2 a
convex polygonal domain and Th an admissible, quasi-uniform triangulation of Ω. Then the FEM apporox-
imation error uh − u∗ satisfies the estimate

‖uh − u∗‖H1(Ω) ≤ Ch |u∗|H2(Ω) (A.26)

with a constant C independent of u but affected by the constant Cangle from the minimum angle condi-
tion (A.23).

By a more refined analysis based on a duality argument (the so-called Aubin-Nitsche Lemma) it also can
be shown that an L2 estimate of the form

‖uh − u∗‖L2(Ω) ≤ Ch2 |u∗|H2(Ω) (A.27)

also holds true.
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