Tendler-like Formulas for Stiff ODEs

Elmar Klausmeier

Contributing authors: Elmar.Klausmeier@gmail.com;

Abstract

This paper proves a convergence result for a general class of methods for the
solution of ordinary differential equations (initial value problems). The proof
uses standard results from the theory of matrix polynomials. We present new
cyclic linear multistep formulas of orders 3 to 9 for stiff equations, which, order
by order, outperform the cyclic composite multistep methods of Tendler with
respect to the Widlund-wedge angle and Widlund-distance. The Tendler formu-
las had already outperformed the BDF order by order. We present numerical
accuracy comparisons on Dahlquist’s and Runge’s test equations with the BDF,
the original Tendler, the new methods, and the Tischer methods.
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1. Introduction

We consider the numerical solution of the ordinary differential equation, the initial
value problem

g(t) = f(t,y(t), ylto) =yo € C", 1t € [to,tena] CR.

Assume that f : [to,tend] X C* — C™ is Lipschitz-continuous in y for all ¢, and
continuous in t. We will use cyclic linear multistep methods for this, i.e., we will employ
a fixed set of linear multistep methods and cycle through them.

Cyclic linear multistep methods are attractive for a number of reasons:

1. They are not subject to Dahlquist’s first and second barriers.
2. They share the same low overhead per step as linear multistep methods.



3. They offer more parameters to attain desirable stability or accuracy properties than
linear multistep methods.

Below is an example of an order-four cyclic composite method, which we call
eTendler4 (enhanced Tendler4). It cycles through three different linear multistep
methods for some fixed step size h € R, m=1,2,...:

3Yzm—3 — 16ysm—2 + 36¥3m-1 — 48Y3m + 25Y3m41

12hy3m41,

16y3m—2 — 90yY3m—1 + 234y3m — 214y3mi1 + 54Ysmy2

—84hysm+1 + 36hYsmt2,

162y3m+1 - 114y3m+2 + 31y3m+3
48hysm+1 — 60hysmy2 + 24hYs3m+3-

15y3m7 1 — 94y3m

I+

The first stage of eTendler4 is the standard BDF4 (the classic backward differentiation
formula of order 4). Each stage is a 4-step linear multistep formula.

In addition to the initial value yq, the above difference method needs three starting
values ¥1, y2, and y3 and will then produce discrete values yi for k = 4,5,..., as
approximations of order O(h*) to the desired function y, yx = f(tx,yx), tx = to + kh.
These starting values can be generated using lower-order methods with fewer required
starting values and a smaller step size |h|.

In a later chapter it will be shown that the above method converges for sufficiently
small |h| for a wide range of functions f.

The difference equation above can be expressed in matrix-vector form:

AoYom + AtYin-1 + AoYm-s = h (BoYim + BiYin-1 + BoVm-z)

with
003 —16 36 —48 25 0 0
Ay=1000]|, A = 16 —90 234 | , Ao =1|-214 54 0],
000 0 15 —-94 162 —114 31
and
12 0 O
By=0, By=0, By=|-8436 0],
48 —60 24
and
Yam—5 Yam—2 Yam+1 . f(t37n+1a y3m+1)
Yi—2=(v3m-a | Y1 = | ¥3m-1 |, Y = | ¥3ms2 | » Y = | f(t3m+2, Y3m+2)
Y3m—3 Y3zm Y3m+3 JF(t3m+3:Y3m+3)



Stability of this cyclic method is now governed by the two matrix polynomials

p(p) = Agp® + Ay + Ao, o(p) = Bop® + By + Bo.
All stages in eTendler4 are implicit and must therefore be solved iteratively (fixed-point
or Newton).

The stages of a composite method might be explicit or implicit. They might have
different orders, and might require a different number of starting values.

2. Consistency and stability

1. Consider the multistep method
k
y7t(), Z aly to + ’Lh hﬁl‘y(to + ’Lh)) e C".
=0
and
= Zai,u’ e C, o(u) = Zﬁi/ﬂ e C.
i=0 i=0

The consistency conditions are:

Cpui - (g) — (A|B) (g) =0.

The consistency matrix C), ; for a linear k-step method of consistency order p is given
by the following equation

Qo

(€51
111 1...1]0 0 0 0 0 : 0
01 2 3 ... k|I-1 -1 —1 -1 ... -1 0

2 52 92 2 Ak—1
01223 ...k*l0 -2-1 -2-2 -2.-3 ... =2-k a 0
0132333 ... k30 —-3-12 —3.22 —_3.32 ... —3.k2 ) Bo =10
L R ST I : : : " : p1 :
017 230 k| 0 —plp=! —pop—l _p3p—1 | _ppp—1 : 0

Br—1

Br

2. Theorem: The following eight propositions are equivalent. Therefore any of
these statements can be used as a definition for consistency of order p.

(1) ¢ k(g) =0,50 (o, B) 7T € ker Cp 1.
(2) Zf:o ;1% = qu:O B9 for ¢ =0,1,...,p



(3) p(eh) — ho(eh) = O(hP*1), for h — 0.
(4) ¢ =1 is a zero of multiplicity at least p of the function

s0 p(¢)/In¢ = 7(¢) + O((¢ — 1)?), for ¢ — 1.

(5) L(f,t,h) = O(hPtY), Vf e CPH2(G,C).

(6) The monomials up to the degree p lie in the kernel of the h = 1 cut of L;
therefore L(t%,ty,1) =0, for i = 0,1,...,p.

(7) L(f,to, h) = O(hP*1), for the special function ¢ — f(t) = €.

(8) L(y,to,h) = cpp1 APy (¢5) + O(hP+?) with

1

k
(p+1) > (@it = (p+ 1)Bii").

=0

Cp+1 =

The factor cp1 is called the unscaled error constant.
Proof Mostly trivial reformulations. See Hairer/Wanner/Norsett (2008), Thm. I111.2.4. O

3. Our composite method is
ZAzYn—H = h(p(Yn—H@? cee 7Yn) =h- <Z B1Yn+z> , n= 07 17 23 ceee
i=0 i=0

©(-) also depends on h, t,4;, and f, but for brevity we omit that. This general
method is called general linear method in [5] and Hairer/Wanner/Norsett (2008). The
characteristic polynomial is

det Q(u, H) := det{Z(Ai - HBZ-)M}.
i=0
The stability region of a method is the area
{HeC:detQ(u,H) =0 A |pu] < 1}.
This set is not necessarily connected, i.e., it might contain holes. See, for example, the

two block-implicit methods of order 8 and 10 from [4].
The stability mountain is the set

{(H,|ul) € C x RZ : det Q(u1, H) = 0}.

This mountain is interesting for observing how fast |u| decays, i.e., the gradient.



4. Definition. Slightly deviating and expanding from [22]. For real values o > 0,

6>0,r>0,let

.~

N> o

10.

8.
9.

Ala) ={z€ C™ : Jarg(—2)| < aAz#0}, Sd]={2€C:Rez<—§ <0}

. A method is D-stable if the Jordan triple for the matrix polynomial Q(u,0) has all

its eigenvalues in the closed unit disc with all eigenvalues of magnitude 1 lying in
1 x 1 blocks, see [5], Thm 142C.

. The eigenvalues not equal to 1 for Q(u,0) with the greatest magnitude are called

the parasitic roots.

A method is Afa]-stable if A[a] is a subset of the stability region.

The largest a for which a method is Ala]-stable is called the Widlund-wedge
angle a.

A method is S[d]-stable if S[d] is a subset of the stability region.

The smallest § for which a method is S[d]-stable is called the Widlund-distance 0.
If @ =90° or 6 = 0 then the method is called A-stable.

An Alaj-stable method with the additional property that for Re H — —oo all
|| < 7 is called A7 [a]-stable. The smallest r is of interest.

An S[d]-stable method with the additional property that for Re H — —oo all || < r
is called S7_[d]-stable.

For r < 1 we abbreviate with As[a]- and Sy [d]-stable. For r = 0 the limit r — 0
is meant. An A9 [90°]-stable method is called L-stable, see [11], definition 3.7.

5. Examples. The above stability characteristics manifest in all shapes and forms.

. The explicit Euler method, yn4+1 = yn + hf(tn, yn), is D-stable but not A-stable,

nor Alal-stable.

. The implicit Euler method (=BDF1), yp+1 = yn + Af(tn+1,Yn+1), and the BDF2

are D-stable and A-stable.

The BDFi are D-stable for ¢ = 1,...,6, and are unstable for all ¢ > 7, see [10],
1113, Thm 3.4.

The BDFi (i = 1,...,6) are A% [a]-stable with « being 90°, 90°, 86.03°, 73.35°,
51.84°, 17.84°, respectively, see [1].

All Tischer cyclic composite formulas, see [23] and [24], are A% [a]-stable and SY_[4]-
stable and have equal to zero parasitic roots. These properties are highly desirable
for the integration of stiff systems.

The 5-step cyclic linear multistep method with 5 stages of order seven from [12] is
A[44.8°]- and S[6]-stable. The a given in [12] is slightly smaller.

The linear multistep formula of order nine from [9] used in DSTIFF is S2.%89[2.086]-
stable.

The DSTIFF formula of order 10 from [9] is A%578[63.74°]-stable.

The new formulas eTendler8 and eTendler9 are SY_[§]-stable but not A[a]-stable.

3. Convergence result

The proof of the convergence result is conducted in the setting of matrix polynomials,
see [7] or [8].



For the differential equation we can confine ourselves to the scalar case n =1, i.e.,
C instead of C™. Otherwise we would have to add A; ® I,,xn, and B; ® I,,xn, etc.
everywhere.

6. Notation. Let (P;,Ci,R;) be the first companion triple for the matrix
polynomial

p(p) = Ip" + A"+ + A+ Ag € CF,
of degree ¢ > 1.

Let |tena — to| # 0. The step size h is such that |tena — to|/|h| is an integer. N is
defined by N|h| = |tena — to.

Let
0
P=(10...0)eC™ R := 0 € Chxk,
I
Let I = I k. The first companion matrix is
0 I 0... O
0 0o I... 0
C = : Do . c Ckexke,
—Ay A1 ... —Ar
Further
10...0
P, = di]\z;gPl = £o...0 ' € CONFDRX(N+1)kE
v=0 .
I0...0



and

Tioxre
0
0
_ N I
R1 = diag (Ikgxkg, diag R1> = . S (C(N+1)k£><(N+£)k.
v=1 T,
0
0
1
Let
N+44—1 To
R = C(_)%) r, = e CN+Ok,
TN+e-1

7. Definition. Let T be an arbitrary square matrix of size k x k. The bidiagonal
operator [T] for the matrix T of size (N + 1)k x (N + 1)k, is defined as follows:

I I
-T I I A
7] = S e
T 1 TN TNV ]

See [18]. o
For the product we have: [C}] 'Ry € CINHDRX(N+OE,
Let (X,T,Y) be an arbitrary standard triple. Due to biorthogonality we have

-1 N =1,
(Bxr) - ()2,

7

with the block-Hankel-matrix B

Ay .. Ay
B = , Ay=1.
Ay

See [8], Prop. 2.1.



Further

_ N
X :=diag X =
v=0

and

N -1
(Colf;é XT’)
Y

_ -1 NV N
Y = diag (CO(I) XTZ> ,diagY
1= v=1

Y

The special handling of the block matrix for R; and Y in the first “diagonal
element” has its root in the solution representation of the difference equation for
matrix polynomials of the form

-1 yo nd
Tn = XJ" (;:E%XJZ> XD T T Yy
v=0
Ye—1

For the case £ = 1 we have p(u) = I — A and the two matrices P; and Ry reduce to
the identity matrices of size n x n. The biorthogonality relation reduces to X = Y 1
or X7 l=Y.

8. Theorem: (Discrete Lemma of Gronwall) Let 0 < ng < n; < ... < 1, be
(m 4+ 1) positive numbers. Furthermore ¢ > 0, hj >0 and zj41 = ; + h;. Assume

J
€0 <o and 6j+1§77j+52hy€y, 7=0,....,m—1.
v=0

Then

Ej S?]je&(mjixo), j:O,...,m.

Proof See [26]. The case § = 0 is simple, due to e? = 1. Hence, let § > 0. Starting the
induction with 5 = 0 is obvious, again due to ¥ =1. We perform induction from j to j + 1,



assuming J > 0. We have
J
Eip1 Snjy1+6 Y ey
v=0

J
< i1+ s Z oy eé-(wufwo)
v=0

J
< Mj1 - (1 +0y hy e‘s'(%”o))

v=0

<y T,

This is so because for the sum in parentheses we can estimate (the sum of a strictly
monotonically increasing function)

J i

> hy ) < [ gL (e ).

= 6
v=0 0
O
9. Theorem: (Properties of col, row, diag, [-]) We have

1. colA, B, = diag A, col B,,.
2. colA,B = (col A,) B; right distributivity of col-operator.
3. row A, B, =row A, diag B,,.
4. row AB, = A row B,; left distributivity of row-operator.
5. diag A, B, = diag A, diag B,,.
6. [STITS] = diag S~* [T] diagS.
7. [S1TS] T = diag S [T] " diag S.
Proof Trivial computations. O

10. Theorem: (Solution of difference equation) The general solution of the
difference equation

xn+l+Al—1xn+Z—1+"'+A0mn:yn, nzoal,"',N
is

n—1

Ty =PIClz+ P Y CP 7 Ry,
v=0

Proof See [8], Thm. 1.6. O

11. Theorem: (Representation theorem) Prerequisites: @, and w, are the
solutions of the two difference equations

an+£ + AfflﬁnJerl +---+ AOﬁn =h @(ﬁnJrf» cee 7’&71) + Trnte
Unte + Ap—1Unie—1 + -+ Aot = ho(Upye, ..., Up)



The “disturbances” 7,4¢ correspond to .. We will use

5n+é = r&n—&-é — Un+e,
. R R n=20,...,N.
Ontt i= @(Unpos -y n) — O(Untty -, Up)

The difference equation for i, has the starting values @; := u; +7;, fori =0,...,(—1.
Let §; :=r;, fori =0,...,£—1,and r, := 9, := 9, :=0, for v > N.
Proposition:
50 n—~_
Go=PCy| |+ R oprR (me +hbyie)
dp—1 v=0
50 n—~¢ n—~¢
= PlC{L +P120?717VR1TV+Z—l—hPlZC{l717VR16V+5.
5[_1 v=0 v=0
Proof Follows immediately from the previous theorem. O

12. Theorem: Prerequisite: Let C} := 0 € C**** when i < 0.
Proposition: The reduced stability functional is norm-equivalent to the original
stability functional, i.e.,

[[C1]'"RuR| ~ |P1[C1]'RiR].

Proof In two parts. We estimate each against the other.

(1) The estimation ‘fl [C’l]*lﬁlR’ < ’?1‘ .[Cl]flﬁlR‘ is obvious. The row-norm of Py
is independent of N.

(2) We use

_ _ _ —1 i—
|C’{lzo| < ‘C’f 1’ ’C{l Z'Hzo’ = ’Cf 1’ mag’PlC?H €+1ZQ‘,
i=
due to
n _ £—1 n-+1
|01 z0’ = maéc PiCy " 2 .
1=
We can "extract” C’f71 because the sup-norm for ‘fl [Cﬂ_lﬁlR’ still goes over all rows.
Finally
11— _ —— _ {—1 —— i
Ccy ! VRlTl,Jrg‘ < ‘Cf 1’ ’CIL ¢ leTl,Jrg‘ = ‘Cf ! IIIIE,S( )Plc? ¢ V+lR1TV+g’,

due to ry :=0, for v > N. O

13. Theorem: (Estimation theorem) Prerequisite: Let ¢(-) be Lipschitz-
continuous in each component with Lipschitz constant K;. The values d,4¢ and 6,1
are as above.

10



Proposition:
n—~¢ ) 14 n—1
Z|5u+e| < Kylon| + (ZK1> <Z|5u|>
v=0 i=0 v=0
V4 n
=0 v=0

< (0+1)- (maxK,) ioa,,y

Proof For v =0,...,n — 1 we have
|5l/+f‘ = ‘@(ﬁu-‘re?' . aﬁy) - ‘P(Uu+€7- .. auy)|
< Koldw| + K1|dyy1] 4 - 4 Kpldy 40l

For ease of notation 8, < |6, | and 8, < |8, |. Hence,
n—~_
> 0y < (Koo + -+ + Kydg) + (Koby + -+ + Kgbpy1) + - + (Kobp—gg1 + -+ + Kgn)
v=0

=Ko b0+ +0p—¢+1)
+ K1 (01 + -+ 0p—rt2)
+

+ Ky (6g+---+dn).
Summation and estimate shows the first claim. The second estimate follows from the first. [J

14. Main theorem: Prerequisites: The function ¢ is Lipschitz-continuous in each
component with Lipschitz constants K, i.e.,

lo(wey ooy gy yug) — @(Uey ooy Ugy e oyuo)| < K- | —uy|, for i=0,... L
The powers of the matrix C; are bounded by D, |C¥| < D, Vv € N. Let £ and £ be
X ¢
(=P D|R| Ky, &= |P1|D|Rl|<ZKi>~
i=0

The value é is a multivariate function: é = é(Pl, D, Ry, Ko, ..., Ky).
Assume

h < 1/¢, it &> 0;
oo, if&=0.

Proposition: (1) The two difference equations

ﬂn—i—@ + AE—lﬁn-&-Z—l + -+ AOan = h<,0(ﬁn+€7 e aﬁn) + Tn+e
Up+¢ + Alflun+ffl + -+ Aoun = h<P(Un+£a v ,Un)

11



have a unique solution u,¢ for each n , and .
(2) For the maximal norm deviation |&,, — u,| we have the two-sided estimation
with respect to the error terms r,,

C1 |?1 [Cl]_1ﬁ1R| S ‘U - U‘ S Co ‘?1 [Cﬂ_lﬁlR} S CgN ‘R| .

We use U = (uq,...,uyn), and U = (G1,. .., an).
(3) The positive constants ¢;, for i = 1,2, 3, are given by

c|p = ; Co = 1 expéltend - t0|
1+£|tcnd_t0|’ 1_|h|§ 1_|h|§ ’

C3 = C9 |P1|D|R1|

(4) The estimate by (2) is independent from the choice of standard triple, i.e.,
Kl [Tl]ille = Xg [Tg}il?QR,

for two arbitrary standard triples (Xi,71,Y1) and (Xs3,T5,Ys) for the matrix
polynomial p.

(5) The reduced functional |[C1] 'Ry R is also a stability functional and equivalent
to the unreduced functional, independent of N, i.e.,

|P1[C1]'RiR| ~ |[C1]'RyR].

(6) Reduced stability functionals are each equivalent when changing standard
triples. They are not necessarily equal. We have

\[Tl}—l?lR\ ~ y[Tg]—l?QR].

Proof For abbreviation, we use

One 1= Tptp — Unte, Onte = P(lnte, - Un) — @(Unr, .-, Un).

For (1): For each n both difference equations can be written as

Gppe = Flinge) == ho(lpig, - )+, resp. tnip = F(unie) = hp(upig, ... )+,

These are contractive if |h|K, < 1. Therefore, we have uniqueness due to |h|§ < 1.

12



For (2): a) According to the representation theorem

To n—1 n—~
PCE | |+ P CIT T Raruge| 10l + BIPU D RS b
To—1 = v=0
L n—1
< 6l + ] |P1| D i (zm) S
1=0 v=0

¢
-1

< [6n| + [tena — tol [P1| D |R1] (Z Ki) TSLHI(D)|5v\
i=0 v=

¢
< SS%\5V| + [tend — to| [P1| D |Ra| Z&) Sup|5u
v= =0
= (14 éltena — tol) stiplav.
v=0

Here we used

n—~ . -1 n—1
3 e < ot + (L) ()
v=0 1=0 v=0

of the above estimation theorem. We employed N|h| = |tend — to| and finally > _|dv] <
Nsupg;3|5y|. Multiplying by
v
1+ & |tena — tol
then this gives the first inequality from (2), and also gives c;.
b) Again using the representation theorem and using norms

T0
81,_;,_[’ + PlC{L + Pl Z Cn - ’/erl/-‘re

Te—1

n—~¢
|6n] < |h| [P D|R1| D
v=0

L n—1
< || |P1| D |Ry| (Zm) > 16ul+ || | Py D |Ry| Kqlon| + (E[Cl]*lﬁlR ,
=0 v=0 _"€

=¢

We make use of the estimation theorem once more
n—1
(1= [hI€) [6u] < [RIE D" |6v] + [PrC1] ' RuR).
v=0

As |h| < 1/€, we have 1 — |h|€ > 0. Using the discrete lemma of Gronwall and using

‘ﬁl [Cl]_lﬁlR‘ é
Ej+1 < [onl, Wjew7 6%177|h|§’ ho <+ [h],
we get the estimate
) -1y R
|5 ‘ ‘Pl[cl] RlR’ ex €|tend — t0|
M T Tl

13



This shows the constant ca. The constant csg results from a typical estimation.
For (4): The standard triple (X1,77,Y1) is similar to the standard triple (X2, T3, Y2) iff

X5 = X35, Ty = S7'Ty S, Yo =Sy,
or
X1 =X28"Y, Ti=S8STS™!, Yi=SYe.

Now we have

= 1o N “1 . (=1, N
X1[T1]” 1R = | diag X1 ) [T1]” " diag rov(\)leY B, diagY1 | R
v=0 L \*= v=1 1
N —1 191 . -1 —~1\* N
= (diag(X2S™1) ) [ST2S™ 1" diag { row (STQS )SY2 B, diag(SYs) R
v=0 =0 v=1

2 s

[ /y_ . N
- (diag X2> [To] " diag (fov% T5Y> B, diagYs| R
v=0 L =0 v=1 1
= Xo[T] ' YaR.
For (5): This was already proved.
For (6): Asin (4)

_ _ 3 N
[T 'YiR = [SToS " diag {fovér {(SBS—I)Z SYQ] B, diag SY2} R
1= v=1

N —1 ;. £—1 i N ~
= (diag S | [Tz]” " diag |row (T2Y2) B, diagY3| Y2R
v=0 =0 v=1
N e
= (diag S) [TQ] YQR.
v=0
Multiplying from the left with diag,]/V:O S~ then this gives

_ N _
[Ty] ' Y3R = (diag S_l) 11 'YiR.
v

Therefore, both stability functionals are equivalent. O

Similar results can be found in [2] and [3], who also analyzes the left eigenvectors,
which under some circumstances allow a higher convergence rate.

With the main theorem we now have the promised convergence result for a
consistent method, i.e., we have the classical result:

e Consistency + D-Stability = Convergence.

4. New cyclic linear multistep formulas
We now stick to cyclic linear multistep methods of the form

14

Z [aijyml+j — h/BijymZJrj] = 0, 1= ]., e ’f,
j=—k+1

Building on the work of [20] we combine the base formulas given in his chapter 4.2
and use the same restrictions R1-R4. Linear combinations of elements in the kernel of
Cp.r; are also in the kernel.

15. Restrictions. Now fori=1,...,¢:

14



Rl. a5 = B35 =0, for i < j

R2. @j:Ofor]SOandﬂ”#O

R3. QG :OfOI'j < —-k+1

R4. p; > k, where p; is the consistency order of the i-th stage

By design of R1-R4 all Tendler-like cycles start with the BDF of the same order.
Further, if the Tendler-like formula is A[a]-stable, it is also automatically A% [«]-
stable.

Restriction R3 has its origin in an implementation detail of STINT, where the
predictor for y,,ey; for each stage i in the cycle is built only from the backward
differences of ymeti—1, see [21]. In principal, however, at each stage ¢ > 1, all the
previous values are available. In contrast, the Tischer formulas are not subject to the
restriction R3.

16. Characteristics. The new cyclic linear multistep formulas are called
eTendler3-9 (enhanced Tendler3-9). These kind of formulas are a natural extension
of the BDF to cyclic form. From an implementation viewpoint, they are advantageous
because each cycle requires no derivatives from the previous cycle. Therefore, no inter-
polation and storage for f(t,,yn)-values is required. In contrast, Tischer’s formulas
need storage and interpolation for both, y,, and f (¢, yn)-

It is worth noting that although the new formulas all start with BDF4 and the
BDFi are not D-stable for ¢ > 7, the new cyclic formulas are all D-stable. In a cyclic
method one or all constituent multistep methods might be unstable, nevertheless the
cycle itself can be D-stable.

For Tischer’s formulas see [23], [24], and [25]. All Tischer formulas have a cycle
length of two.

While Tendler apparently searched in an entirely manual way, we searched in an
incremental and random machine-assisted way. I.e., we searched in a hypercube of the
parameter space by either providing a starting point, or letting those starting points
be chosen by a random number generator. Our search criteria were Widlund-wedge «,
Widlund-distance §, and parasitic root modulus.

The formulas from Tendler from 1973 were our baseline. Clearly, we wanted to
improve them, or at least find possible limits. So in table 1 we summarize their
characteristics:

p is the convergence order

£ is the cycle length of the Tendler formulas
abs(root) is the magnitude of the parasitic root
a is the Widlund-wedge angle

¢ is the Widlund-distance

The new cyclic linear multistep formulas have better stability characteristics order
by order than the original Tendler formulas. They in turn have better stability
characteristics than the BDF.

17. Higher order. While a formula not being A[a]-stable is of limited value for a
pure stiff ODE solver, it is nevertheless of interest for a type-insensitive code, see [17]
and [14], switching between fixed point and Newton iteration. The type-insensitive
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Table 1 Widlund-wedge angle for Tendler and Tischer formulas

p £ abs(root) a(Tendler)  &(Tendler) ‘ o(Tischer)  &(Tischer)
1 3 0 90° 0 90° 0

2 3 0.333333333  90° 0 90° 0

3 3 0.55371901 89.427° 0.004776 90° 0

4 3 0.35406989 80.882047° 0.244157 90° 0

5 4 0.42931855 77.477315° 1.421472 86.649352°  0.040844
6 4 0.52827598 63.245842° 2.933167 76.311756°  0.280752
7 4 0.66669430 33.531759° 10.179501 57.663061°  0.959187
8 =n/a n/a n/a n/a 22.149242°  2.534082

Table 2 Widlund-wedge angle for new formulas
abs(root) a(new) d(new) Comment

)4
3
3
3
4
4
4
5

© 00Uk W

0.70756795  89.72423°  0.00164
0.28351644  84.91216° 0.07106
0.48870093  77.81321°  0.42370
0.29026688  71.63806°  1.03854
0.57300425  55.13529°  3.87902

0.61600197 none
0.76270334 none

15.05503
38.22753

worse root modulus, better §

better modulus, better «, better §
shorter cycle length, better a, better §
better modulus, better «, better §
better modulus, better «, better §

no other formula with a > 0.1 found
cycle length > 4 seems to be required

code LSODA from [15] has been found useful and competitive in [19]. Higher order
methods are required for orbit calculations with higher precision, see [13] chapter 4.1.6.
The stability mountain of the new order 3 method eTendler3 is shown in the first

figure.
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Fig. 1 Stability mountain of eTendler3

Our search results based on restrictions R1-R4 are as follows:
1. We didn’t find any formula of order 8 and higher with an « of any significance,
even when allowing for a huge number of stages. It is therefore conjectured that

there aren’t any methods of this kind.
2. We didn’t find any formula of order 3 and 4 which actually is A-stable, in contrast

to Tischer’s results. We conjecture that there isn’t any.
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18. The formulas. c; ;41 is the unscaled error constant of the i-th stage. 1; p+1 is
the scaled error constant for the eTendler formulas. Likewise, 1 . | are the scaled error
constants for the original Tendler formulas, and n;": »+1 are the scaled error constants
for the Tischer formulas.

1 1
Nip+1 = =7y - Ci,p+1

The minus-sign is only there as most formulas in this manuscript have negative values.
For linear multistep methods and cyclic methods the «;; cannot be zero. However,
for a block-implicit method the a;; can be zero, see the order 2, 4, 6, 8 and 10 methods
in [4]. More on the scaled error constant in [23], appendix B, and [3], chapter 6.
The error constants are rounded to five digits after the decimal point. The

coefficients of the formulas are exact.
Order 3 and 4.

p=4 1 2 3
p=3 1 2 3 -3 3 0 0
) B 0 0 —2|  —16 16 0
-1 9  —153 0 -1 36 —90 15

0o —18 750 —23 0 —48 234 —94

1 11 —1131 966 1 25  —214 162

2 0 534 —1365 2 0 54 —114

3 0 0 422 3 0 0 31

—2 0 0 0 -3 0 0 0
-1 0 0 0 —2 0 0 0

0 0 0 0 -1 0 0 0

1 6  —246 —384 0 0 0 0

2 0 336 —378 1 12 —84 48

3 0 0 264 2 0 36 —60
Mipt1]0-13636  0.19569 0.15521 3 0 0 24
10,41/0.13636  0.13636 0.16667 Mipt1] 0.096 0.21111 0.30323
n?ﬁ 1 |1.24411 —0.56732 n0,e1| 0.096  0.096 0.10753

nl,1|1.25579 —1.30782

18



Order 5 and 6. 7§ ., = 0.10320 for p = 5 where Tendler’s formula needs four
stages.

p="6 1 2 3 4
—5 10 0 0 0
p=5 1 2 3 —4| -7 38 0 0
—4] —12 0 0 3| 225 276 145 0
-3 75 —66 0 —2|  —400 875 —1054 41
—2|  —200 425  —93 —1| 450 —1600 3350 —289
~1| 300 —1200 615 0| —360 1950 —6200 830
0| —300 2100 —1880 1| 147  —138%8 7075 —1880
1| 137 —1550 2460 2 0 401 —4970 2935
2 0 291 —1515 3 0 0 1654 —1991
3 0 0 413 4 0 0 0 354
1 0 0 0 -5 0 0 0 0
-3 0 0 0 —4 0 0 0 0
—2 0 0 0 -3 0 0 0 0
~1 0 0 0 -2 0 0 0 0
0 0 0 0 -1 0 0 0 0
1 60  —600 540 0 0 0 0 0
2 0 180  —540 1 60 —240 300 300
3 0 0 240 2 0 180 —600 —240
Nipt1|0-07299  0.17182 0.16223 3 0 0 720 —600
iy |0:07299 007299 0.07210 4 0 0 0 180
0l 1|1.13388 —1.34700 Nipt1]0.05831  0.07838 0.07255 0.10048
1?,.1/0.05831  0.05900 0.05736 0.10557

nf’z 1]0.94952 —0.92618
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Order 7.

p= 1 2 3 4
—6] —60 0 0 0
—5| 490  —280 0 0
—4| —1764 2310  —270 0
—3| 3675 —8442 2233 —474
—2| —4900 18025 —8197 3920
—1| 4410 —25200 17675 —14413

0| —2940 25830 —25550 31430
1| 1089 —14910 23695 —42770
2 0 2667 —12383 36904
3 0 0 2797 —20615
4 0 0 0 6018
—6 0 0 0 0
-5 0 0 0 0
—4 0 0 0 0
-3 0 0 0 0
—2 0 0 0 0
~1 0 0 0 0
0 0 0 0 0
1] 420 —4200 2100 —1680
2 0 1260 —2940 3360
3 0 0 1260 —2940
4 0 0 0 2520

Nipt1]0.04821  0.08718 0.07955 0.06539

10,41/0.04821  0.04821 0.06281 0.06765

nfﬁ +1]0.82959 —0.70538
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Order 8.

p=38 1 2 3 4
—7] 105 0 0 0
-6/ —960 10560 0 0
—5| 3920 —96740 4350 0
—4| —9408 396116 —40060 11580
—3| 14700 —954618 165256 —106094
—2|—15680 1501850 —402822 434406
—1| 11760 —1623860 646450 —1046346

0| —6720 1267140 —731500 1640450
1| 2283 —701166 591360 —1801730
2 0 200718 —290706 1438794
3 0 0 57672 —782406
4 0 0 0 211346
—7 0 0 0 0
—6 0 0 0 0
-5 0 0 0 0
—4 0 0 0 0
-3 0 0 0 0
-2 0 0 0 0
—1 0 0 0 0
0 0 0 0 0
1| 840 —56280 25200 21000
2 0 76440 —64680 2520
3 0 0 24360 —81480
4 0 0 0 81480
1ip4+1]0.04088  0.04621 0.06424  0.04804

N} 541(0.73907 —0.55211
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Order 9.

p=09 1 2 3 4 5
8] —280 0 0 0 0
—7| 2835  —5285 0 0 0
—6/—12960 53730 —13715 0 0
—5| 35280 —246960 138885 —24780 0
—4|—63504 677376 —634992 250764 —22331
—3| 79380 —1233036 1728720 —1145544 225768
—2|—70560 1569960 —3111108 3115434 —1029642
—1| 45360 —1446480 3883740 —5600364 2789808

0(—22680 1028160 —3422160 6991530 —4946214
1| 7129 —486351 2295792 —6110664 6531756
2 0 88886 —1194345 3889494 —5933718
3 0 0 329183 —2019384 3364992
4 0 0 0 653514 —1609983
5 0 0 0 0 629564
-3 0 0 0 0 0
-7 0 0 0 0 0
-6 0 0 0 0 0
-5 0 0 0 0 0
—4 0 0 0 0 0
-3 0 0 0 0 0
-2 0 0 0 0 0
~1 0 0 0 0 0
0 0 0 0 0 0
1| 2520 —98280 —80640 —40320 —241920
2 0 35280 —63000 —73080 —168840
3 0 0 118440 35280 171360
4 0 0 0 229320 171360
5 0 0 0 0 216720
Mips1]0.03535  0.05198 0.03743  0.03425 0.03217

5. Numerical results

We will now use various formulas and conduct more than 5000 numerical tests. Before
implementing new formulas in a variable step size and variable order computer code
with convergence tests, nonlinear equation solver, interpolation, dozens of heuristics,
type-insensitive switching logic, etc., we want to ascertain that the formulas work as
intended. Creating such a computer code is a substantial software development effort.

The first parameterized differential equation tests the resilience against stiffness.
The second differential equations tests for accuracy in the presence of large modulus
of the higher derivatives.
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19. Dahlquist’s equation. We tested the BDF, Tendler’s formulas, new Tendler-
like formulas, and Tischer’s formulas on the classical test equation

y(t) = )‘y(t) € (Ca y(tO) = eAth te [t07tend]-
We used
A=re, ty=0, tena=—40, h<O.

The radius is fixed to » = 100, and ¢ varies from 5° to 90° in steps of 5°. ¢ directly
tests the Widlund-wedge angle of the formula.

The step size h for each formula is chosen as h = —0.1, then h = —0.01, finally
h = —0.001.

The above differential equation is now solved with the following formulas:

1. BDF of order 1-6

2. Original Tendler formulas of order 3—-7. Note: Tendler’s formulas of order 1 and 2
are just the BDF1 and BDF2.

New Tendler-like formulas of order 3-9

4. Tischer’s formulas of order 2-8 using s = 0, see [24] for the meaning of s

©w

This creates 1350 data points. Multiplying by two hardware architectures and two
precisions yields 5400 records.
20. Global error. We report the summed global error computed as

” t t
d —to
gerr:Z|y(ti)_yi|a n= EHT.
=0

Computations were done in double precision (double complex in the C programming
language). As the global error |y(t;) — y;| per step varies wildly between 1073%* and
1073%4 we computed

. {5, if gerr > 30 or NaN
Gerr =

logig Gerr, else

Less is better. That is what is shown in the second figure.
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Fig. 2 Accuracy of BDF vs. Tendler vs. New vs. Tischer

One can clearly see that the higher-order methods quickly lose precision when a
higher Widlund-wedge angle is required. This is the reason why none of the computer
codes GEAR, EPISODE, LSODE and CVODE use BDF6. However, in reality, this is
mainly a problem for the step size and order control segment to properly switch order.

The second figure also demonstrates that the Tischer formulas produce larger
global errors. This is to be attributed to the error constants being an order of magni-
tude larger than the error constants of the Tendler formulas. That explains why the
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program ODIOUS, which uses the Tischer formulas, needs a smaller step size, and
therefore needs more steps. This is reflected in the results in [25].

Since [6] noted a sensitivity regarding the chosen precision, especially in STINT,
which implements Tendler’s formulas, we repeated the above tests in single precision
(float complex in the C language) and on two CPU architectures (AMD Ryzen
5700 and ARM Cortex A77). The qualitative results did not differ in any way. We
henceforth conclude that the discontinuity and sensitivity of the step size and order
control segment are the reason for the observed behavior in line with the remarks in
[6].

21. Runge’s equation. The test equation is

—2t 1
(1 + t2)2 < R’ y(to) - ﬁt%’ te [toﬂtEHd]v tO = _57tend =5.

y(t) =

It has the exact solution y(t) = 1/(1 + t2).

This is a numerical quadrature problem and not really a differential equation. This
is Runge’s function showcasing Runge’s phenomenon.

For the numerical solution we used the step sizes h = 0.1, h = 0.01, and h = 0.001.

Running the same formulas from above creates 75 data points. Multiplying by two
precisions gives 150 records.

All formulas produce accurate results and the error is always considerably smaller
than one. We therefore show

gerr = - 10g10 Yerr-

Higher is better. The third image shows the results for quadruple precision (long
double).
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Fig. 3 Runge: Accuracy of BDF vs. Tendler vs. New vs. Tischer

From an accuracy point of view the formulas eTendler6-9 are outperformed by
BDF6 and Tendler7 for the step size h = 0.001. For h = 0.01 eTendler8 shows the
best accuracy.

The Tischer formulas again fall short of expectations and produce larger errors
than all the other methods. This is to be explained by their larger error constants
multiplied by the large magnitude of the higher derivatives of the Runge function.
This is in line with the results reported in [25] where the ODIOUS program on average
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needs 50%-100% more steps and function evaluations than LSODE (based on BDF)
excluding problem B5.

6. Summary and conclusions

We have given a convergence proof for general linear methods in the setting of matrix
polynomials. Matrix polynomials are a versatile medium to analyze cyclic linear
multistep methods.

We have extended the work of Tendler and found new cyclic linear multistep for-
mulas with enhanced Widlund-wedge angle and Widlund-distance. It is conjectured
that by lifting restriction R3 we might find even more enhanced formulas.

By comparing the error constants we explain why the Tischer formulas produce
larger global errors.

Conflict of interest: There is no conflict of interest.
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