Iterative Methods

The following summarizes the main points of our class discussion of the classical iterative methods for solving $A x=b$ and also provides additional useful results.
Conventions: The system dimensions are $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}, b \in \mathbb{R}^{n}$. The $i j$ th entry in A is denoted by $a_{i j}$. The i th components of x and b are denoted by x_{i} and b_{i}. A sum is omitted when its lower index of summation is greater than its upper index of summation.

The classical methods.

These methods are based on a "splitting" $A=D-L-U$, in which D is a diagonal matrix containing the diagonal of A, and $-L$ and $-U$ are strict lower- and uppertriangular matrices containing the strict lower- and upper-triangular parts of A. The "matrix" forms of the methods are as follows:

Jacobi Iteration:
Given an initial x,
Iterate:

$$
x \leftarrow D^{-1}[(L+U) x+b]
$$

Gauss-Seidel Iteration:
Given an initial x,
Iterate:
$x \leftarrow(D-L)^{-1}(U x+b)$

Successive Over-Relaxation (SOR):

Given an initial x,
Iterate:

$$
x \leftarrow(D-\omega L)^{-1}\{[(1-\omega) D+\omega U] x+\omega b\}
$$

The equivalent "componentwise" forms of the methods are as follows

Jacobi Iteration:
Given an initial x,
Iterate:
For $i=1, \ldots, n$

$$
x_{i}^{+}=\left(b_{i}-\sum_{j \neq i} a_{i j} x_{j}\right) / a_{i i}
$$

Update $x \leftarrow x^{+}$.

Gauss-Seidel Iteration:
Given an initial x,
Iterate:
For $i=1, \ldots, n$
$x_{i} \leftarrow\left(b_{i}-\sum_{j<i} a_{i j} x_{j}-\sum_{j>i} a_{i j} x_{j}\right) / a_{i i}$

Given an initial x,
Iterate:
For $i=1, \ldots, n$

$$
x_{i} \leftarrow(1-\omega) x_{i}+\left(\omega / a_{i i}\right)\left(b_{i}-\sum_{j<i} a_{i j} x_{j}-\sum_{j>i} a_{i j} x_{j}\right)
$$

Convergence theory.

Consider the following General Iteration, in which $T \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^{n}$:

General Iteration:

Given an initial x,
Iterate:

$$
x \leftarrow T x+c
$$

The classical iterative methods are of this form, as follows:

- Jacobi iteration: $T=T_{\mathrm{J}} \equiv D^{-1}(L+U)$ and $c=c_{\mathrm{J}} \equiv D^{-1} b$.
- Gauss-Seidel iteration: $T=T_{\mathrm{GS}} \equiv(D-L)^{-1} U$ and $c=c_{\mathrm{GS}} \equiv(D-L)^{-1} b$.
- SOR: $T=T_{\omega} \equiv(D-\omega L)^{-1}[(1-\omega) D+\omega U]$ and $c=c_{\omega} \equiv \omega(D-\omega L)^{-1} b$.

Note that for all three methods, $x^{*}=T x^{*}+c$ if and only if $x^{*}=A^{-1} b$. Thus, if the iterates produced by one of these methods converge, then they converge to $A^{-1} b$.

Proposition 1 and Theorem 3 below are results for the General Iteration.
Proposition 1: If $\left\{x^{(k)}\right\}$ produced by the General Iteration converges to some x^{*}, then $x^{*}=T x^{*}+c$.

Definition 2: The spectrum and the spectral radius of T are, respectively,

$$
\sigma(T) \equiv\{\lambda: T x=\lambda x, \text { for some } x \neq 0\} \quad \text { and } \quad \rho(T) \equiv \max _{\lambda \in \sigma(T)}|\lambda| .
$$

Theorem 3: The iterates $\left\{x^{(k)}\right\}$ produced by the General Iteration converge for every $x^{(0)}$ if and only if $\rho(T)<1$. If $\rho(T)<1$, then for every $x^{(0)},\left\{x^{(k)}\right\}$ converges to the unique x^{*} satisfying $x^{*}=T x^{*}+c$.
The results below pertain to convergence of the classical iterations and are often useful in applications.

Definition 4: A is diagonally dominant if $\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|$ for $1 \leq i \leq n$. A is strictly diagonally dominant if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for $1 \leq i \leq n$.

Theorem 5: If A is strictly diagonally dominant, then A is nonsingular. Moreover, $\rho\left(T_{\mathrm{J}}\right)<1$ and $\rho\left(T_{\mathrm{GS}}\right)<1$; consequently, both the Jacobi and Gauss-Seidel iterates converge to $A^{-1} b$ for every $x^{(0)}$.

Theorem 6 (Stein-Rosenberg): If $a_{i j} \leq 0$ for $i \neq j$ and if $a_{i i}>0$ for each i, then one and only one of the following holds:
(a) $0 \leq \rho\left(T_{G S}\right)<\rho\left(T_{J}\right)<1$,
(b) $1<\rho\left(T_{J}\right)<\rho\left(T_{G S}\right)$,
(c) $\rho\left(T_{J}\right)=\rho\left(T_{G S}\right)=0$,
(d) $\rho\left(T_{J}\right)=\rho\left(T_{G S}\right)=1$.

Note that if (a) holds, then both the Jacobi and Gauss-Seidel iterates converge to $A^{-1} b$ for every $x^{(0)}$, and we can expect the Gauss-Seidel iterates to converge faster. If (c) holds, then the iterates from both methods reach $A^{-1} b$ in a finite number of iterations. If (b) or (d) holds, then the iterates do not converge for some $x^{(0)}$.
Theorem 7: If A is symmetric positive-definite (SPD), then the Gauss-Seidel iterates converge to $A^{-1} b$ for every $x^{(0)}$.
Note that, since an SPD matrix has positive diagonal elements, it follows from Theorem 7 and the Stein-Rosenberg theorem that if A is SPD with non-positive off-diagonal elements, then the Jacobi iterates as well as the Gauss-Seidel iterates converge to $A^{-1} b$ for every $x^{(0)}$, and we can expect the Gauss-Seidel iterates to converge faster.

Theorem 8 (Kahan): If $a_{i i} \neq 0$ for $i=1, \ldots, n$, then the SOR iteration matrix T_{ω} satisfies $\rho\left(T_{\omega}\right) \geq|\omega-1|$. Consequently, the SOR iterates converge for every $x^{(0)}$ only if $0<\omega<2$.

Theorem 9 (Ostrowski-Reich): If A is symmetric positive-definite and $0<\omega<$ 2 , then the SOR iterates converge to $A^{-1} b$ for every $x^{(0)}$.

Theorem 10: If A is symmetric positive-definite and tridiagonal, then $\rho\left(T_{\mathrm{GS}}\right)=$ $\rho\left(T_{\mathrm{J}}\right)^{2}<1$, and the ω that minimizes $\rho\left(T_{\omega}\right)$ is

$$
\omega=\frac{2}{1+\sqrt{1-\rho\left(T_{\mathrm{J}}\right)^{2}}} .
$$

For this $\omega, \rho\left(T_{\omega}\right)=\omega-1$.
The results above came from reference [1, Sec. 7.3], although Theorem 5 has been augmented a bit and Theorem 7 is not stated there, presumably because it is implied by Theorem 9 with $\omega=1$. There are many more convergence results for the classical iterations. A good general reference is [2]. Seminal classical references are [3] and [4].

References.

1. R. L. Burden and J. D. Faires, Numerical Analysis (9th ed.), ThomsonBrooks/Cole, 2010..
2. J. Stoer and R. Bullirsch, Introduction to Numerical Analysis, Springer-Verlag, 1980.
3. R. S. Varga, Matrix Iterative Analysis, Series in Automatic Computation, Prentice-Hall, 1962.
4. D. M. Young, Iterative Solution of Large Linear Systems, Computer Science and Applied Mathematics, Academic Press, 1971.
