Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.
This is in continuation of:
Stability Regions for BDF and Tendler's Formulas
Stability Regions for Tischer's Formulas
Stability Regions for eTendler Formulas
Below is the output…
In Searching for Tendler-like formulas we developed new cyclic linear multistep formulas for the numerical solution of ordinary differential equations.
These cyclic formulas are similar to Tendler's formulas.
Order by order they improve on Widlund wedge angle and Widlund distance.
In Die…
1. Einleitung
1.1 Problemstellung und gesellschaftliche Relevanz
1.2 Zielsetzung und Aufbau der Arbeit
1.3 Methodisches Vorgehen
1.4 Thematische Abgrenzungen
2. Theoretischer Rahmen und Grundannahmen
2.1 Begriff und Zielsetzung des Einsatzes von KI in der Verwaltung
2.2. Digitale Infrastrukturen…
1. Dahlquist's test equation
2. Logarithmic error in double precision
3. Logarithmic error in single precision and other machines
4. Scripts to generate results
1. Dahlquist's test equation
We tested the BDF, Tendler's formulas, new Tendler-like formulas, and Tischer's formulas on the classical…
1. Baseline
2. Specific new formulas
3. Searching across grids
4. Various new formulas
5. stabregion2.c
1. Baseline
The formulas from Tendler from 1973 are our baseline.
Clearly, we want to improve them.
So here we summarize their characteristics:
p is the order
l is the cycle length
α is the…
Problem statement: Loop over a variable number of loops.
I.e., we want to search a parameter space and therefore want to loop over multiple loops.
The number of loops is variable.
The initial approach goes like this:
for (p1=1; p1<=10; ++p1)
for (p2=1; p2<=10; ++p2)
for (p3=1;…
1. Tischer's formulas
All cyclic linear multistep methods were designed to only have root at 1, and all other parasitic roots to be zero.
See Tischer, Peter E. and Sacks-Davis, Ron: “A New Class of Cyclic Multistep Formulae for Stiff Systems”.
2. Donelson & Hansen formulas
See Donelson III,…
The parasitic roots $\lambda_i$ of a multistep method are the roots, which are not 1.
In below table the root 1 is indexed with 0.
The roots are for the matrix polynomial
$$
\rho(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \cdots + A_1 \lambda + A_0
$$
for the multistep method
$$
…
1. Zusammenhang zwischen Picard und Newton Iteration
2. Newton Iteration im Programm TENDLER
3. Die Picard Iteration im Programm TENDLER
4. Der Konvergenztest im Programm TENDLER
5. Verhinderung langsamer Konvergenz in TENDLER
6. Der Hindmarsh-Test im Programm TENDLER
7. Der Konvergenztest im…
1. Einbau neuer zyklischer Formeln in das Programm TENDLER
2. Alternativen zum Prädiktor
3. Verwebung von Prädiktor und Korrektor
4. Speicherung des Prädiktors im Programm TENDLER
Donald A. Calahan (1972), S.236, schreibt hierzu:
Without prediction $\ldots$ typically 3–5 corrector…
1. Definition der Differentialgleichung
2. Lösung der Differentialgleichung
3. Extras
Das Programm TENDLER dient zur näherungsweisen Lösung von gewöhnlichen
Differentialgleichungssystemen erster Ordnung und zwar von
Anfangswertproblemen.
Differentialgleichungen höherer Ordnung lassen sich…
1. Die Sprache C
2. Objektorientierte Programmierung
3. Evolution von Differentialgleichungslösern
4. Statische und dynamische Organisation des Programmes TENDLER
5. Programmrealisierungen von Mehrschrittformeln
6. Speicherplatzaufwand bei Mehrschrittformeln
In the late 1960's we witnessed a…
1. Strategien und Rechnergenauigkeit
2. STINT vers. GEAR und EPISODE
3. STINT versus LSODE
4. Rationalisierte Schrittweiten und dessen Einfluß
Es gibt eine Fülle von Differentialgleichungslösern, sowohl für steife, als
auch für nicht-steife Gleichungen.
Allerdings sind nicht alle Löser auch…
1. Pädiktor-Korrektor-Verfahren und lineare Differenzengleichungen
2. Newton Iteration und Prädiktor-Korrektor-Verfahren
3. Gegenüberstellung von $\beta_\kappa/\alpha_\kappa$ für 3 Verfahren
4. Anzahl der Newton Iterationen und Konsistenzordnung
Implizite lineare Mehrschrittverfahren…