, 8 min read
Parasitic roots of BDF and Tendler's formulas
The parasitic roots $\lambda_i$ of a multistep method are the roots, which are not 1. In below table the root 1 is indexed with 0. The roots are for the matrix polynomial
$$
\rho(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \cdots + A_1 \lambda + A_0
$$
for the multistep method
$$
\sum\limits_{i=0}^{m} A_i Y_{k+i} = h \sum\limits_{i=0}^{m} B_i Y'_{k+i}.
$$
Tendler's formulas can be found in Stiffly Stable Integration Process Using Composite Methods.
1. The BDF
BDF1
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
BDF2
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.33333333 | 0.00000000 | 0.33333333 |
BDF3
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.31818182 | 0.28386355 | 0.42640143 |
| 2 | 0.31818182 | -0.28386355 | 0.42640143 |
BDF4
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.26926080 | 0.49200027 | 0.56086152 |
| 2 | 0.26926080 | -0.49200027 | 0.56086152 |
| 3 | 0.38147841 | -0.00000000 | 0.38147841 |
BDF5
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | -0.00000000 | 1.00000000 |
| 1 | 0.21004369 | 0.67686976 | 0.70871082 |
| 2 | 0.21004369 | -0.67686976 | 0.70871082 |
| 3 | 0.38484682 | 0.16212131 | 0.41760076 |
| 4 | 0.38484682 | -0.16212131 | 0.41760076 |
BDF6
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.14527451 | -0.85107039 | 0.86338027 |
| 2 | 0.14527451 | 0.85107039 | 0.86338027 |
| 3 | 0.37615366 | -0.28847439 | 0.47403486 |
| 4 | 0.37615366 | 0.28847439 | 0.47403486 |
| 5 | 0.40612327 | 0.00000000 | 0.40612327 |
2. Tendler's cyclic formulas
Tendler3
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | -0.00000000 | 1.00000000 |
| 1 | 0.55371901 | 0.00000000 | 0.55371901 |
| 2 | 0.00000000 | 0.00000000 | 0.00000000 |
Tendler4
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.35406989 | 0.00000000 | 0.35406989 |
| 2 | -0.18613598 | 0.00000000 | 0.18613598 |
| 3 | -0.02584359 | 0.00000000 | 0.02584359 |
Tendler5
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | -0.42931855 | 0.00000000 | 0.42931855 |
| 2 | 0.31485709 | -0.00000000 | 0.31485709 |
| 3 | -0.09291397 | -0.00000000 | 0.09291397 |
| 4 | 0.00602978 | -0.00000000 | 0.00602978 |
Tendler6
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | 0.00000000 | 1.00000000 |
| 1 | 0.52827598 | -0.00000000 | 0.52827598 |
| 2 | -0.33496615 | -0.38537896 | 0.51060676 |
| 3 | -0.33496615 | 0.38537896 | 0.51060676 |
| 4 | -0.00423359 | 0.01617638 | 0.01672120 |
| 5 | -0.00423359 | -0.01617638 | 0.01672120 |
Tendler7
| root | real | imaginary | absolute value |
|---|---|---|---|
| 0 | 1.00000000 | -0.00000000 | 1.00000000 |
| 1 | -0.23749387 | -0.62295902 | 0.66669430 |
| 2 | -0.23749387 | 0.62295902 | 0.66669430 |
| 3 | 0.57052707 | 0.00000000 | 0.57052707 |
| 4 | -0.04931498 | 0.01790043 | 0.05246325 |
| 5 | -0.04931498 | -0.01790043 | 0.05246325 |
| 6 | 0.02535626 | 0.00000000 | 0.02535626 |