Iterative Methods

The following summarizes the main points of our class discussion of the classical iterative methods for solving Ax = b and also provides additional useful results.

Conventions: The system dimensions are $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$. The *ij*th entry in A is denoted by a_{ij} . The *i*th components of x and b are denoted by x_i and b_i . A sum is omitted when its lower index of summation is greater than its upper index of summation.

The classical methods.

These methods are based on a "splitting" A = D - L - U, in which D is a diagonal matrix containing the diagonal of A, and -L and -U are strict lower- and upper-triangular matrices containing the strict lower- and upper-triangular parts of A. The "matrix" forms of the methods are as follows:

JACOBI ITERATION:	GAUSS-SEIDEL ITERATION:
Given an initial x ,	Given an initial x ,
Iterate:	Iterate:
$x \leftarrow D^{-1}\left[(L+U)x + b\right]$	$x \leftarrow (D-L)^{-1} (Ux+b)$

SUCCESSIVE OVER-RELAXATION (SOR):

Given an initial x,

Iterate:

$$x \leftarrow (D - \omega L)^{-1} \left\{ \left[(1 - \omega)D + \omega U \right] x + \omega b \right\}$$

The equivalent "componentwise" forms of the methods are as follows

 $\frac{\text{JACOBI ITERATION:}}{\text{Given an initial } x,}$ Iterate: For $i = 1, \dots, n$ $x_i^+ = \left(b_i - \sum_{j \neq i} a_{ij} x_j\right) / a_{ii}$ Update $x \leftarrow x^+$.

GAUSS-SEIDEL ITERATION:

Given an initial x,

Iterate:

For
$$i = 1, ..., n$$

 $x_i \leftarrow \left(b_i - \sum_{j < i} a_{ij} x_j - \sum_{j > i} a_{ij} x_j\right) / a_{ii}$

SUCCESSIVE OVER-RELAXATION (SOR):

Given an initial x, Iterate: For i = 1, ..., n $x_i \leftarrow (1 - \omega)x_i + (\omega/a_{ii}) \left(b_i - \sum_{j < i} a_{ij}x_j - \sum_{j > i} a_{ij}x_j \right)$

Convergence theory.

Consider the following General Iteration, in which $T \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^{n}$:

 $\frac{\text{GENERAL ITERATION:}}{\text{Given an initial } x,}$ Iterate: $x \leftarrow Tx + c$

The classical iterative methods are of this form, as follows:

- Jacobi iteration: $T = T_{\rm J} \equiv D^{-1}(L+U)$ and $c = c_{\rm J} \equiv D^{-1}b$.
- Gauss-Seidel iteration: $T = T_{\text{GS}} \equiv (D L)^{-1}U$ and $c = c_{\text{GS}} \equiv (D L)^{-1}b$.
- SOR: $T = T_{\omega} \equiv (D \omega L)^{-1} [(1 \omega)D + \omega U]$ and $c = c_{\omega} \equiv \omega (D \omega L)^{-1} b$.

Note that for all three methods, $x^* = Tx^* + c$ if and only if $x^* = A^{-1}b$. Thus, if the iterates produced by one of these methods converge, then they converge to $A^{-1}b$.

Proposition 1 and Theorem 3 below are results for the General Iteration.

PROPOSITION 1: If $\{x^{(k)}\}$ produced by the General Iteration converges to some x^* , then $x^* = Tx^* + c$.

DEFINITION 2: The spectrum and the spectral radius of T are, respectively,

$$\sigma(T) \equiv \{\lambda : Tx = \lambda x, \text{ for some } x \neq 0\}$$
 and $\rho(T) \equiv \max_{\lambda \in \sigma(T)} |\lambda|.$

THEOREM 3: The iterates $\{x^{(k)}\}$ produced by the General Iteration converge for every $x^{(0)}$ if and only if $\rho(T) < 1$. If $\rho(T) < 1$, then for every $x^{(0)}$, $\{x^{(k)}\}$ converges to the unique x^* satisfying $x^* = Tx^* + c$.

The results below pertain to convergence of the classical iterations and are often useful in applications.

DEFINITION 4: A is diagonally dominant if $|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ for $1 \le i \le n$. A is strictly diagonally dominant if $|a_{ii}| > \sum_{j \ne i} |a_{ij}|$ for $1 \le i \le n$.

THEOREM 5: If A is strictly diagonally dominant, then A is nonsingular. Moreover, $\rho(T_{\rm J}) < 1$ and $\rho(T_{\rm GS}) < 1$; consequently, both the Jacobi and Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$. THEOREM 6 (STEIN-ROSENBERG): If $a_{ij} \leq 0$ for $i \neq j$ and if $a_{ii} > 0$ for each *i*, then one and only one of the following holds:

(a) $0 \le \rho(T_{GS}) < \rho(T_J) < 1$, (b) $1 < \rho(T_J) < \rho(T_{GS})$, (c) $\rho(T_J) = \rho(T_{GS}) = 0$, (d) $\rho(T_J) = \rho(T_{GS}) = 1$.

Note that if (a) holds, then both the Jacobi and Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$, and we can expect the Gauss–Seidel iterates to converge faster. If (c) holds, then the iterates from both methods reach $A^{-1}b$ in a finite number of iterations. If (b) or (d) holds, then the iterates do not converge for some $x^{(0)}$.

THEOREM 7: If A is symmetric positive-definite (SPD), then the Gauss-Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$.

Note that, since an SPD matrix has positive diagonal elements, it follows from Theorem 7 and the Stein–Rosenberg theorem that if A is SPD with non-positive off-diagonal elements, then the Jacobi iterates as well as the Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$, and we can expect the Gauss–Seidel iterates to converge faster.

THEOREM 8 (KAHAN): If $a_{ii} \neq 0$ for i = 1, ..., n, then the SOR iteration matrix T_{ω} satisfies $\rho(T_{\omega}) \geq |\omega - 1|$. Consequently, the SOR iterates converge for every $x^{(0)}$ only if $0 < \omega < 2$.

THEOREM 9 (OSTROWSKI-REICH): If A is symmetric positive-definite and $0 < \omega < 2$, then the SOR iterates converge to $A^{-1}b$ for every $x^{(0)}$.

THEOREM 10: If A is symmetric positive-definite and tridiagonal, then $\rho(T_{\rm GS}) = \rho(T_{\rm J})^2 < 1$, and the ω that minimizes $\rho(T_{\omega})$ is

$$\omega = \frac{2}{1 + \sqrt{1 - \rho(T_{\rm J})^2}}$$

For this ω , $\rho(T_{\omega}) = \omega - 1$.

The results above came from reference [1, Sec. 7.3], although Theorem 5 has been augmented a bit and Theorem 7 is not stated there, presumably because it is implied by Theorem 9 with $\omega = 1$. There are many more convergence results for the classical iterations. A good general reference is [2]. Seminal classical references are [3] and [4].

References.

- R. L. Burden and J. D. Faires, Numerical Analysis (9th ed.), Thomson– Brooks/Cole, 2010..
- J. Stoer and R. Bullirsch, Introduction to Numerical Analysis, Springer-Verlag, 1980.
- 3. R. S. Varga, *Matrix Iterative Analysis*, Series in Automatic Computation, Prentice–Hall, 1962.
- 4. D. M. Young, *Iterative Solution of Large Linear Systems*, Computer Science and Applied Mathematics, Academic Press, 1971.