
A General Theory of Bibliometric and Other Cumulative 
Advantage Processes* 

A Cumulative Advantage Distribution is  proposed 
which models statistically the situation in which success 
breeds success. It differs from the Negative Binomial Dis- 
tribution in that lack of success, being a non-event, is 
not punished by increased chance of failure. It i s  shown 
that such a stochastic law is governed by the Beta 
Function, containing only one free parameter, and this is 
approximated by a skew or hyperbolic distribution of 
the type that is widespread in bibliometrics and diverse 
social science phenomena. In particular, this i s  shown to 

0 Introduction 

It is common in bibliometric matters and in many 
diverse social phenomena, that success seems to breed 
success. A paper which has been cited many times is 
more likely to be cited again than one which has been 
little cited. An author of many papers is more likely to 
publish again than one who has been less prolific. A jour- 
nal which has been frequently consulted for some 
purpose is more likely to be turned to again than one of 
previously infrequent use. Words become common or re- 
main rare. A millionaire gets extra income faster and 
easier than a beggar. 

In statistics, such a process is commonly described by 
a skew or hyperbolic distribution function of the type 
that has been characterized by Simon ( I )  and correctly 
shown by him to be given by the Beta Function (this is 
not the “Beta Density” which is discussed by Feller (2) 
I1:49 and includes a dependent variable) rather than the 

*This research was funded by NSF grant SOC73-05428. 

be an appropriate underlying probabilistic theory for the 
Bradford Law, the Lotka Law, the Pareto and Zipf Dis- 
tributions, and for all the empirical results of citation 
frequency analysis. As side results one may derive also 
the obsolescence factor for literature use. The Beta 
Function is peculiarly elegant for these manifold pur- 
poses because it yields both the actual and the cumula- 
tive distributions in simple form, and contains a limiting 
case of an inverse square law to which many empirical 
distributions conform. 
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more commonly used “contagious” distributions, for 
example the negative binomial (3,4,5) or its limiting 
form, Fisher’s logarithmic series distribution. 

Although the relation between such distributions, the 
stochastic processes which lead to them and the Urn 
models from which they may be derived, seem well 
known and go back more than 50 years to Yule’s (6) 
first use of such probability models to explain the distri- 
bution of biological genera and species, i t  does not seem 
that the full elegance of the Beta Function is widely 
appreciated; certainly not in the context of bibliometrics 
though good theoretical treatments have been given by 
Hill (7,8), Crowley (9 ) ,  Hill and Woodroofe (10,11) and 
Sichel (12), all discussing the general varieties of conta- 
gious process that yields hyperbolic distributions. As we 
shall show, this distribution which we propose to call the 
Cumulative Advantage Distribution (CAD), [after the 
pioneering sociological work in which Cole and Cole 
(13) following Merton discuss accumulative advantage 
in social stratification of the scientific community] can 
be derived either from a modification of the Polya Urn 
model, or as a stochastic birth process. It provides a 
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sound conceptual basis for such empirical laws as the 
Lotka Distribution for Scientific Productivity, the Brad- 
ford Law for Journal Use, the Pareto Law of  Income 
Distribution, and the Zipf Law for Literary Word Fre- 
quencies. I t  is therefore an underlying probability mech- 
anism of widespread application and versatility through- 
out  the social sciences. Though I cannot hope to deal 
adequately with all its mathematical aspects, this 
account should make the general theory more available 
and thereby remove much of the present restriction t o  
empirical laws whose functions is useful but not funda- 
mental. 

0 The Urn Model 

The idea to  use urn models to  describe statistical 
after-effects or “contagion” seems to  be due to Polya 
(see Feller (2) 1:119, n.1). In general, the model 
supposes that fate has in storage an urn containing red 
and black balls; at regular intervals a ball is drawn at 
random, a red ball signifying a “success” and a black ball 
a “failure.” If the composition of the urn remained 
fixed, the chances of success and failure would not vary, 
but if at each drawing the composition is changed by 
some rule, the chances will change as an after-effect of  
the previous history. A more general rule would be 
that after each drawing the ball is replaced and c balls of 
the color drawn and d balls of the opposite color are 
added before the next drawing takes place. For the 
Polya Urn Scheme, which can be shown to lead to a 
negative binomial distribution, c > 0, d = 0, SO that at 
each drawing the number of balls of the color drawn in- 
creases while that of the other color remains unchanged. 
Thus, each occurrence of a red or of a black increases 
the probability of  afurther such occurrence. It is easy to  
see that only the numbers of reds and of blacks previously 
drawn, and not their sequence, determine the prob- 
abilities for the next drawing. 

In the Polya Urn Scheme, success is rewarded by an 
increased chance of further success, but failure (i.e., a 
black ball) is “punished” by an increased chance of 
further failure. Contagion, so to speak, is double-edged. 
In sociology, Merton calls this the Matthew Effect since 
“unto him that hath is given and unto him that hath not 
is taken away, even that which he hath.” In fact, as we 
shall show, many of the known empirical data can be 
made t o  agree with a law which proceeds from the first 
part of the verse, but without the negative feedback of 
the second part. A trivial modification can make the 
effect of contagion single-edged so that success increases 
the chance of further success, but failure has no subse- 
quent effect in changing probabilities. In effect, for 
many of the applications discussed, failure does not con- 

stitute an event as does success. Rather it must be 
accorded the status of  a “non-event”; thus lack of pub- 
lication is a non-event and only publication becomes a 
markable event. I t  seems to me that this difference 
between single- and double-edged contagious after-effects 
is the criterion on which one may decide whether the 
negative binomial or Cumulative Advantage distributions 
should apply. 

For this urn model we shall suppose that after each 
drawing the ball is replaced; if a red is drawn then c red 
balls are added, but if a black is drawn n o  extra balls are 
put in the urn. If we start with b black balls and r red, 
the conditional probability of success after n previous 
successes will be (rtnc)/(btr+nc) and the corresponding 
conditional probability of  failure will be b/(btr tnc) .  

The simplest case of this Cumulative Advantage Urn 
Scheme is to take b = r = c = 1 for, apart from the multi- 
plicative constant c ,  any other starting configuration can 
be regarded as the state after some number of successes 
have occurred either under this rule, or in the comple- 
mentary game with red and black reversed. The condi- 
tional chance of success after n successes is (1 tn) / (2tn)  
and the conditional chance of failure is 1/(2+n). Con- 
sider now, again as the most simple case, a population of  
N such urns, each originally in its ground state of n = 0. 
Going through the urns one by one we make drawings, 
continuing with the same urn as long as it produces 
successes and terminating and going on to another urn 
at the first failure. By the time all the N urns have been 
played, there will result a simple distribution which may 
be taken as a limiting case of  the cumulative advantage 
process. 

Half the urns will have produced a failure on their 
first drawing and therefore remain in that state. Of the 
half population that produce a first success, two-thirds 
will be successful again and one-third will fail and 
terminate; of the N / 3  with two successes, three-quarters 
will succeed yet again, and so on. The expected number 
of urns with at least n successes by the end of the game 
will be N/(n+l )  and the expected number with exactly 
n successes is 

- -  N N =  N 
n t l  n t ?  ( n t I ) ( n + 2 )  . 

Introducing a standard notation for the number of 
members of the population with exactly n successes, 
N(n) ,  and for the cumulative number of those with n or 
more successes, S(n), we have: 

N N(n)  = (n+ 1) ( n t 2 )  

( 2 )  
N 

n+ 1 S ( n ) =  - 
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Setting S(n) = 1, it is seen that there is just one urn, that 
with the highest score of successes, in the range 
N < n t l  <m, thus the highest possible score is at least 
N - 1. Proceeding similiarly by setting S(n) = m, we may 
show that the mth highest score is in the range 

N / m < n t l  <NJ(m- 1). 

The total number of successes over the whole popula- 
tion may be found by summing S(n) from the highest 
scorer downwards, though we must be careful to exclude 
the infinity that would be introduced by the upper limit 
of the highest scoring member of the population. With 
this exclusion, the sum of the lower limits is a harmonic 
series 

n = l  n = 2  

where C is Euler’s Constant, 0.577215665. . . The mean 
minimum score of successes per urn increases logarithmi- 
cally as the size of the population. The mean value for 
the maxima, excluding only the highest scorer, is a 
similar expression, substituting Nt1 for N. It is, there- 
fore, convenient for most purposes to take this value, 
which has been derived as representing a mean value, the 
indeterminate upper bound of the highest score being 
excluded. 

0 The Cumulative Advantage Distribution 

The Urn Scheme which has been discussed is, as has 
been stated, the simplest case of a Cumulative Advantage 
principle. A more general case, corresponding to a situa- 
tion in which the population does not commence in a 
uniform ground state, may be studied better by con- 
sidering a stochastic pure birth process, the general case 
which has been given by Feller [(2) I:448]. For this we 
shall suppose the population to consist of a number of 
individuals, each of whom is in a state that can be char- 
acterized by a single number, n ,  the total of “successes” 
thus far achieved. We further suppose that transitions or 
jumps can occur only by the incidence of a further 
success which transforms the individual from a state n to 
a state n t l ,  but never in the reverse direction. 

A picturesque illustration of such a stochastic process 
would be a sort of “negative” radioactivity in which 
atoms of atomic (success) weight n could decay 
(negatively!) into atoms of the next higher weight. At 
any time the population consists of atoms distributed 
over the entire spectrum of atomic weights, all decaying 
upwards in the series at appropriate rates. If no new 
atoms at ground state were added, the entire population 

would decay towards infinite atomic weight; but if new 
ground state atoms are continually added, it can be 
shown that a stable population distribution can be pro- 
duced, provided that a principle of cumulative advantage 
governs the transitions. The simplest expression of such 
a principle is to suppose that successes fall equally on 
the heads of all previous successes, so the frequency of 
transitions from state n to n t l  will be proportional to 
n. 

This is fine if one begins from a ground state of unity 
rather than zero, as one does for example in considering 
a population of authors of n papers, an “author” of zero 
papers being undefined. In such a case, however, of the 
citedness of papers, it is useful to attach some meaning 
to the transition from zero citations to the first. I f  we 
wish to retain the proportionality between transition 
frequency and the state number, the number of 
successes must be counted as one more than the number 
of citations. In a way, this is tantamount of considering 
the original publication as the first citation, which seems 
reasonable, though one may wish the option of counting 
publication as some other number of successes, more or 
less than unity. Such a modification is relatively easy to 
make after the theory is developed for one may suppose 
the actual number of citations to be n+k, where n is the 
number of successes, and k is an arbitrary constant, pre- 
sumably in the region of unity. Even more generally, we 
may set n = ax tb  where x is some other arbitrary state 
descriptor such as income in dollars. 

Consider then a population of P individuals, of which 
a fraction An) are in state n, where 

and the mean number of previous successes 

m 

C nAn) = R. 
1 

Now suppose that a small number dP of new individuals 
are added to the population, and with them RdP new 
successes are sprinkled at random over all members. 
Since these new successes are to be sprinkled evenly over 
the R P  previous successes, there are dPJP new successes 
per previous one, and for the class of Pfln) individuals 
with n previous successes each, there will, therefore, be 
nPf(n).dP/P new successes, and therefore transitions 
from this nth state to the (n+l)th. There must be there- 
fore nf(n)dP transitions out of the nth state, and there 
will be also (n-l)f(n-Z)dP transitions into it, from the 
class below receiving its quota of new successes. The 
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Therefore change in the number of individuals in the n th  state is 
therefore 

d P f ( n )  = -nf(n) t (n- 1)Jtn- 1) n > 1 
lip 

= - f ( l ) t  1 n = 1 ( 3 )  

so that Pdgf l r z )  = -(n+l)f(n) f (n- I)f(n- I )  n > 1 

= - 2 f ( l )  t 1 n =  1 (4) 

and the distribution over the states is defined by this 
series of difference-differential equations. It can readily 
be seen that for a stable distribution, for whichf(n)  is 
independent of P, the left hand side of Equation (4) be- 
comes zero, and one may solve recursively 

n- 1 n-1 n-2 n-3  1 1 = 1 f (n )  =-f(n- 1) =- .- .-. . ._.- - 
n+ 1 n t l  n n-1 3 2 n(nt1)  

which is the form found for the Urn Model. 
Suppose now that the distribution is slowly changing 

with P, and take it t o  be separable as the product of a 
function of P independent of n, and a function of n in- 
dependent of P, thus 

Substituting this in Equation (4) we get 

Since the variables have been separated, both sides of 
Equation (7) must be constant of all P and for all n ;  let 
us call this constant m.  It then follows that 

therefore F(P) = CPm 

= m  n = l  -2g(l) t 1 

- n-l n-2 1 1 --.- ...-.- 
nt 1t;n ntm Z+ni 7 t m  

- (17- l ) ! (mt l ) !  
( n t  1 tm)! 

- 

This last result may be expressed most elegantly by using 
the notation of the Beta Function, otherwise known as 
Euler’s First Integral, 

B(a,b) = B(b,a) =A,’ xu-] (1-X)b-I dx = 

r(a)r(b) - (~ - i ) ! (b -  I)! 
r(a+b) (atb-iy 

-- 

So that from Equations (6) ,  (8) and (10) we have a 
solution of  Equation (3) as 

and hence for any particular value of P, the distribution 
we have considered is proportional t o  the values of the 
Beta Function B(n,m+2). This may be expressed in the 
usual way as a discrete probability density by chosing 
the constant o f  proportionality so that 

and on this basis we propose as the Cumulative Advan- 
tage Distribution, the density 

f” (n) = ( m t l )  B (n, mt2)  

though in most cases it will prove more convenient t o  
use the unnormalized form and work directly with tables 
of the Beta Function. 

The Beta Function, of course, assumes simple forms 
for integral values of a and b. It should be noted for 
example that 

B(n, 1) = l /n 
B(n,2) = I/n(ntl) 
B(n,3) = 2/n(ntl)(n+2) 
B(n,4) = 6/n(nt l)(n+2)(nt3), etc. 

(9) * A  linear combination of such solutions for any values of m 
constitutes a more general solution, but I see at present no 
physical significance in such a compound expression. 
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We tabulate the function for integral values of the argu- 
ments by taking B( 1 ,b)  = 1 /b  and then calculating suc- 
cessively 

B(?,b)=B( 1 ,b ) / (b+l ) ,B(3 ,b)=B(2 ,b) .  2/(6+2),B(4,b)= 
B(3,b) . 3 / (b t3 ) ,  etc. 

0 Properties of the Beta Function 

I t  should be noted that An) contains only the single 
parameter m, the simple limiting case discussed above in 
the Cumulative Advantage Urn Model corresponding to 
m = 0. The distribution is therefore remarkably simple in 
form, having one free parameter like the Poisson distri- 
bution, rather than two or more as in other contagious 
probability forms like the negative binomial. The prop- 
erties of the Beta Function are, of course, well known, 
though their use in this context seems not to be wide- 
spread since it appears that no previous extensive tabula- 
tion of the function has been published. 

Perhaps the most important property for our 
purposes is that 

B(a,b) -B(u + 1 ,b) =B(a,b + 1 )  (1  2 )  

so that the values of B(u,b+l) are the first differences of 
B(u,b) and, in general, B(a,b+c) for the run of values of a 
are the cth differences of B(a,b). A table of the Beta 
Function for integral values of u and b has therefore for 
b = 1 ,  a table of the reciprocals of the nature numbers, 
and for higher values of b ,  the bth differences of this 
harmonic series. Conversely, since differences are taken 
by increasing the value of b ,  we get a sum by decreasing 
it. Each run of B(u,b) gives the sum from infinity to a of 
B(a,b t 1). Since the Cumulative Advantage Distribution 
is given in Equation ( 1  1 )  by the Beta Function with b = 
m t 2  for the relative number of the population with 
exactly a = n successes, the cumulative sum for all a = n 
must be given by the adjacent tabulation for b = m+l . In 
a tabulation for integral m (see Table 1) we shall have 
therefore, in adjacent columns, the frequency distribu- 
tion on the right and the cumulative frequency distribu- 
tion on the left. 

As a special case it may be noted that the top number 
in any column, i.e., the value B(I,b),  is the sum of the 
entire column to  the right of it, ie.,  

C B ( u , b + l ) .  
U 

Because, as was noted above in the Urn Model, the total 
number of successes is the sum of the cumulative fre- 

quencies, the top entry to the left of the pair of columns 
just mentioned gives this sum of successes, all numbers 
being, of course, scaled to the total population. In all 
then, for any particular value of m > 1 ,  we shall be con- 
cerned with three adjacent columns of the Beta Func- 
tion table: 

B(1.m) gives the total number of successes, 
B ( l , m + l )  gives the size of the population (except for 

a factor if we wish to make this equal to P), and subse- 
quent entries in this column B(n,m+l) given the cumula- 
tive frequency, i.e., the number of members with success 
scores of at least n . 

B(n,m+2) gives the actual frequencies, i.e., the 
number of members with success scores exactly m. 

Since the size of the populationisB(1 pt l )  = l / (mt l ) ,  
we may norm to a population P by multiplyingall entries 
by P(mi-1). As leading results from such a normalization, 
we note that the total number of successes becomes 
P(mtl)B( 1 ,m = P(mt  l ) / m ,  and the mean is therefore 
l+ l /m;  and that the proportion of individuals with 
exactly one success is (mtl)B( 1 ,m+2) = (m+l)/(m+2). 
These results may be used as estimators for the para- 
meter m, but for this another very useful indication is 
that for large values of a, 

(13) 
(b- l ) !  (b- l)! 

B(u, b )  = 'c 

b- 1 b (a+b- l ) (a tb-2)  . . . (L'+ 1 )rl 
(a+ 7) - 

So, rather more approximately, 

B(a,b) = (b- l ) ! ~ - ~  (14) 

and as a result, for reasonably large values of n, the 
Cumulative Advantage Distribution follows an inverse 
power law with exponent m+2; and the cumulative dis- 
tribution is also an inverse power law, but with exponent 
m+Z. This is indeed the characteristic of several very well 
known empirical laws of social science, including biblio- 
metrics (for which see the splendid critical summary by 
Fairthorne (14)  and the recent literature review by Narin 
(15).  In most cases such as the Pareto and Lotka distribu- 
tions, it appears that m is small so that one is not far dis- 
tant from the limiting case m = 0 which was discussed in 
the Urn Model. 

0 The Limiting Case-Loth and Bradford  

I t  must be observed that in this limiting case we can 
no longer use an estimation from the mean, since the 
cumulative distribution B(n,Z) is the harmonic series 1 /n 
and its sum is divergent. In this case, we must argue that 
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Table 1 

a= 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

b= 1 
10000000 
5000000 
3333333 
2500000 

1666667 
1428571 
1250000 
1111111 
1000000 
909091 
833333 
769231 
714286 
666667 
625000 
588235 
555556 
5263 16 
500000 
4761 90 
454545 
434783 
416667 
400000 
38461 5 
370370 
357143 
344828 
333333 
322581 
31 2500 
303030 
2941 18 
285714 
277778 
270270 
2631 58 
256410 
250000 
243902 
238095 
232558 
227273 
222222 
21 7391 
21 2766 
208333 
204082 
200000 
196078 
192308 
188679 
1851 85 
181818 
178571 
175439 
172414 
169492 
166667 
163934 
161290 
158730 
156250 
153846 
151515 
149254 
147059 

2000000 

b= 2 
5000000 
1666667 
833333 
500000 
333333 
238095 
178571 
138889 
111111 
90909 
75758 
64 103 
54945 
47619 
41667 
36765 
32680 
29240 
26316 
23810 
21 645 
19763 
18116 
16667 
15385 
14245 
13228 
1231 5 
11494 
10753 
10081 
9470 
891 3 
8403 
793 7 
7508 
7112 
6748 
641 0 
6098 
5807 
5537 
5285 
5051 
4K31 
4625 
4433 
4252 
4082 
3922 
3771 
3628 
3494 
3367 
3247 
3133 
3025 
2922 
2825 
2732 
2644 
2560 
2480 
2404 
2331 
2261 
2195 
2131 

b= 3 
3333333 
833333 
333333 
166667 
95238 
58524 
39683 
27778 
20202 
151 52 
11655 
91 58 
73 26 
5952 
4902 
4085 
3440 
2924 
2506 
2165 
1882 
1647 
1449 
1282 
1140 
1018 
91 2 
821 
74 2 
672 
61 1 
557 
509 
467 
429 
395 
365 
337 
313 
290 
270 
252 
23 5 
220 
206 
193 
181 
1 70 
160 
151 
142 
134 
127 
1 20 
114 
108 
103 
97 
93 
88 
84 
80 
76 
73 
70 
67 
64 

b= 4 
2500000 
500000 
166667 
71429 
35714 
19841 
11905 
7576 
5051 
3497 
2498 
1832 
1374 
1050 
81 7 
645 
516 
41 8 
342 
282 
23 5 
198 
167 
142 
122 
105 
91 
79 
70 
61 
54 
48 
42 
38 
34 
30 
27 
25 
22 
20 
18 
17 
15 
14 
13 
12 
11 
10 
9 
9 
8 
7 
7 
6 
6 
5 
5 
5 
4 
4 
4 
4 
3 
3 
3 
3 
3 

b= 5 
2000000 
333333 
95238 
35714 
15873 
793 7 
4329 
2525 
1554 
999 
666 
4 58 
323 
233 
172 
129 
98 
76 
59 
47 
38 
30 
25 
20 
17 
14 
12 
10 
8 
7 
6 
5 
5 
4 
3 
3 
3 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

b= 6 
1666667 
238095 

59524 
19841 
7937 
3608 
1 804 
971 
555 
333 
208 
135 
90 
61 
43 
31 
22 
17 
12 
9 
7 
6 
4 
4 
3 
2 
2 
2 
1 
1 
1 
1 
1 
1 

b= 7 
1428571 
178571 
39683 
11905 
4329 
1804 
833 
41 6 
222 
125 

73 
45 
28 
18 
12 
8 
6 
4 
3 
2 
2 
1 
1 
1 
1 

b= 8 
1250000 
138889 
27778 

7576 
2525 
971 
416 
194 
97 
51 
29 
17 
10 
6 
4 
3 
2 
1 
1 
1 

b= 9 
1111111 

111111 
20202 

5051 
1554 
555 
222 
97 
46 
23 
12 

7 
4 
2 
1 
1 
1 

b= 10 
1000000 

90909 
15152 
3497 
999 
333 
125 
51 
23 
11 
5 
3 
2 
1 
1 

b= 11 
909091 

75758 
11655 
2498 
666 
208 
73 
29 
12 
5 
3 
1 
1 
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a=
 1 2 3 4 5 6 7 8 9 10

 
11

 
12

 
13

 
14

 
15

 
16

 
17

 
18

 
19

 
20

 
21

 
22

 
23

 
24

 
25

 
26

 
27

 
28

 
29

 
30

 
31

 
32

 
33

 
34

 
35

 
36

 
37

 
38

 
39

 
40

 
41

 
4

2
 

43
 

44
 

45
 

46
 

47
 

b
=

 1
.0

 
10

00
00

00
 

50
00

00
0 

33
33

33
3 

25
00

00
0 

20
00

00
0 
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some maximum value of n must exist, as before that for 
which the cumulative number of cases becomes unity; 
this leads again to a mean given by C+ log, P. I f  in this 
case we take a running cumulative sum of the score of 
successes, starting at the maximum, and consider i t  as a 
function of rank, one gets the same sort of logarithmic 
relationship. From Equation (2), again with a proviso to 
exclude the infinity due to the upper range of the 
highest score, we count the highest score as P-1 and the 
rth highest as P/r - 1. The sum of the scores from the 
top to the rth individual is therefore: 

Q(r) = (P-l)+(P/2-1)+(P/3-1). . . (P/r-1) 
=P(1+1/2+1/3.. . l/r)-r (15) 
= P(Ctlog,r)-r. (16) 

I f  r is large compared with eC=1.781 and small com- 
pared with P, this last equation becomes 

Q(r) = Plog,r 

so that the total success score is proportional to the loga- 
rithm of the rank from the top. This is well known as the 
basis from which one may derive the Bradford Distribu- 
tion (15, 16, 17) in which geometric “zone” increases in 
rank to correspond to arithemetic increments in the total 
score. In the simplest two-zone form, it states that half 
the successes are due to the highest scoring elite compris- 
ing-of the individuals. Though we did not realize it 
at the time of publication (18), this turns out to be pre- 
cisely the same mathematical basis for the so-called Price 
Law that asserts, on the basis of the Lotka distribution, 
that the top -authors will produce at least half the 
total papers published by the population P. 

We see, therefore, that two of the most popular empiri- 
cal laws of bibliometrics and some other findings can be 
derived immediately from the underlying theory of 
Cumulative Advantage in its limiting case m = 0, and their 
forms have much more general application than had 
been supposed. Insofar as the empirical laws do not 
quite fit all of the data, a very probable cause is that, in 
such cases, the limit is approached but not reached, so 
that m is small but non-zero. Two additional small 
modifications for practical use may be noted: for the 
usual step form of the Bradford graph, it is better to use 
the actual harmonic series terms of Equation (16) rather 
than the logarithmic approximation of Equation (16);and 
the Groos (19)  “Droop”, having no underlying theo- 
retical basis, is simply due to the poor ability of gathering 
individuals with very low scores. It may, in fact, be 
explained as a Poisson probability for rare events 
(successes) that would lead one to gather only a fraction 
1-e-P of individuals when there is only a small expecta- 

tion p ,  that is, only a few successes each. For small 
values of n one should therefore apply this correction. 

All such modifications notwithstanding, i t  follows 
from Equation (1 7) that if we have a population in which 
there operates-for whatever cause-a Cumulative Advan- 
tage Process in its limiting case; 

Thus for example, if we suppose, as turns out from the 
other data to be reasonable, that citation of a journal is 
governed by such a process, we may calculate the frac- 
tion of all citations to journals or papers that will be 
collected by starting from the r most cited journals in- 
stead of the total population of P journals. Barr (20) 
estimated that there were about 26,000 journals of 
interest to scientists and technologists in 1966; for that 
same year the Science Citation Index@ used 1573 source 
journals. I f  we suppose that these were all the most 
highly ranked journals, they would yield log 1573/log 
26000 = 0.72 of all citable papers of that year, which may 
be regarded as the built-in efficiency of an operation 
based on a selection rather than the entire population. 

In the same way, it is trivial mathematically, but by 
no means so economically, to observe that if we have, 
say one million individuals of the highest rank in a 
Cumulative Advantage population in its limiting case, 
the doubling of the population by the addition of the 
next highest ranked million will increase the total bulk 
of successes by only log 2/log lo6 = 5%. Thus, if “suc- 
cesses” be book use in a library, citations to a body of 
literature, frequencies of word use or incomes of the 
rich, once one has a large body of individuals selected 
by their being of the highest ranks in success rate, the 
pay-off for adding to the population becomes rather 
small. Since it happens that the cost of managing or 
holding a collection is proportional to more than the 
first power of the size of the collection, the acquisition 
of an additional 5 percent of value in the return is paid 
for by more than a doubling in cost. We, therefore, see 
the operation of a very powerful principle of marginal 
utilities in such cumulative advantage situations. It is the 
marginal economy, of course, that produces the force 
leading one to the elitism (21) of small libraries, vocab- 
ularies and document collections and small social 
groups of those with many successes behind them. For 
the Science Citation Index@, the operation would not 
be possible if it were not for the Cumulative Advantage 
situation. Taking as sources the most obvious and best 6 
percent or so of all citable journals one can, as has been 
shown, acquire citations to about 72 percent of all 
citable papers. 
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0 Application of Cumulative Advantage Theory 
to  Lotka’s Law 

Although much comment has been made about 
Lotka’s Law of Scientific Productivity, including interest- 
ing theoretical pseudo-derivations by Shockley (22) and 
by Zener (U),  its very simplicity seems to have militated 
against the collection of empirical data that would give a 
parameter m in terms of the mean value or by some 
other way. Lotka’s (24 )  original data, tested only for 
relatively small n ,  was based partly on lifetime produc- 
tivities and partly on the ten year indexes. In a way, it is 
rather misleading, for one is led to  suppose that the l/n’ 
law can be identified with the limiting case of the 
Cumulative Advantage Distribution f o r m  = 0, for which 
N(n)  = l/n(n+l). It is possible if scientists did not have a 
finite research lifetime, and if we had a total bibliog- 
raphy over all time, such a law might hold. For Lotka’s 
test, however. it is only necessary that the first few 
values for small n fit the inverse square law so that 

N( I ) /N(2)  = 2’, N(l)/N(3) = 3’, etc. 

More crucially, as was shown by Price (25) p. 46-48, the 
ranking of the most productive authors, in Lotka’s data 
and in many other examples, follows the law S(n)  = c/n’ 
which leads one t o  suppose that m is in the region of 
unity rather than zero. 

If the value of m were exactly unity (which it doubt- 
less is not), we would have 

N ( n )  = B(n,3) = 2/n(n+l)(n+2), S(n) =B(n,2)  = 1 /n(n+ l), 

S( I )  = 1/2 and Q(1) = B(1,l) = 1,  so that the mean 

Q( I)/S( 1 )  = 2. It follows therefore that N(l)/N(?) = 4 
exactly as required, and N( 1)/N(3) = 10 which is close t o  
3’. A still more crucial test for the distribution in the 
tail is given by the computation of the highest scoring 
member by setting PS(n) = 1. For m = 1, taking a popu- 
lation of the order of a million authors we must have 
n(n-1) % n’ = lo6 which gives a maximum score of  
n = 1000, in reasonable accordance with the order of 
magnitude of existing world records. Another reasonable 
estimate is t o  be had from the popor t ion  of  single paper 
authors, N(I)/S(l) = 2/3  for m = 1, which is somewhat 
higher than the approximately 60 found empirically and 
theoretically by Lotka. 

The small discrepancy could be reduced by using a 
slightly smaller value for m, say 0.7, rather than unity. 
This value makes the maximum score for a million 
authors (106)1/1.7 = 3400 in close agreement with the 
remarkable actual world record of 3904 papers attri- 
buted t o  T.D.A. Cockerell (1866-1948), an entomologist 

of the University of Colorado. Also for this value we 
have N( l)/N(2) = 3.7 and N( 1)/N(3) 8.7, both rather 

m= 1.0 m = 0.7 

n N n )  S@) N(n)  S(n) 
1 .333 SO0 .370 .588 
2 .083 .166 . l o o  .218 
3 .033 .083 .043 . 1  18 

near to the values of 4 and 9 required by the inverse 
square law, and the mean value of productivity becomes 

1+1/0.7 = 2.43. 

The actual value of m is likely to vary with the sam- 
pling used in any particular case. For modern data there 
must be much uncertainty because we have as yet n o  
adequate model or theory for the attribution of credit in 
the case of multi-author collaborative papers; there re- 
mains also some doubt as t o  the effect of  finite lifetime 
on author productivity. Such difficulties notwithstand- 
ing, it is clear from the only extensive demographic 
study of authorship thus far, that by Price and Giirsey 
(26), that authors differ not so much in their rate of 
publication o f  papers, but in the span of  time they spend 
at the publication front. The greater number of those 
arriving at the research front emit only their initial 
publications and are therefore t o  be considered as “tran- 
sients”; they number perhaps two-thirds of all authors. 
This is just what would be expected in a Cumulative 
Advantage process with m near unity; it corresponds in 
fact t o  an Urn Model where one begins with one red ball 
of success and two blacks for failure. Two-thirds of all 
first choices will result in failure and the end of that 
particular “game” of publication, but  for the one-third 
that succeed there will be an even chance of a second 
success, and thereafter the chance will approach unity 
asymptotically. It seems therefore that in all qualitative 
aspects and also quantitatively the Cumulative Advantage 
Distribution and process account for journal distribu- 
tions and author productivities. 

0 Application t o  Citation Data 

By far the most stringent test of  the Cumulative 
Advantage principle is the application to citation data 
where we have a wealth of computer-generated counts 
instead of the short series of hand counts for produc- 
tivity. Though the data are rich, the empirical generali- 
zations and underlying theoretical constructs have been 
sparse. Price (27) reported that the number of  papers 
cited n times in a year followed an inverse power law (a 
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Zipf Law) with exponent in the range 2.5-3.0, and I .  
Yermish (28) has since shown that an exponent of 3.036 
gives a correlation of 0.9937 with the data for 1972. The 
only far-reaching theoretical analysis known to me is by 
Charles J.  Crowley (29) where it is supposed that a nega- 
tive binomial distribution would have the required prop- 
erties, and this is unfortunately tested on very limited 
data. One other previous contribution deserves special 
mention even though its ingenious and elegant mathe- 
matics were introduced in connection with the Bradford 
Law rather than citation data. Brookes (30) showed that 
the sampling of a truncated hyperbolic distribution 
could be accounted for by an analogue of the Taylor’s 
Theorem, a result which I conjecture may be equivalent 
to convoluting or changing the value of m to m+h in the 
Beta Function, B(n,2 tm)  of the Cumulative Advantage 
Distribution. 

In all that follows, it must be remembered that for 
citations there is a problem associated with the zero 
ground state. We have supposed above that the publica- 
tion of a paper might be counted as its first citation 

success.” If it is not, then the value of n in the Beta 
Function must be taken as the number of citation 
successes plus k ,  where k is some parameter different 
from unity. This will affect the values of N(n) and S(n)  
for small values of n only, and it may be used as an addi- 
tional parameter to adjust such values to agree with the 
empirical data. Because of the possibility of such a 
‘fudge’ factor being used, we shall not rest any vital tests 
upon such values for small n ,  and provisionally k is set 
at unity. 

For the total citation network for all time, it is clear 
that the maximum number of successes per paper is 
equal to the total population of papers, for it has its own 
publication and can be cited by all other papers. It 
follows then that the average number of successes, which 
must be one more than the average number of references 
from each paper to the same journal literature, must be 
C-log, P which is here tabulated for typical values of 
population: 

“ 

P Mean Successes RefslPaper 

1,000 7.48 6.48 
10,000 9.79 8.79 

100,000 12.09 1 1.09 
1,000,000 14.39 13.39 

10,000,000 16.70 15.70 
100,000,000 19.00 18.00 

Since there are, in fact, about 13 references per article to- 
day across the whole field of literature, this provides an 
overestimate, especially since many of these are to non- 
journal items outside the source network. What has 
probably happened also is an overestimation of the 
maximum possible success rate; even the most cited 

paper, that of Lowry 195 1, is cited only by about 1 per- 
cent of all papers. With this correction, a rate near the 
actual ten journal references per article gives a total 
archive of 3,400,000 papers which is perhaps a slight 
underestimate. It may well be that this tells us that the 
scientific literature consists not of a unity, but of some 
hundreds of nearly autonomous subfields. Alternatively 
it might be due to some process whereby only a fraction, 
cu. 10/13 of all successes, are actually manifested as cita- 
tions. 

A remarkable consequence of this derivation is that 
each doubling of the archive should add log, 2 = 0.7 
refs/ paper. Since the total population of papers grows 
exponentially with a doubling time of cu. ten years, we 
should expect that the number of refs/paper must have 
been increasing by unity about every 15 years, a fact 
that agrees well with the much smaller incidence of cita- 
tion in the early years of this century. I do not believe 
this postdiction of the bibliometric record has ever be- 
fore been stated or observed. 

For an actual citation index, such as those published 
on a quarterly, annual and quinquennial basis by the In- 
stitute for Scientific Information, we must take into 
account that this is a sampling in two distinct ways. 
First, we have the fact that it is based upon a selection 
of the largest and most cited journals, and, as we have 
seen, if this in itself is governed by a Cumulative 
Advantage Distribution, it is probable that this collects a 
fraction of about 72 percent of the entire cited litera- 
ture. Secondly, the index is based upon only a restricted 
range over time of the previous literature, which we shall 
suppose to be in exponential growth at a rate K ,  which is 
approximately 0.07 per year. Letting the number of 
journal references per source article be R ,  it  follows that 
in a one-year citation index there will be K R  references 
back per article existing in the corpus. As has long been 
known [see Price (27)], this works out to about one 
citation per article per year. Since in the Cumulative 
Advantage Distribution we have a mean of l+ l /m 
successes/item, it follows that the mean number of cita- 
tionsM is one less than this, l/m. Wcare led therefore to 
suppose that a one year citation index must have m near 
unity, and it will therefore follow from Equation (14), 
for large n, an inverse cube law, l /n3.  For a many-year 
index the mean number of citations per corpus paper 
will be larger, so that m is small, and one gets closer to 
the inverse square law which is the limiting case. For a 
correspondingly shorter period, the value of m must be 
larger than unity; for example, it must be that m=4 for 
a quarterly index, so that the distribution for large n will 
fall off as l /n6 .  It follows also that the cumulative distri- 
butions will fall off as l /nZ for the annual, nearly l ln  
(perhaps l/nI.z) for the quinquennial, and l /n5 for the 
quarterly citation indexes. 
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Table 3. Empirical data for number of papers cited n times in 
Science Citation Index@ - 

1 - 
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24.4 
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8. I 
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1.6 

0 

1.6 

1.6 

3.2 

0 

0 

1.6 

0 

0 

0 

2,03 1.8 

808.8 

276.1 

121.8 

55.2 

30.8 

24.3 

16.2 

13.0 

11.4 

1 1.4 

9.8 

8.2 

5.0 

5 .o 

5 .o 

3.4 

3.4 

3.4 

3.4 

3.4 

Average 
cites/paper 
cited 1.345 

Sources: 

m u d  Z 

,280.9 

,328.9 

550.5 

312.3 

154.9 

97.5 

64.3 

45.2 

31.4 

24.4 

18.3 

14.2 

11.0 

8.9 

7.3 

6.1 

5.2 

4.2 

3.8 

3.0 

10,000 

2,719.1 

1,390.2 

839.7 

527.4 

372.5 

275.0 

210.7 

165.5 

134.1 

109.7 

91.4 

77.2 

66.2 

57.3 

50.0 

43.9 

38.7 

34.5 

30.7 

27.7 

27.7 

)-year Cum c 
10,000 

1.689.7 
3.310.3 

2,050.3 

1,495.1 

1,165.2 

939.2 

758.1 

643.8 

553.7 

465.2 

396.0 

339.7 

304.3 

280.2 

240.0 

215.9 

195.0 

185.3 

162.8 

153.1 

129.0 

,260.0 

555.2 

329.9 

225.3 

181.8 

114.3 

90.1 

88.5 

69.2 

56.3 

35.4 

24.1 

40.2 

24.1 

20.9 

9.7 

22.5 

9.7 

24.1 

129.0 

1.66 2.641 

Quarterly, hand count of 6157 papers from 1975 index. 
Annual, computer count of 1,882,864 papers from 1967 index. 
5-Year Cum, hand count of 6214 papers from 1965-1969 index. 

In an empirical test from machine-generated data for 
the annual and from hand-counts for the quarterly and 
quinquennial indexes (see Table 3 and Fig. I), I find for 
the actual distributions exponents of 2.1 for five years, 
3.2 for one year, and 5.3 for a quarter year, and inde- 
pendently for the cumulative distributions, values of 1.4, 
2.3 and 4.0 respectively. It would appear therefore that 
for an annual index we have m = 1.25, and for the quin- 
quennial it has an appropriate value about one-fifth of 
this, m --0.25, but for the quarterly where we should 

have m y.5.0, we have in fact m Y 3.15 which may be 
due to the smallness of the sample counted, or it may 
have some deeper basis such as the constant k associated 
with the ground state transition not being unity. 

Another interesting test of the citation data is 
afforded by the rank list of highly cited items. Accord- 
ing to the tabulation by Garfield (31), the most cited 
paper, that of Lowry et ul had 29,655 citations in the 
interval 1961-1972, followed by items with 6281,5825, 
5273 and 5054 citationsin the same ten year period. The 
tenth most cited paper had 3621; the 20th, 2054; the 
30th, 1695; the 40th, 1317 and the 50th, 1207. The 
trend follows approximately (except for the anomalous 
top item) a typical power law that the number of cita- 
tions is 10,00O/rank2", which is equivalent to a cumu- 
lative distribution proportional to l/nl.5 suggesting that 
for a ten year index we should have m"0.5. 

In this period the citation index contained a total of 
cu. 3,500,000 source items, and although the annual rate 
grew by about a factor of three, some of that was due to 
an expansion in the extent of the Institute for Scientific 
Information operation relative to the total available 
literature, so one may suppose that the actual corpus, 
growing at cu. 7 percent per annum, must have doubled 
in the period. The corpus at the end of the period there- 
fore must have been about 7 million papers, so that 
Lowry's paper had been cited by more than four papers 
in every 1000, a surprisingly large fraction when one 
remembers that most scientific literature has nothing 
to do  with organic chemistry. Quite apart from the trend 
of most cited items, we may use this highest score as an 
estimator, since from Equation (14) it follows that, set- 
ting the cumulative total of unity, the score of the high- 
est cited item must be given by 7,000,000/nl+m = 1 and 
for n = 29,655 we have m = 0.53. 

10 100 lo00 10) 
I 

\ 
O 

m 

10 

5 1  

2 

1 

1 1  
10 100 ldoo 10,Ooo 

Fig. 1 .  Number o f  papers with (a) exactly and (b) at least n cita- 
tions in !4, 1, and 5-year indexes. 
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It should also be possible to estimate the value of m 
from the Garfield Constant (32), the number of citations 
per cited item. This parameter, C, has been slowly rising 
for the annual index from about 1.60 in the early 1960s 
to about 1.80 in the mid-1970s; for the 1965-1969 quin- 
quennial index it was 2.55 and for quarterly indexes it 
is ca. 1.3. For the Cumulative Advantage Distribution the 
number of papers cited ( i e . ,  having at least two 
successes) is given by S(2)  = B(2,mtl)  = 1/(m+l)(mt2) 
and the number of citations by 

Q(2) =B(2M = l/m(m+l), 

hence G = 1+2/rn and the Garfield Constant is therefore 
one more than twice the mean number of citations per 
paper. 

The fraction of all cited papers that occur in a cita- 
tion index based upon a limited time interval T ,  com- 
pared with those in one based upon all time may be cal- 
culated by supposing that we have a Poisson process 
with an expectation RKT where R is the number of 
references/paper, and K is the growth rate. The fraction 
of papers not “hit” is e - R K T  so those “hit” by citation 
are I - e - R K T  and combining this with the efficiency F 
(due to the journal selection) we haveM= F(1-e -RKT) .  
For F = 0.72, R = 9, K = 0.07/year we get: 

Span of Index Calculated Calculated 
in Years Mean Citations = M G = 1 t 2 M  

114 0.105 1.2 1 
1 0.336 1.67 
5 0.689 2.38 

Alternatively, if we take G to be 2.55 for the quinquen- 
nial and 1.80 for the annual index, it follows from a 
simple numerical solution of the simultaneous equations 
that we must have F = 0.79 and RK = 0.73. It seems 
reasonable that the efficiency of the citation index 
should have improved by enlarging the journal list from 
0.72 in 1966 to 0.79 in 1974 (indeed, computing from 
the current size of the roster of source journals log 
2500/Iog 26,000 = 0.77), and for the value of RK we 
might have agrowthrate 0.08 per year and 9.1 references 
to the journal literature per article. The agreement is 
surprisingly good though the values of M seem to corre- 
spond to m t 2  rather than to m which I should expect. 

0 Citations as a Function of Time and Field 

It should be noted that the Cumulative Advantage 
Distribution has been derived without explicit reference 
to time as a variable, and unlike such many-parameter 

functions as the negative binomial, i t  contains little 
scope for adjusting the constants to fit different fields 
or other sorts of population. The distribution depends 
only on the size of the population and the mean number 
of successes per item. We have supposed that successes 
generate future successes without any particular time 
scale. For an exponentially growing population, how- 
ever, it is clear that if we start with RP successes there 
will be added KRP where K has a value of the order of 
0.07 per year, and hence the exponential growth may 
be regarded as due to each success producing 0.07 new 
successes per year, or one further success every c a  14 
years. Such a concept is, of course, equivalent to a 
model explaining exponential growth as a tendency for 
successes to breed new successes at a constant birth rate. 

The birth rate is however quite small. A paper needs 
to have some 14 previous successes before it reaches a 
rate of one new success per year. In view of this small- 
ness of the constant, it is clear that the first few citations 
could not cumulate in such a slow fashion-it would 
take far too long for Lowry to become Lowry! What 
clearly happens is that immediately after publication, in 
as long as it takes for the work to become known 
(which may indeed precede publication through the use 
of informal communication) the paper is weighed by 
peers and in its incunable period produces a first pulse 
of citations which in most cases probably determines 
all future citation history; only rarely is there a much 
retarded discovery or subsequent rounds of rediscovery 
and new application. 

In the absence of such anomalies the future citation 
history of a paper will depend only on the size of the 
initial pulse and since dn = Kndf ,  we have n = nOeKf  so 
that the number of citations is expected to grow at the 
same exponential rate as the literature, where f is the 
time elapsed from the initial pulse of no citations. The 
pulse size is clearly a determinant of the effectiveness 
of the paper at the research front. It must thus be a 
measure of “quality,” perhaps also containing a factor 
proportional to the size of the paper (in pages?). 

An interesting point that must have further investi- 
gation is that there must be a feedback from the cita- 
tions as a cumulative advantage process to  the author’s 
productivity which follows just the same pattern. We 
must suppose that the size of the initial pulses modu- 
lates the author’s behavior and causes either a continu- 
ance of publication or a cessation. If the initial paper(s) 
are well received, the author’s selfestimate, and also 
those who may determine things such as promotion and 
tenure, will enable the circumstances and motivation to 
be high enough to make another attempt. At subsequent 
determinations the cumulation of past success makes the 
threshold needed smaller so there arise larger and larger 
cumulating advantages leading to continuance in publica- 
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tion. Price and Giirsey (33) showed that transient 
authors have only a chance of about one in four of hav- 
ing their sole paper cited, non-core continuants have 
about 0.7 chance of being cited, and core continuants 
are almost all cited every year. The correlation between 
citation and productivity is therefore very high and most 
effective in the crucial decision to remain at the research 
front or retire from it. 

The citation of papers, as has been shown, depends 
only on their nature and not on the number of papers 
available to cite them, though this too grows at the 
same exponential rate. This point was confirmed by 
Gomperts (34) who showed that in the field of vibrat- 
ing plates the citations per paper were independent of 
the size of the citing literature, though of course the 
rate must vary from paper to paper. Looking back on 
the literature from any date however, by observing the 
references in source papers of that date, one must get a 
distribution that depends on the number of papers 
available for citation at any previous date. In 1965 I 
suggested that the time distribution of citations per cited 
paper should enable one to disentangle the literature 
growth from any obsolescence factor that might apply. 
Now, the cumulative advantage theory enables this to be 
done, for as has been seen the citations per cited paper 
(the Garfield Constant) is related to the mean M and 
therefore to the parameter m. We have G = 1 t2M= 1 t2/m. 
Taking the data from Price (27) we get the mean cita- 
tions, and therefore for the amount the literature of 
that age is used relative to the use per paper of most 
recent literature, the following table: 

Age in years C 1-G/ 1-Go 

0 1.75 1.00 
4 1.7 0.93 
9 1.6 0.80 

15  1.5 0.67 
20 1.4 0.53 
28 1.3 0.40 
42  1.2 0.27 
55 1.15 0.20 
80 1 . 1  0.13 

Age in years Relative use 
in percent 

2 98 
3 96 
5 90 
8.5 80 

10 75 
12 70 
1 7  60 
23 50 
30 40 
49 25 
58 20 

100 10 
150 5 
230 2 
300 1 

Since the data on which this is based shows no  effect 
whatsoever due to the enormous curtailments of publica- 
tion volume in both World War I and World War I1 we 
can be sure that what we have here is pure obsoles- 
cence, unaffected by the size of the available literatures. 

The time variation is rather different from anything that 
had been previously proposed and follows a typically 
S-shaped logistic decline with the logarithm of time as 
the independent variable. I conjecture that the form 
might be y = e-x ( 1  t x )  where x = log, (t/ 10 years) and 
that it probably arises from the usual differential equation 
defining the exponential growth of the literature, 
dy/df = Ky being modified to include a term on the 
right of the second degree, dy/dt=Ky-Ly*. 

At any event, what seems to  happen in the process of 
obsolescence as we now can see it, is that during the 
first several years after publication the utility of relative 
citability of a paper declines only very slowly :.id para- 
bolically in the logarithm of years elapsed. Even after 
a century the chance of citation has decreased by only a 
factor of ten. Most citations are to recent papers because 
most papers are recent, and it is dubious if there is any- 
thing of an immediacy effect due to rapid short-range 
obsolescence as I once conjectured. Obsolescence would 
seem to be an essentially long-range phenomena, akin to 
the effect of finite lifetime of authors in curtailing 
publication productivity. Since we now have the 
empirical values of G for papers of various ages, one may 
use the obsolescence data to derive from the time spec- 
trum of citation the volume of publication that must 
exist at the various dates in the past century. One may 
also derive the citation frequency distributions for 
papers of varying age. It is evident immediately that 
highly cited papers will fall off more slowly with elapsed 
time than less cited papers. 

0 Philosophical Epilogue 

I cannot conclude this first paper on the Cumulative 
Advantage Distribution without some remarks on its 
conceptual significance. The surface has only been 
scratched and doubtless the application of this theory 
will raise as many problems as are solved and demand 
much more empirical testing and rigorous statistical 
mathematics in expression. What intrigues me most is 
that this new underlying theory which seems to pull 
together so many diverse phenomena and qualitative 
laws into good quantitative predictability does so in a 
way that has an element of causal asymmetry. One 
would have supposed, for example, that the process of 
citation depended equally on the cited paper and the 
citing paper. It is with this in mind that some recent 
investigators (35) have been taking long hard looks at 
the apparent caprice with which a paper may or may 
not decide to cite previous work and may even make 
token or ritualistic citations. 

In this theory, it would appear that the course of 
future citation successes is determined statistically by 
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the past history of the cited paper; and so one is 
driven to suppose that citations are generated by a pull 
mechanism from previous citation rather than from a 
push mechanism of the papers that d o  the citing. We 
even derive a relationship which goes some of the way 
to explaining the average number of references per paper 
as a consequence of the success distribution of the 
already existing corpus of  literature, without there being 
much possible allowance for what such a reference 
actually implies. 

It seems to  me that the injection of some version of 
an underlying theory of this nature goes a long way 
towards solving the problem of what it is that we have 
been measuring and counting in bibliometric research 
and the other social science fields where cumulative 
advantage appears t o  operate. 
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